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Executive summary 

WP2 is both concerned with security engineering processes and security architectures 

for evolving systems. In this deliverable we present three novel paradigms which 

contribute to achieve an integrated framework for management and design of long 

living security-critical systems. 

The SecureChange security engineering process (Section 3) is revolutionary in the 

respect that it is fully change driven. The view of existing security engineering 

processes as sequences of actions (e.g. risk analysis and requirements elicitation) 

performed on the whole system has been replaced by the view of change events 

causing change propagation and state changes in the security engineering artefacts. 

This change of paradigm provides for the first time a systematic way of handling 

changes based on dependencies between artefacts. Beyond that the SecureChange 

process incorporates concepts for the collaboration of different stakeholders in security 

engineering, ranging from the IT manager and requirements engineer to the security 

architect and system administrator. The goal of this collaborative approach is to 

support continuous security management and to achieve an adequate level of security 

at any time in the software lifecycle. 

The SecureChange process is generic in the respect that it is independent of artefacts 

(e.g. Risk Model, Requirements Model, etc.). As a reference model we present a 

general meta model of artefacts and their dependencies. At the same time we 

elaborated a first version of a meta model integrating the artefact structure and change 

perspectives of the whole project. While development of rigorous tool support of the 

process will be launched in the second year, one of the partners (THA) already started 

to materialise the SecureChange process in its existing tool environment. 

While the SecureChange process is independent of artefacts and kinds of changes, the 

concept of Change Patterns (Section 4) provides guidance for the architectural 

changes within the process. Thus, change patterns build the bridge between the 

security engineering process and security at architectural and design level. 

A change pattern guides the architect in designing an architecture that is resistant 

against certain foreseen evolutions of the requirements and assumptions. A change 

pattern explicitly records the change of requirements it supports. Applying a change 

pattern then consists of two steps. First, preparing the architecture up-front for the 

evolution (even though it has not yet occurred), based on a likelihood and importance 

analysis of the evolution. Second, once the evolution occurs, the architect is triggered 

to perform the necessary steps to update the application such that it conforms to the 

new situation. These two steps are reflected in the solutions that belong to the change 
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pattern: architectural patterns for the up-front preparation, and change guidance for 

performing the actual update of the application. A catalogue of change patterns for 

changing trust relationships is described, and its use is illustrated. 

Change patterns provide guidance for architectural changes. Additionally, it is 

important to have a generic blueprint of an architecture that is designed to 

accommodate a broad set of changes, and that can serve as a starting point for 

applying change patterns. This research question has been addressed by the Security 

as a Service Architecture (SEASS) approach (Section 5). Our goal has been to 

develop an architectural blueprint for a pluggable security architecture which supports 

evolution by applying similar mechanisms that have been shown fruitful in the 

functional parts of architectures (e.g. separation of abstraction layers, model-based 

configuration, and orchestration of services). 

The partners of WP2 have been involved in the conceptual design of the 

SecureChange case studies ATM and HOMES. Section 2.3.2, 4.6.2 and 5.7 

summarise the results. 
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1 Introduction 

Engineering a secure software system is hard. Ensuring that the system remains 
secure throughout its lifetime within a dynamically evolving environment is even harder. 
This can partly be attributed to the unpredictability of the world in which the system is 
functioning. Additionally, however, security is a discipline that involves multiple 
stakeholders, which have to collaborate as a well-oiled machine. Not all of these 
people are security experts, or even software engineers. For instance, a change in the 
legal or business context can have a negative impact of the security of the system, if 
that change is not adequately dealt with. 

In this deliverable, the impact of change on developing secure software will be studied. 
First, this will be done from a broad viewpoint, i.e., the development process. Then, the 
focus will be placed on a specific phase from the development process: architectural 
design. 

1.1 Process 

Traditional secure software development processes focus on activities that have to be 
performed, described in a step-by-step process guide. When an application evolves, 
the activities from such development process need to be re-executed, requiring 
assistance of all stakeholders. This can be inefficient, especially if changes occur often. 
Therefore, traditional secure software development processes are less suitable for 
lifelong adaptable, secure systems, because the impact of multiple occurring changes 
can be (too) large. 

In this deliverable, an alternative for an activity-centric process is proposed. The 
alternative is described as change driven process. For this process, the system is 
modelled as a set of tightly coupled artefacts. Each artefact contributes to a certain 
viewpoint and a certain level of abstraction. Evolution is now characterized by changes 
in the artefacts. Since the artefacts are tightly coupled, a change in one artefact can 
propagate to other artefacts. If a stakeholder, depending on his viewpoint, is 
associated with a set of artefacts, he can be notified when a change occurs for which 
he needs to take action. In Section 3.1 we describe a concrete process which is Work 
Package 2 specific. 

To support this process, a model of the artefacts needs to be available. This model is 
described by a metamodel of an integrated process which provides an abstract 
description of change and change propagation overarching all the solutions provided 
by the various SecureChange work packages. The integrated SecureChange process 
is still work in progress, but the final goal is to provide Work Package independent 
concepts of change and to outline how different software engineering artefacts relate to 
each other. The dependency relations between these different artefacts provide the 
means to propagate change and describe different handling of different classes of 
change. In Section 3.2 a strategy for the development of an abstract integrated process 
is described which provides an integration of the solutions of the different 
SecureChange Work Packages. 
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1.2 Architecture 

During the lifetime of the system, its requirements will undoubtedly change, as well as 
the assumptions that were made about the application‘s environment. These changes 
may very well have an impact on the security of the system. This is definitely the case 
when a security-relevant requirement or assumption changes; something in the system 
will then have to change to ensure that the desired security properties of the system 
are maintained. 

While it may be possible to fulfil the updated requirement without changing the existing 
architecture, for example by some localized changes to configuration, implementation 
or protocols, sometimes (significant) alterations to the architecture are necessary. 
Since in the architectural phase, the most substantial decisions are made regarding the 
system that is being developed, it is important to understand the nature and impact of 
changes regarding the architecture. 

Security-related changes in the architecture can be triggered by multiple events. Since 
software design is an iterative process, changes to an architecture are first of all 
possible because of problems or constraints that only arise in the implementation or 
deployment phase of the software. Besides better planning or prototyping, not much 
can be done to lower this impact, and therefore we will not consider this cause of 
architectural change any further. 

The other important source of architectural evolution, often leading to major 
adaptations of the architecture, are changes coming from the artefacts generated by 
the earlier phases of software development, i.e., requirements engineering. This is also 
true for the security-related aspects. In particular, we discern the following cases. 

Changes in the functional requirements 

When a functional requirement changes, this will often have an impact on the security 
properties associated with that requirement. For instance, a newly introduced feature of 
the system may need to be protected from unauthorized users. Also, new features can 
interact with other features, giving rise to new vulnerabilities. 

Changes in the security requirements 

A changing security requirement will, by definition, lead to a security-related change in 
order to fulfil it. For example, a previously unprotected piece of information that now 
needs protection requires that mechanisms are put in place to take care of this 
protection. 

Changed assumptions about the environment 

The security of an application is always based on security assumptions about the 
environment in which it would serve. These assumptions may change for various 
reasons. For instance, the application may simply become deployed in a new 
environment, in which these security assumptions do not hold. Even within the same 
environment, the environment‘s properties can evolve. Equally, a better risk analysis 
may have been performed, invalidating some assumptions about the target 
environment (or giving rise to new assumptions, that were not thought to be viable 
before). All these changes may lead to evolution of the architecture. 
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The impact of an architectural change can be dramatic, especially when the system is 
almost entirely implemented, or, worse, already deployed. Unfortunately, it is 
impossible to create an architecture that permits all future changes. Therefore, it is 
important to understand how to design an architecture, such that it supports foreseen, 
security-related evolution without (or with minimal) impact on the architecture? 

Consider Figure 1. An application is developed using an initial architecture, and may 
subsequently be distributed or deployed. In the following period, changes in the 
environment may lead to minor revisions of the application. If these revisions were 
foreseen in the initial architecture, or can at least be applied without significant effort, 
this is no problem. However, due to some unexpected situation, the current 
architecture may not be able to accommodate one or more necessary changes. At this 
point, a major refactoring of the architecture is necessary. 

 

Figure 1 Changes in an application 

A change can impact the architecture to different degrees, as illustrated by Table 1. 
First, a change can have no impact on the architecture at all. For instance, the change 
can be handled by an adaptation of the detailed design, or by modifying the 
deployment configuration. Next, a change can have a local impact on the architecture. 
The change is then confined to a single element (or a limited number of related 
elements) of the architecture. For instance, the specification of one component in the 
architecture may change. Third, a non-local change modifies multiple elements 
(typically across the entire architecture). However, the architectural approach itself 
remains unchanged (i.e., architectural integrity or style is preserved). Examples of this 
kind of impact are a single change that has a ripple effect throughout the entire 
architecture, or a change that applies to all connectors in the architecture. Finally, a 
change with architectural impact redraws the fundamental ways in which the elements 
interact, and therefore violates the original architectural approach. An example is the 
need for clients in a client-server system to communicate directly. This violates the 
original client-server style of the architecture. 
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No impact  Local  Non-local  Architectural  

/  Confined to single 
element  

Modifies multiple 
elements, but 
follows architectural 
approach  

Changes fundamental 
ways in which elements 
interact  

E.g., change 
in detailed 
design, 
configuration
, ...  

E.g., change 
specification of 
single element  

E.g., a change 
propagating through 
the system (ripple 
effect) 

E.g., clients in client-
server also need to 
communicate directly  

Table 1 Possible impact on the architecture of a change 

A change can have impact in two dimensions. First, the impact of the change during 
the development (design) of the architecture. That is, given that the architect wants to 
support a given evolution scenario, what is the impact of the changes that need to be 
applied to the architecture such that it is prepared for the occurrence of the scenario in 
the future. Note that this does not refer to the impact of implementing the evolution 
scenario immediately, but only to the impact of implementing the necessary 
infrastructure to enable the implementation of the scenario it in the future. Note that the 
development impact will typically manifest itself at a point in time where a major 
refactoring (as discussed before) is made to the system. 

In the other dimension, there is the impact of the change during maintenance of the 
application. That is, given that a certain evolution occurs, what is the impact of the 
changes needed to actually support this new situation. This impact can be low (if the 
architecture is prepared for the change) or high (if the change does not fit the 
architectural style). 

1.3 Outline of the deliverable 

This deliverable concerns both security engineering processes and security 
architectures for evolving systems. After presenting related work (Section 2), three 
paradigms are presented which contribute to achieve an integrated framework for 
management and design of long living security-critical systems. 

The SecureChange security engineering process (Section 3) is a fully change 
driven process. This provides for the first time a systematic way of handling changes 
based on dependencies between artefacts. Beyond that, the SecureChange process 
incorporates concepts for the collaboration of different stakeholders in security 
engineering. The goal of this collaborative approach is to support continuous security 
management and to achieve an adequate level of security at any time in the software 
lifecycle. 

While the SecureChange process is independent of artefacts and kinds of changes, the 
concept of Change Patterns (Section 4) provides specific guidance for the software 
architect who is using the process. Thus, change patterns build the bridge between the 
security engineering process from Section 3 and security at architectural and design 
level. A change pattern guides the architect in designing an architecture that is 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 13 / 132 

 

resistant against certain foreseen evolutions of the requirements and assumptions. A 
catalogue of change patterns for changing trust relationships is described, and its use 
is illustrated. 

Change patterns provide guidance for architectural changes, but require that an initial 
architecture is available. As such, it is also important to have a generic blueprint of an 
architecture that is designed to accommodate a broad set of changes, and that can 
serve as a starting point for applying these change patterns. This research question 
has been addressed by the Security as a Service Architecture (SEASS) approach 
(Section 5). Our goal has been to develop an architectural blueprint for a pluggable 
security architecture which supports evolution by applying similar mechanisms that 
have been shown fruitful in the functional parts of architectures (e.g. separation of 
abstraction layers, model-based configuration, and orchestration of services). 
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2 Related work 

2.1 Security engineering processes 

There are several processes for secure software development in the field. Based on a 
survey on security engineering processes [1], we present three of the best known 
processes: OWASP´s CLASP [2], Microsoft´s SDL [3] and McGraw´s Touchpoints [4]. 
All of them provide an extensive set of activities covering a broad spectrum of the 
development life-cycle. 

2.1.1 CLASP 

Originally defined by Secure Software and later donated to OWASP, CLASP is a 
lightweight process for building secure software. It includes a set of 24 top-level 
activities, which can be tailored to the development process in use. Key characteristics 
include: 

Security at the center stage: The primary goal of CLASP is to support the construction 
of software in which security takes a central role. Furthermore, the activities of CLASP 
are defined and conceived primarily from a security-theoretical perspective and, hence, 
the coverage of the set of activities is fairly broad. 

Limited structure: CLASP is defined as a set of independent activities that have to be 
integrated in the development process and its operating environment. The choice of 
the activities to be executed and the order of execution is left open for the sake of 
flexibility. Moreover, the execution frequency of activities is specified per individual 
activity and, hence, the coordination and synchronization of activities is not 
straightforward. Two road maps (‗legacy‘ and ‗greenfield‘) have been defined to give 
some guidance on how to combine the activities into a coherent and ordered set. 

Role-based: CLASP defines the roles that can have an impact on the security posture 
of the software product and assigns activities to these roles. Roles are responsible for 
the finalization and the quality of the results of an activity. As such, roles are used as 
an additional perspective to structure the set of activities. 

Rich in resources: CLASP provides an extensive set of security resources that facilitate 
and support the implementation of the activities. For instance, one of these resources 
is a list of 104 known security vulnerabilities in application source code (e.g., to be 
used as a checklist during code reviews). 

2.1.2 SDL 

As a result of its commitment to trustworthy computing proclaimed in 2002, Microsoft 
defined the SDL to address the security issues they frequently faced in their products. 
SDL comprises a set of activities, which complement Microsoft‘s development process 
and which are particularly aimed at addressing security issues. SDL can be 
characterized as follows: 

Security as a supporting quality: The primary goal of SDL is to increase the quality of 
functionality-driven software by improving its security posture. Security activities are 
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most often related to functionality-based construction activities. For instance, threat 
modeling starts from architectural dependencies with external systems, while an 
architecture could in fact reduce such threats in the first place. SDL is designed as an 
add-on to the software construction process. 

Well-defined process: The SDL process is well organized and related activities are 
grouped in stages. Although these stages are security specific, it is straightforward to 
map them to standard software development phases. Furthermore, several activities 
have a continuous characteristic in the SDL process, including threat modeling and 
education. As such, the SDL process incorporates support for revising and improving 
intermediate results. 

Good guidance: SDL does a good job at specifying the method that must be used to 
execute activities, which, on average, are concrete and often somewhat pragmatic. For 
instance, attack surface reduction is guided by a flow chart and threat modeling is 
described as a set of sub-processes. As a result, the execution of an activity is quite 
achievable, even for less experienced people. 

Management perspective: SDL takes a management perspective for the elicitation and 
description of many activities. This is nice, given the inherent complexity of security, 
and it shows that security as a quality has to be managed in order to be realized in 
practice. 

2.1.3 Touchpoints 

Touchpoints provides a set of best practices that have been distilled over the years out 
of the extensive industrial experience of its proposer. Most of the best practices, 
named activities from here on, are grouped together in seven so-called touch points. 
Touchpoints can be characterized as follows: 

Risk Management: Touchpoints acknowledges the importance of risk management 
when it comes to software security. It tries to bridge the gap by elaborating a Risk 
Management Framework (RMF) that supports the Touchpoints activities. 

Black vs. White: The touch points provide a mix of black-hat and white-hat activities, 
both of which are necessary to come to effective results. Black-hat activities are about 
attacks, exploits and breaking software (e.g., penetration testing). White-hat activities 
are more constructive in nature and cover design, controls and functionality (e.g., code 
review). 

Flexibility: The touch points can be tailored to the software development process 
already in use. To facilitate this, the documentation provides a prioritization of the 
different touch points. This allows companies to gradually introduce the touch points, 
starting from the most important ones. 

Examples: Touchpoints is rich on examples. For instance, when describing abuse 
cases, there is an example giving the reader a good feel about what they might look 
like in a particular situation. 

Resources: To further aid the execution of activities, Touchpoints provides links to 
resources and also explains how to use them. To this aim, a part of the book is 
dedicated to security knowledge (which the resources are part of). For instance, attack 
patterns are provided in order to be used in the elicitation of abuse cases. 
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2.1.4 Process support for change 

The general characteristics of the three processes described before are summarized in 
the top part of Table 2. We will now discuss how these processes deal with evolution. 

 CLASP SDL Touchpoints 

General 

Focus 
Security at center 

stage 
Security as 

supporting quality 
Risk management 

Structure 
Limited 

(independent 
activities) 

Well-organized set 
of activities 

Grouped activities 
(best practices) 

Guidance 
Rich set of 
resources 

Concrete activities 
Rich examples and 

resources 

Evolution 

New security 
vulnerability 

Software updates 

Security advisories 

Software updates 

Security advisories 
Not supported 

Change in 
security 
assumptions 

Not explicitly 
supported 

Some continuous 
activities 

(e.g., threat 
modeling) 

Not explicitly 
supported 

Table 2 Comparison of CLASP, SDL and Touchpoints 

As we know, security is a moving target. Applications change, executing environments 
change and attackers change. Thus the process should include continuous support to 
address new security vulnerabilities during the lifetime of an application, under the 
assumption that previously articulated security assumptions remain valid. This is 
supported in CLASP and SDL by including activities that focus on software updates 
and security advisories. Touchpoints does not seem to cover this. 

Second, and more challenging, when intermediate results turn out to be incorrect (such 
as an incomplete threat model), or when security assumptions change after 
deployment, the process must be backtracked in order to correct the no-longer valid 
decisions and assumptions. In a process, backtracking can be supported by 
introducing iterative cycles, or by inserting dedicated checkpoints and feedback loops. 
This kind of support is limited in the mentioned processes. At least, this would require 
the explicit documentation of the dependencies between the various activities and their 
outcome, which none of the processes provide. 

Concluding, all the mentioned processes provide a set of actions (e.g., requirements 
elicitation and risk analysis) on the whole system. However, there is no explicit support 
for evolution in these processes. The process outlined in Section 3 replaces the view of 
existing security engineering processes as sequences of actions (e.g. risk analysis and 
requirements elicitation) performed on the whole system by the view of change events 
causing change propagation and state changes in the security engineering artefacts. 
This provides a systematic way of handling changes based on dependencies between 
artefacts. 
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2.2 Software architecture and security 

2.2.1 Software architecture 

In [5], software architecture is defined as the triple {elements, form, rationale}. 
Elements can be processing elements, data elements or connecting elements. Form 
consists of properties of and relationships between the elements. The rationale, finally, 
captures the motivation of the architect for the choices that were made. 

A similar definition is found in [6], namely ―the structure or structures of the system, 
which comprise software elements, the externally visible properties of those elements, 
and the relationships among them‖. The authors, while not ignoring the importance of 
rationale, do not consider rationale to be part of the architecture itself. They state that 
an architecture, once created, can be analyzed independently of any knowledge of the 
process by which it was designed. 

Yet another definition of architecture can be found in the IEEE/ISO standard for 
architecture descriptions [7]: ―The fundamental organization of a system embodied in 
its components, their relationships to each other, and to the environment, and the 
principles guiding its design and evolution‖. 

All definitions are similar to a certain extent, and describe an architecture as the 
collection of elements, their relationships, and some degree of rationale. 

Moreover, in [6], the attribute driven design (ADD) development approach for 
architectures is described. The approach decomposes the architecture based on the 
quality attributes (non-functional requirements), such that the most important quality 
attributes of the system are certainly fulfilled. This implies that the main drivers for an 
architecture are its non-functional requirements. 

The definitions of an architecture introduced above are quite generic, and only talk 
about ‗elements‘ (or ‗components‘). There are many different ways to interpret an 
element, however, which can be captured in the notion of an architectural profile.  

A profile defines the vocabulary and rules that can be used to define an architecture 
using that profile. For instance, a component-oriented profile defines components and 
connectors, and states that components can only communicate through connectors. A 
service-oriented profile on the other hand defines services, participants and workflows. 
An aspect-oriented profile would define architectural elements such as aspectual 
components and join points. A component-oriented architecture usually suffers from 
more coupling than a service-oriented architecture, which is loosely coupled by 
definition. Similarly, an aspect-oriented architecture is designed to reduce coupling 
even more. 

When an architecture evolves, its elements and/or form will change. Elements may be 
added, removed, or changed. The architecture‘s form, that is, the properties of the 
elements or the relationships between them, may change as well. 

In principle, the rationale of an architecture does not evolve, although a change in the 
supporting claims of the rationale may lead to the re-consideration of the decisions that 
were made before. This may eventually lead to a change in the architecture. For 
instance, when a critical assumption that was relied upon when creating an 
architecture turns out to be false later, the architecture needs to change. 
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Creating an evolvable architecture thus means creating an architecture such that 
changes that are likely to happen, will be easy to implement. This implies that 
architectural changes should be avoided. 

2.2.2 Architecture and security 

Security at the architectural level can be looked at from different viewpoints. In this 
deliverable, we approach architecture from a constructive viewpoint. In this respect, 
the question on how to create an architecture that has certain security qualities needs 
to be answered. Often, security patterns [8, 9] are used to this aim. The NFR 
framework also uses patterns to create secure designs [10, 11]. In [12], Van 
Lamsweerde proposes a patterns-based approach of creating architectures. Besides 
patterns, security principles are also commonly used as a guidance for creating secure 
architectures. For instance, in [13] an attack surface metric is proposed, which can be 
used to measure the security of a design and improve it. Equally, the principle of least 
privilege can be used as a guidance for improving the security of architectures [14]. 

Next to the constructive viewpoint, also the notation that is used to describe the 
security properties of an architecture can be studied. Existing architectural description 
languages (ADL‘s) can be extended to support security, for example xADL [15]. Also, 
UML can be used or extended to represent security properties, as is done in UMLsec 
[16] and SecureUML [17]. 

Finally, it can be investigated how an architectural description can be used to perform a 
security analysis. The STRIDE [18] risk analysis method is performed using an 
architectural description as input. Besides providing security-specific notations, 
UMLsec can also be used to perform a formal analysis on the design. For more 
background on analysis techniques, we refer to the survey in [19]. 

2.3 Case studies 

The concepts in this deliverable will be validated in the second year, by applying them 
to two case studies from the SecureChange project: the HOMES case study and the 
ATM case study. 

2.3.1 HOMES 

Taking the description of the HOMES case study in the document ―Description of the 
Scenarios and their Requirements (D1.1)‖ as a frame of reference, we are interested in 
architectural changes to the Home Gateway – a critical component for the enforcement 
of security policies in the NAC architecture. 

More specifically, we plan to investigate two scenarios in the second year of the 
project, based on the results in this deliverable. In the first scenario, we will focus on 
the evolution of trust relationships that are present in the HOMES case study (for 
example, examining the implications of moving the policy decision point (PDP) from the 
provider side to the Home Gateway). More details are given in Section 4.6.2. The 
second scenario is the enforcement of a new security requirement (taking non 
repudiation as an illustrative example) through the deployment and configuration of a 
new security service onto components (e.g., Home Gateway) of the service oriented 
infrastructure. Further information on this scenario can be found in Section 5.7. 
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2.3.2 ATM 

To highlight the SecureChange process, we elaborate a concrete example based on a 
specific change scenario. In concrete we will treat the introduction of a new service in 
the architecture, the AMAN (Arrival Manager). The introduction of this new service 
triggers a range of additional changes. Among the most important ones are changes in 
the architecture, changes in the work procedures and the introduction of new threats 
and hazards. The scenario is sketched in Section 3.1.6. 

Special emphasis of the application of the SecureChange process to the ATM case 
study will be put on the handling of changes. We will focus on how the states of various 
model elements are updated following specific activities. Particular focus will be put on 
the concept of change propagation which is based on state change and the 
dependencies between different artefacts. 

The result of this work will be a complete walkthrough through the SecureChange 
process, providing concrete examples and instantiations for all the concepts described 
in Section 3.1. 
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3 Change-driven security engineering 

In this Section we describe the SecureChange security engineering process which is 
fully change driven. The process is change driven in the sense that every change 
triggers state changes in the related security engineering artefacts. The dependencies 
between the various security engineering artefacts provide a frame for change 
propagation. In addition the SecureChange security engineering process supports the 
collaboration among different stakeholders which have their specific views on a 
system. Using the concept of change propagation based on the dependencies between 
artefacts it is possible to support also the collaboration of different stakeholders which 
can be notified of change events which impact their specific view. 

This section is structured as follows: Section 3.1 describes the SecureChange security 
engineering process, beginning with a short introduction to the problem. After a 
classification of different types of changes in the context of security we discuss the 
requirements for a security engineering framework which supports change. Following 
the requirement we describe our vision of ―Living Security‖ – a framework supporting a 
process of secure change. After a description of the core concepts of ―Living Security‖ 
we outline how the initially mentioned requirements are addressed by this framework. 

In Section 3.2 we describe an integrated process which is abstract and generic and 
encompasses and relates all the solutions provided by the different Work Packages. 
The integrated process is an abstraction of the SecureChange security engineering 
process described in Section 3.1 and is independent of any specific artifact. We 
describe the overall strategy for integrating the different Work Package specific 
solutions and their artifacts and our strategy for developing a generic description of 
change and change handling. 

Section 3.3 describes the security analysis method of one of the partners of 
SecureChange (THA), which already started to materialize the SecureChange Process 
in its tool environment. The Section starts with an outline of the principles of the 
security analysis method and is followed by an overview of the Security DSML. In the 
next subsections the Change Model used by THA and the behavior of a Change 
Request is presented. 

3.1 Process 

3.1.1 Introduction 

The engineering and management of security-critical systems imposes evident 
requirements onto procedures applied and tools used. The management of information 
security needs to be effective – producing the desired effect of protection – and 
efficient – producing effectively with a minimum of effort. But, in an ever-changing 
world, socio-organizational as well as IT systems become a moving target. They 
constantly evolve, adapting to changes in their environment. In order to meet the two 
basic requirements of information security management in the context of 
evolving security-critical systems we need to rise to three basic challenges.  
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Relevance. First and foremost we need to identify the kind of events that indicate 
relevant changes. Change is generally captured indirectly through an event‘s impact 
on a system. This can e.g., be expressed as the deviation of the current status from 
some targeted status. Thus, change is relevant if the event alters (for better or for 
worse) the capability of some socio-organizational and/or IT systems to work as 
supposed – which means to comply with functional and non-functional requirements. In 
security, any deviation from a target may be seen as a change for the worse.  

Abstraction. Second, once indicated, change triggers effective action only if it is 
interpreted appropriately. This means that information about the event has to be 
meaningful to the person holding a specific role (e.g., CSO, network administrator, 
software engineer etc.). The person should understand the consequences so that she 
can carry out necessary action according to her responsibilities (e.g., set up security 
policy, deploy component, configure network etc.). This entails the need for an 
appropriate conceptualization and visualization of the event and its impact on the 
system from a certain angle. This perspective should open a view on information about 
a system‘s changing state at an appropriate level of abstraction.  

Propagation. Third, change may ―materialize‖ in any of the stakeholders‘ perspective 
and percolate to other perspectives, possibly affecting various levels of abstraction 
each time calling for some action to be taken. As an example we may take a business 
analyst specifying a new security requirement for a business process in the IT 
Management view. The requirement is translated into a non-functional requirement of 
the requirements model in the software engineer‘s view. The engineer can then model 
and trace the dependencies between the requirement, the component in the software 
architecture enforcing the requirement and the actual code through the respective 
layers of his view. The interrelationship between sub-systems may allow change to 
propagate in unforeseen ways. Thus, to take effective actions, stakeholders need to 
consider the whole system including IT as well as socio-organizational aspects.  

We propose Living Security a framework for the model based development, 
management and operation of security critical, evolving service oriented systems. The 
main idea is to facilitate the cooperation of stakeholders in IT management, software 
engineering and systems operation. The framework links an abstract, but coherent 
view of a complex system‘s security status integrating the perspectives of 
all stakeholders to the running IT-system and implemented organizational procedures.  

The link between the models and the technical and organizational controls facilitates a 
flow of information in both directions. Models and artefacts evolve together. Change 
thus becomes a first-class citizen in a security process linking security engineering, 
information security management and risk management. 

3.1.2 Change in the context of security 

We develop our understanding of relevant change based on the two dimensions as 
elaborated in [26]. Hence, we focus on two aspects, for one the particular nature of 
change and, two, its origin.  
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Imposed Evolution

Planned Revolution

Planned Evolution

Imposed Revolution

 

Figure 2 Four basic types of change 

Generally speaking, change can manifest itself as either a gradual evolution of a 
system in smaller steps or as a radical ―revolution‖ with major impact on the system‘s 
structure and functionality. So, change either comes in the shape of Evolution or 
Revolution.  

As to the origin of change, it is important to know whether change was planned or 
imposed by the outside. In the first case, a Proactive approach leads to planned 
change. In case change is imposed, it can only by reacted upon, thus resulting in a 
Reactive approach.  

Classifying change types along these two dimensions, we identify four basic types of 
change (cf. Figure 2). 

Security requirements engineering (as described in [21]) views (r)evolution as 
emanating from a change in a system‘s requirements, specification, and/or 
context. Living Security follows this engineering approach for supporting the 
management of the effects of change. This means realigning evolving systems to 
existing security requirements or to adapt the systems to changing security 
requirements or context. The handling of each of the four basic types of change is 
exemplified in a general use case in the context of security management and 
engineering.  

A. Enforcing Security - Planning Small System Changes 

In most cases, a system evolves over time according to a specific plan so to meet a 
specific set of requirements. For example, the anti-virus software component of a 
network needs a weekly software update. Thus, we anticipate small changes in the 
system‘s context (new virus threats) by planning gradual changes (weekly updates) to 
enforce a security policy (the requirement of integrity). The framework keeps the 
network administrator informed about the ―effectiveness‖ of the security measure 
based system‘s current status, whereas IT management can judge on the measure‘s 
―efficiency‖ by tracing the dependency between the security measure and its 
contribution to meet business requirements or – thinking inversely – the impact of its 
failure.  

B. Monitoring Change - Reacting to Minor Changes in Context or Requirements 

Often the triggers are small changes in the system‘s context or in the requirements 
specification. In other terms, change occurs in the shape of unplanned events. If 
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the anti-virus component‘s weekly update failed, we would face change (lower security) 
imposed by an unplanned event (failed update). To react appropriately, all 
stakeholders would have to understand and evaluate the event‘s impact onto their 
domains and take coordinated measures. The latter means that various stakeholders 
must always bear their activities‘ potential impact on other domains in mind. Living 
Security visualizes the events in the specific views and facilitates coordinated 
measures by tracing dependencies across views and layers.  

C. Scenario Planning - Planning Major System Changes 

A system may occasionally have to undergo a major change. For example the merger 
of two companies may require the integration of two IT systems. In that case, 
the stakeholders need to plan and anticipate a series of changes to an already existing 
system. They need to understand the impact of these changes on the systems 
security. In this respect, Living Security contributes to a clear understanding of the 
system‘s security status ―as-is‖ and facilitates the analysis of security challenges in 
relation to the various alternatives.  

D. Realizing Change - Reacting to Major Changes in Context or Requirements 

Living Security would not be able to cope in a reasonable way with large unforeseen 
change fundamentally impacting a system‘s structure or functionality. So we consider 
this use case as being beyond scope. 

3.1.3 Requirements 

After the definition of useful categories of change in context of security management 
and engineering we move on to specify the requirements for a framework supporting 
secure change. We illustrate these requirements with a running example for an 
evolving, security-critical large-scale system. The same example will be used in 
the description of the concepts which realize the framework. 

 

Figure 3 Integrated view 

Example 1: The example used in this deliverable is a financial trading platform which 
allows traders to place orders in specific market segments. The trading platform is 
directly connected with the systems of major financial institutions who use the platform 
to place large volume orders. In addition, individual traders can use an online frontend 
or download a client to use the services. The trading platform is developed and 
operated by a medium sized specialized company which offers services and support 
for the platform and sells licenses to its users. The trading platform is developed in 
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house by a team of software developers who develop, deploy and actively manage the 
systems which are hosted in an outsourced data center. The trading platform uses 
standardized financial communication protocols and is realized as a SOA. The 
company is certified according to ISO 27001 to underline their emphasis on 
security. Currently, the company offers access to specialized niche markets, but is 
planning to extend its service to stock markets in the near future.  

3.1.3.1 R1: Integrated view 

To keep a complex and interconnected system running despite change a variety of 
stakeholders have to collaborate in their daily operations. To support the collaboration 
of these different stakeholders (e.g., Chief Information Officer, legal experts, system 
administrators, software developers) an integrated view on the system is 
required. Such an integrated view needs to incorporate aspects from different 
disciplines such as IT management, system operation and software engineering. While 
all these disciplines have their own perspective on a system and use a different level of 
abstraction, the challenges related to change cannot be tackled from a single 
perspective. Instead it is necessary to focus on a changing system from all these 
different angles to keep it running in a secure manner. Figure 3 shows the concepts of 
an integrated view. 

Example 2: A financial trading platform has to fulfil a range of security requirements, 
stemming from special requests of large customers, general legal regulations for the 
financial services market, and the contractual obligations which arise from docking on 
to the financial systems of major partners and markets. The company has a 
Chief Information Officer (CIO) and a Chief Information Security Officer (CISO). In 
addition the company employs two legal experts who are aware and responsible for all 
the legal and compliance requirements that have to be fulfilled by the systems. The 
platform is constantly evolving due to the addition of new services (e.g. access to new 
market segments can be offered to the clients), the continuous extension of 
the platform (i.e. 3.000 new accounts are opened every month), and the incorporation 
of a range of new regulations which were enacted as a result of the financial crisis. 
Whenever legal requirements change, system capacity needs to be extended or a new 
service to be deployed in the platform, changes cannot be tackled in isolation but have 
an impact on many aspects of a system. Therefore it is important to understand which 
parts of the system are affected by a new compliance requirement, which new services 
might introduce unbearable risks in the already running platform and what system 
updates and transitions could cause an interruption of critical services. An 
integrated view on the systems combines all these aspects and relates these 
perspectives to each other. A software developer needs to be aware of those 
requirements which have to be considered in the design and the adaptation of a 
service. Similarly, a system operator needs to know what the capacity requirements 
of soon-to-be deployed services may be. An integrated view is therefore an essential 
instrument to provide a basis for a common understanding of the systems and its 
dependencies and serves as a platform for communication among all the different 
stakeholders. 

3.1.3.2 R2: Domains and Responsibilities 

A framework which supports collaboration and cooperation among different 
stakeholders needs to take into account the different perspectives and responsibilities 
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of stakeholders. Not every stakeholders needs to understand and analyze every aspect 
of a system. Instead each stakeholder is equipped with knowledge and experience for 
a specific domain of the entire system. While it is important to support cooperation 
among these stakeholders it has to be taken into account that each stakeholder has a 
tailored view on a system and its security.  

A stakeholder carries responsibility for a specific domain, i.e. a subset of the 
constituting elements of a system. It is important to have a clear understanding of 
these governance aspects to be able to handle change effectively in an 
organization. Depending on the type and extent of change, certain stakeholders need 
to cooperate to provide solutions to handle such change.  

Example 3: In the example of the trading platform a domain could be the technical 
infrastructure (physical layer) which is overseen by a senior system and network 
administrator. The set of all nodes and locations for which he is responsible represents 
a domain. In a similar way legal experts are responsible for their own domain 
which could be the set of all compliance requirements defined on the business layer.  

Similarly the responsibilities of these stakeholders are differing with respect to handling 
change. The legal experts are the ones who are informing other stakeholders about 
new requirements and the available time frame for reaching compliance. The software 
developers together with the system operators are proposing different solutions for 
reaching these new compliance requirements and IT management will have to decide 
together with software architects which solution fits best with the organizations 
business and technology strategy.  

3.1.3.3 R3: Change Propagation 

A framework which supports a change-driven security process needs to provide a 
foundation for propagating change to the right stakeholders in an organization. 
Change is perceived as an event which triggers a series of consecutive steps. As 
already outlined in Section 3.1.2 there are different types of changes in a security 
context.  

Change propagation includes on the one hand the registration of relevant change 
events. On the other hand it requires a systematic way of identifying parts of 
the system and stakeholders affected by change.  

Example 4: In the concrete example of the financial trading platform it is not sufficient 
to have an integrated view on the system and a clear attribution of responsibilities 
and domains to various stakeholders, but it is a central requirement to propagate 
change based on these two foundations. The Living Security framework needs to 
provide support in the process of identifying what parts of the system are impacted and 
who needs to be informed, who is consulted, and who has to make decisions in 
response to a change event.  

Continuing the concrete example from above, consider a new legal requirement has 
been identified by the legal experts and has been attributed to the business 
process ―Place orders‖. Change propagation includes identifying which parts of the 
system are related to the specific business process, who the responsible domain 
owners are, and the steps they need to take to respond properly to the event. The 
business process ―Place orders‖ processes the two information objects ―Order details‖ 
and ―Account information‖ and calls two services in the infrastructure, namely 
―Order authorization‖ and ―Transaction execution‖. The responsible domain owners are 
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the information architect and the software developer. Both are responsible for 
maintaining the two services. 

In order to be able to identify the interrelationships between the parts of a system and 
their respective owners, a systematic analysis of the model depicting these 
interdependencies and responsibilities is required. In addition, a tool-based 
framework needs to provide communication means for informing the various 
stakeholders about relevant change events.  

3.1.3.4 R4: Bidirectional Flow of Information between Models 
and Executing System 

The bidirectional flow of information from models to executing system and vice versa is 
essential to ensure the efficient and effective management and engineering of 
an evolving security-critical system.  

On the one hand, the target architecture of a Living Security framework is a security 
infrastructure equipped with sensors collecting information and feeding it back into the 
modeling environment. Once there, information is interpreted at the level of Model 
Elements in context of the System Model. On the other hand, the security 
infrastructure ought to be configurable from a modelling perspective.  

Example 5: In the example of the financial trading platform the bidirectional flow of 
information between models and executing system can be describe using the 
following two scenarios:  

a) Information flow between executing system and models: On the infrastructural and 
service layer of the system, various sensors which constantly collect information 
regarding the status of nodes and components in the network can be deployed. 
Relevant information could be captured through traditional metrics like capacity 
utilization, throughput, and number of handled orders to name just a few. Using such 
indicators and putting them in relation with security objectives and 
requirements extends the integrated view on a system with meaningful key indicators. 
Consider as an example a service level which is guaranteed to the premium customers 
of the trading platform. The requirement ―Maintain 99.999% uptime per month for the 
premium services‖ can be extended with key figures collected from the executing 
system, which constantly monitor the uptime of these key services.  

b) Information flow between models and executing system: If the services are 
implemented and deployed in a specific target security architecture it is possible to 
configure the security properties of the system using models. As an example, consider 
the communication in the business process ―Place Order‖. Calling the respective 
services for authorization and transaction execution is designed to be based on using 
encrypted and authenticated messages. A specific premium customer might require an 
additional electronic signature by the financial service provider confirming specific 
details of an order to comply with additional audit requirements. If the service is 
deployed in a specific target security architecture it is possible to configure such 
security services using models.  

3.1.3.5 R5: Information Consistency and Retrieval 

Stakeholders need explicit support to appropriately visualize and query security related 
information in its various contexts. They need to understand the connection 
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between the various levels of abstraction. This requires appropriate mechanisms that 
guarantee the consistency of all the information in the model. Consistency can be 
provided by defining and checking certain constraints in the model of a system.  

Information Retrieval goes beyond the mere checking of constraints on model 
elements in that stakeholders can access semantically enriched information. 
Depending on his or her background and responsibilities, a stakeholder may require a 
specific view on a system in a specific representation. While some of the stakeholders 
might favour a traditional spreadsheet to represent specific information about the 
system, others might require graphical representations like process maps, or a 
dependency matrix outlining the relations between services and infrastructural 
components. Depending on the information a specific stakeholder request the models 
and specific views can be enriched with additional information which is either collected 
from sensors in the infrastructure or based on an analysis of the model itself.  

Example 6: For example, a CSO would like to check whether every security threat at 
the technical level is related with some security threat at business level (describing 
the business impact of the technical threat). Such types of analysis can be run in a 
model using specific queries and checks. The resulting information can be represented 
in different ways, e.g. either using a simple table or in a graphical diagram.  

Similarly, the security engineer would like to check whether each security requirement 
is complemented by an appropriate security service at the architecture level. 
The security engineer might in turn favour a network diagram or another graphical 
representation outlining which security requirements are not yet complemented by 
technical security solutions.  

3.1.4 The Secure Change framework 

Here, we describe our vision of ―Living Security‖ – a framework supporting a process of 
secure change. We describe the core concepts of Living Security and outline how the 
before mentioned requirements can be addressed.  

3.1.4.1 Common System View 

The framework supports stakeholders in their various daily operations. This happens 
through Stakeholder-Centric Modeling Environments, perspectives on the system‘s 
security status, customized to an appropriate level of abstraction. The analysis of 
security attributes requires the analysis of interdependencies across the layers ranging 
from IT management, software engineering and system management. Although the 
framework also facilitates the cooperation among the stakeholders (Chief Information 
Officer, Chief Security Officer, Network Administrator, Security Engineer etc.), it does 
not necessarily need to provide an integrated and homogeneous modeling 
environment. Rather, these stakeholdercentric modelling environments, rely on a 
common metamodel, the Common System View.  
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Figure 4 Sample functional system meta model 

The Common System View represents the conceptual underpinning for the security 
management process. Its elements are the conceptual units subject to change. 
Dependencies between the various concepts are modeled as associations 
between elements allowing change to percolate through the Model Layers.  

Functional system concepts like business processes, information objects, roles, 
components etc. are defined in the Functional System Meta Model logically grouped 
into the various domains of the Modeling Environments. The latter can be composed of 
Model Layers each one capturing another level of abstraction or degree of granularity. 
Figure 4 exemplarily shows a sample Functional System Meta Model and the three 
Layers of the Modeling Environment Software Engineering, namely 
Requirements, SW-Architecture, and Code.  

Security related concepts like threats, risks, requirements etc. are introduced into the 
meta-model as Meta Model Plug-Ins. Every element of the System Meta Model can 
be decorated with security-related semantics. Figure 5 shows a sample security meta 
model that plugs into the Functional System Meta Model as an extension for security. 
Here we assume that each model element in the Sample system meta model (cf. 
Figure 4) inherits from the generic class ModelElement. 
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Figure 5 Security plug-In 

Example 7: Consider as an example the business process ―Execute order‖ which 
requires many different running services in the trading platform, which in turn require 
system and network capacities. If a legal expert identifies a new requirement (e.g. new 
contractual obligations related to premium customers) which is valid for the business 
process ―Execute order‖, then she links this requirement to the concept business 
process. In the example in Figure 6 the objective is ―Maintain Service Level 
Agreements‖. The dependencies and relation between the different layers serve as a 
means to identify which parts of the infrastructure are impacted by such a new 
requirement (e.g. the service ―execute order‖ requires an uptime of 99.999%‘). 

 

Figure 6 Example system model extended with a security plug-in 

In doing so a system operator might receive notice that certain parts of the 
infrastructure he is responsible for are impacted by this new requirement. Another 
advantage of the Common System View is the provision of stakeholder 
specific perspectives. In this example a software architect focuses mainly on the 
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deployed components which realize the services and how these components 
communicate with each other.  

The System Meta Model together with its plug-ins describes all aspects of the system 
across the levels of abstraction in a highly interlinked way. Additionally, we define the 
notion of a View (cf. Figure 7). A View consists of a selected set of model elements 
(together with selected interdependencies) and corresponds to the usual notion of a 
Model or an artefact in many approaches (like a Security Analysis View/Model, a 
Software Architecture View/Model or a Requirements View/Model). Note that different 
views may be related by common meta model elements or interdependencies. 

 

Figure 7 View meta model  

3.1.4.2 Model Element States 

To depict changes and distinguish different states of an information object, we want to 
have the possibility to model not only the dependencies between business 
and technical artefacts, but furthermore we want to differentiate information objects 
with regard to their life-cycle. We model security relevant milestones in the lifecycle of 
model element as Model Element States. Changes of Model Elements States can 
propagate over the complex ―network‖ of model elements as defined in instances of the 
System Meta Model and its plug-ins.  

Typical states for Security Requirements which are basically attached to Model 
Elements like Role or Operation are e.g., added, pending, evaluated, and 
implemented.  
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Figure 8 State machine of meta model element security requirement 

The concept is realized through (UML) state machines associated with each meta 
model element of the System Model and its plug-ins. As an example, Figure 8 
shows the state diagram of the meta model element Security Requirement. State 
transitions are triggered by the following events: 

 time events (e.g. triggering analysis actions to be performed periodically), ∙ 

 conditions on the system state (e.g. the state of a security requirement is 
changed from complete to evaluated if all associated risks are in state 
evaluated),  

 action events initiated by the stakeholders (e.g. with the action event complete 
in Figure 8, the stakeholder declares the set of associated risks to be 
complete) ∙ 

 change events caused by the modification/ creation/deletion of some model 
element.  

Example 8: In the example outlined in Figure 6 the risks related to the service ―execute 
order‖ have two different states. The first risk R1 has already undergone a 
risk evaluation and its state is therefore set to ―evaluated‖. The second risk R2 has only 
been identified but not evaluated yet, therefore its state is set to ―pending‖.  

The related security requirement SR1 will remain in the state ―pending‖ until all related 
risks (R1, R2) have reached the state ―evaluated‖. Only then the security 
requirement SR1 will also reach the state ―evaluated‖.  

Similarly, if the security requirements were already in the state ―evaluated‖ and a new 
risk R3 was added, its state would immediately switch back to ―pending‖, 
thus indicating that a change occurred and additional steps are required to reach a new 
security state.  

In the System Meta Model we extend the class ModelElement by an association to 
class StateMachine (cf. Figure 9), leaving the structure of a State Machine unspecified 
at this place. 
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Figure 9 State machine meta model 

3.1.4.3 Persistence, Tracing 

As instances of the System Meta Model, System Models are the actual targets of 
change. They capture the status (functional and non functional) of a system at all 
relevant levels of abstraction. But to indicate change and facilitate planning they have 
to be made persistent. This allows the definition of system (r)evolution as a sequence 
of modeled status snapshots. Like the model elements, the System Meta Model itself 
may undergo change and evolve over time.  

Persistence also facilitates model versioning which is a prime requirement for planning. 
Stakeholders can compare alternatives in terms of their impact (e.g., comparison 
of safeguards with respect to the trade-off risk reduction vs. costs) by creating new 
branches, cloning or merging System Models.  

Cooperation among stakeholders is facilitated through information traceability which is 
conceptually anchored in the meta model of the Common System View. Depending 
on his Role, a stakeholder has a tailored view of a system‘s security status rendered in 
his Modelling Environment. The Role Model defines Roles – job functions of the 
stakeholders and their Rights – and permissions with respect to operations on model 
elements. The Role Model is associated to the System Meta Model.  

Example 9: In the concrete example Persistence can be explained using two 
examples. First, consider a situation in which new security requirement has been 
identified as a change event and will be introduced in the common system view. The 
new requirement triggers a series of actions which are executed by different 
stakeholders. For instance, the software developer will be re-evaluating whether 
there are any new potential risks which might be related to the new security 
requirement. By keeping persistent versions of all the model snapshots, which are 
reflecting the ongoing security process it is on the one hand possible to provide 
an audit trail of the analysis and the resulting decisions. On the other hand it is possible 
to trace specific security solutions which are still in place back to a now possibly 
obsolete security requirement.  

Second, Persistence allows different future scenarios to be modelled. Consider a new 
security requirement for which several options of security controls might be 
considered. Using different planning scenarios and snapshots of the model it is 
possible to evaluate the impact of the planned controls on the current system 
architecture.  

Figure 10 shows a simplified way of handling versions. Every System Model (holding 
all information of the system) is attached at any point of time with a unique Version 
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object. A tree structure (modelled by the previous association) describes the versions 
of a System Model along the lifetime of the system (including branches). 

 

Figure 10 Model versioning 

3.1.4.4 Tight Coupling of Models and Code 

As the framework aims to support security engineering and management activities 
targeting the running system, the underlying models have to appropriately reflect the 
system‘s current security status. In Living Security, a consistent state between models 
and evolving system in a changing environment is maintained through the tight 
coupling between models and the executing system. Together with the 
Integrated View, this principle provides stakeholders with a Modeling Environment that 
is directly linked to the executing system.  

In Section 5 we present an architectural framework which supports such a seamless 
transition from models to security architectures. 

3.1.5 Meeting the requirements of a change driven 
security process 

The requirements listed in Section 3.1.3 are tackled in our vision of a change-driven 
security process. The change driven security process contains the classical steps of 
well established security-processes [27], [28]. What distinguishes our vision of a 
change-driven security process is that the process steps are initiated by change 
requests and change events (cf. Figure 11). These change events affect the state of 
model elements. 

 

Figure 11 Change meta model 
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A change request is a general description of some change in the system such as 
exchange component X by a technology mitigation or implement compliance regulation 
Y. Each change request object is a ModelElement which means that change requests 
have a state and may have associated information (like the risk attached with the 
change). Each change request triggers one or more change events. Change events 
are directly related with model elements and cause state changes as described in the 
process below. 

Change is propagated in the System Model based on their interrelationship with other 
model elements. Change events are sent to the current System Model where actions 
are triggered and the effects percolate through the different layers . Change is handled 
according to the following procedure of the Change Driven Process:  

A. State transition – A change event may induce a state transition of a model 
element. For instance, the state of a security requirement is changed from 
evaluated to added if the related model element (e.g. a software component) has 
been modified.  

B. Change propagation – The state transition of the model element may trigger state 
transitions in related model elements according to stated propagation rules. 
For instance, the modification of a security requirement attached with a business 
process may cause state transitions in information objects and services 
supporting this business process. The propagation rules are specific to each 
meta model element.  

C. Modification of task list – Each stakeholder is associated with a task list 
describing the pending action events of model elements he/she is responsible 
for. After each state transition new tasks may be pending and have to be added 
to the task list. Consequently fired action events (e.g. after the evaluation of a 
model element) are withdrawn from the task list.  

Using the concept of change events and model element states it is possible to assign 
and distribute the tasks of the security process to the according stakeholders. 
Based on the concept of domains and responsibilities we are able to identify required 
tasks and assign them to the respective stakeholders. 

This implies a distributed security micro-process which is executed by each of the 
stakeholders within his specific domains. Figure 12 highlights this concept of 
distributed instances of a security process. Of course the stakeholders do not work 
independently on their security related tasks, but a lot of coordination and cooperation 
is necessary. Hence the first three requirements discussed in Section 3.1.3 are 
realized using the concepts of a common system view, and model element states.  



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 35 / 132 

 

 

Figure 12 The concept of distributed security processes 

Example 10: Using for instance the example outlined in Figure 5, the security process 
will be schematically described in the following. 

The identification of the new security objective ―Maintain Service Level Agreements‖ 
was brought up by the legal experts based on new contractual obligations with 
premium clients. The legal experts introduced the new security objective in the 
common system view using a security plug-in and attached it to the model element 
―place order‖. Based on the dependencies of the system depicted in the common 
system view, this change event percolates through the processed information objects 
(eg. ―Account information‖ and ―Order‖) to the respective services (eg. ―log transaction‖ 
and ―execute order‖).  

The software architect whose domain and responsibility contains the services and the 
elaboration of the related security requirements receives a notification to evaluate 
the existing services according to the new security objective. She or he then identifies 
and translates the abstract security objective in the concrete security requirement ―SLA 
99.999% uptime‖. This event which was triggered by the introduction of the new 
security objective by the legal experts again triggers new actions.  

In the concrete case, a security engineer whose domain consists of the threats and 
risks related to services receives the notification to conduct a threat and risk analysis 
for the service ―execute order‖ since a new security requirement with the status 
―pending‖ has been added. The security engineer then introduces two new risks (R1, 
R2) which are related to the security requirement SR1.  

As can be seen in the example, the progress of the steps taken by the security 
engineer is also reflected as a series of changes in the common system view. She or 
he has already evaluated the new risk R1, which state is set to ―Evaluated‖. As soon as 
the remaining risk R2 will be evaluated, the software architect will receive a notification 
that his or her security requirement SR1 has too reached the state ―evaluated‖. 
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In this manner it becomes possible to translate change events in a series of tasks 
which have to be fulfilled by different domain owners. The progress of the 
different distributed actions will be reflected by the model element states and allow to 
analyze whether or not the whole system has again reached a stable security status.  

The change propagation process is related with the versioning concept of Model 
Versioning (cf. Figure 10) in the following way. 

 The lifetime of a change request may involve many versions of the System 
Model. This reflects the fact that a change request may be a complex task 
potentially involving several stakeholders. 

 Any change event (as well as the automatic change propagation process along 
the interdependencies between model elements) affects one specific version of 
System Model and causes modified model elements in the next version (e.g. 
state transitions or introduction of new model elements). 

3.1.6 Case Study 

The ATM case study provides a perfect scenario to highlight the SecureChange 
process as described in Section 3.1 in a concrete manner. The partners of Work 
Package 2 and Deep Blue have agreed to cooperate in order to build a concrete 
example of how change is handled in the SecureChange process. The concrete goals 
of the case study are: 

- To outline on the basis of a specific change scenario how the SecureChange 
process deals with change. 

- To provide a practical example of how change propagation works in the 
SecureChange process. 

The introduction of a new service in the ATM network will provide the basic scenario on 
which we will elaborate the case study. The concrete component which will be treated 
is the AMAN (Arrival Manager). Introducing such a new service in a information 
network such as the SWIM architecture provides a good basis to highlight: 

- How the introduction of such a new service impacts the architecture and 
requires changes in the system model. 

- With the introduction of this new service comes also a change in the work 
procedures. 

- How the changes in the system model require an updated security analysis of 
certain aspects of the architecture, as new threats and hazards are introduced. 

In the current state we have collected all required information for building a model of 
the system. In addition Deep Blue provided us with a set of security objectives and 
requirements. 

The following activities will be pursued in Year 2.  

1. An initial version of a global and local functional model will be created based on 
the available documentation. 

2. A description of the workflow changes which are required because of the 
introduction of a new service will be provided. 
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3. A concrete description of how the related changes are handled following the 
SecureChange process, with particular emphasis on the concepts of states of 
model elements and the concept of change propagation using dependencies 
between different artefacts.  

3.2 Integrated Process 

In order to integrate the solutions by all the different activities in the Work Packages we 
enhance the SecureChange process by an integrated view. This integrated view is 
based on the following concepts: 

 Taxonomy: provides a classification of changes and attitudes to changes 

 Artefacts: distinguishes on an abstract level the different models and artefacts 
which are used by the different Work Packages 

The taxonomy can be used on the one hand to identify different basic change 
scenarios. These change scenarios on the other hand can be used to describe how 
change is handled on an abstract level by the different Work Packages. 

The artefacts provide an overview of all the different types of models used by the 
various Work Packages of SecureChange. These artefacts are described on the meta 
level and abstract from concrete concepts. That way it is possible to treat method-
specific conceptual models as black-boxes and plug-in different methods and 
approaches to the integrated SecureChange process. Examples for such artefacts are 
a system model which includes all artefacts related to the system, ie. architecture, 
code, constraints and others. Other specific artefacts are a verification model, a risk 
model, a requirements model and a test model. 

Independently from which requirements engineering method and model is used, it is 
clear that a change in a requirement has to trigger some changes in the test model. 
Using the change scenarios derived from the taxonomy and case studies it can be 
described how the different artefacts are updated and trigger changes in other models. 
That way it is possible to outline how the results and solutions provided by one Work 
Package impact the other Work Packages. 

3.2.1 Artefacts and relations between artefacts 

As a first basis for distinguishing an abstract approach is followed. This is at the 
moment a non-exhaustive list which reflects the main types of artefacts which are 
treated by the different SecureChange Work Packages. The different artefacts are: 

 System Model: The System Model includes all artefacts related to the system 
(from architecture to code, including constraints). It is a placeholder for the 
system model of Work Package 4 and all types of system models used 
throughout the other Work Packages. 

 Verification Model: The Verification Model contains artefacts which are specific 
to Work Package 6. 

 Risk Model: The Risk Model includes all artefacts related to risk analysis (e.g. 
assets, vulnerabilities, threats, controls, risk). It is a placeholder for different 
conceptual models of risk, such as the CORAS model, the THALES risk model 
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or the ProSecO security model and therefore integrates mainly the artefacts 
from Work Package 2 and Work Package 5. 

 Requirement Model: The Requirement Model reflects all artefacts which are 
related to requirements engineering. It is mainly related to Work Package 3. 

 Test model: The Test Model contains the artefacts related to testing, and is 
related to Work Package 7. 

 

Figure 13 outlines an overview of these different types of artefacts. Seen from an 
overall integrative perspective the different artefacts are strongly related to each other. 
The result of a requirement analysis will provide input for the test-engineers and be 
used to verify code and infrastructure components.  

 

Figure 13 Integrated view of SecureChange artefacts and their dependencies 

The meta model which is described in Section 3.1 is a working model in a specific 
context. It maps to the integrated view of SecureChange artefacts in the sense that it is 
a specific instantiation of a system model, partly a requirements model and a risk 
model. That way the specific working model can be mapped to one or more of the 
artefacts depicted in Figure 13. 

3.2.2 Integrated SecureChange process metamodel 

The description of the overall SecureChange process will deliver concepts of change 
derived from all the solutions of the different SecureChange Work Packages. The goal 
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is to provide an integrated meta model of change related concepts which is 
independent from any Work Package specific solution (cf. Figure 14). 

Consider as an example a change in the infrastructure that requires a change in the 
system model. The system change triggers a system analysis to analyse the changes 
with the result of an updated system model. An updated system model might affect the 
current set of requirements and therefore triggers a requirements analysis resulting in a 
new updated requirement model. The update of the requirement model and the update 
of the system model both potentially impact the current test model. Therefore both 
changes trigger new test engineering with the result of a new updated test model. 

The dependency relations between the different types of artefacts are the frame for 
change propagation. 

Currently this change model is in a conceptual development phase and will be 
elaborated during Year 2 and Year 3. The different change related concepts provide a 
basis for the description of change handling in the integrated SecureChange process.  
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Figure 14 The integrated SecureChange process metamodel 

 

At the moment we have identified the following list of change concepts in the various 
work packages (cf. Figure 14): 

 ChangeScenario: is expressed at the requirements level and describes the 
change in the requirements. This change scenario will consist of a before and 
after requirements model. 

 ChangePattern: consists of a specific change scenario, one or more solutions 
and a mapping between the elements from the change scenario and the 
architectural elements in the solution. 

 ChangeEvent: is a general trigger of change which is derived from a set of 
change scenarios. 
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 ChangeRequest: is a general description of some change in the system. 

 ChangeTransition: is a description of all the differences from one change to 
another. 

Additional concepts which are candidates for the inclusion in the Change Model is the 
concept of perspectives which is used in Work Package 5, the concepts of Change 
Line, Version, Change Propagation and others. 

Future tasks related to the refinement and further development of the integrated 
SecureChange process meta model include the collection of additional change related 
concepts throughout the other Work Packages. All these change concepts will be 
consolidated as an integration for all the Work Packages. In addition changes need to 
be classified to provide different basic categories of changes which might require a 
different handling. Activities in other Work Packages provide a sound basis for the 
development of such a Change Model, such as the Deliverable D3.2 of Work Package 
3 and the Deliverable D5.2 of Work Package 5. 

3.3 The security analysis method by Thales 

An example for a concrete instantiation of the SecureChange process is the security 
analysis method by Thales. The method incorporates different concepts of changes in 
a separate Change Model and different artefacts and their dependencies in a Static 
Model. In particular the approach supports the concept of change propagation of the 
SecureChange process by building on the concept of using states of different model 
elements to track and trigger changes. In this Section the security analysis method by 
Thales is described providing an overview of the principles, a DSML and how change 
is handled. 

As a long-term industrial initiative, Thales develops a new method to support security 
risk analysis, closely integrated with the overall engineering process of our critical 
information systems. This method is building upon model-based engineering 
techniques [30], it presents a prototype domain-specific modelling language (DSML) 
that was developed in this context; this DSML aims at supporting the analysis and 
assessment of security risks for a system, and the specification of requirements for 
security measures to address those risks. Our objective is to provide adequate and 
efficient tooling to security engineers for an effective integration of security engineering 
in the process of critical system design, so as to enable a better targeting of security 
specifications.  

3.3.1 The security risk analysis method: Principles  

Our prospective security risk analysis method builds upon model-based engineering 
methods and techniques. All activities of our method are organised around the building 
and usage of models, that is formalised, precisely defined, interconnected and 
integrated representations of the objects under study.  

As represented in Figure 15, our proposed method relies on the development of a 
modelling framework that combines in a synchronised way a set of models that 
constitute separate viewpoints [29] over the engineering problem: 
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Figure 15 The security analysis method in Thales context – big picture 

 The System architecture model contains the architectural design of the system; 
this model is developed within the mainstream engineering processes, along at 
least two dimensions: the functional / logical architecture of the system 
(functional capacities and data to be realised by the system) and the physical 
/implementation architecture of the system (actual hardware and software 
components that realise the functional capacities). 

 The Business need model captures a representation of the business context for 
the system: business process that is supported, underlying business 
organisation, business objects, key performance indicators, strategic drivers, 
etc. 

 The Risk analysis model and security objectives model capture the results of 
the security risk analysis method that is proposed in dedicated DSML 
(presented in next section). These models include a representation of the 
system architecture that is relevant to the needs of the security analyst, this 
model is called context model. This model is traced back and maintained in 
synchronisation with the system architecture model (see [31]). The security risk 
analysis information is defined as annotations or related new concepts added 
over the system architecture elements. The risk analysis model and security 
objectives model may also be traced to elements of information defined in the 
Business need model. 

 The Requirement Database captures all kinds of systems requirements 
(Security, Safety, Maintainability, Cost ...). Security requirements are derived 
from the security objectives model of the dedicated DSML (see [32]). This 
mapping enables to merge security requirements with all kind of requirement 
addressed for a complex system. The Requirement Database is traced back 
and maintained in synchronisation with the system architecture model and 
Business need model.  
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The System architecture model and the Business need model are part of the 
architecture modeling framework that we are developing to address service-oriented 
types of large-scale enterprise integration systems or systems of systems. In the 
Thales context, the official database of Requirement Management is Rational DOORS 
with the T-REK add-ons [33] (Dynamic Object Oriented Requirements System). 

3.3.2 Security DSML: Overview 

The Risk analysis model, security requirements model and context model are 
expressed in a dedicated DSML1. These kinds of models are parts of the static model 
(corresponding to SecureChangeArtefact in Figure 14 The integrated SecureChange 
process metamodel): 

 The Requirement Model describes the specialization of Objectives into several 
Requirements and links between those and the other elements of the DSML 
(Risk, Context). 

 The Context Model describes the System Architecture (Essential Elements 
and/or Target), related constraints which describes how services (described by 
essential element) are provided by the system and links between those and the 
other elements of the DSML (Risk, Requirement). 

 The Risk Model describes the risk characterization into threats, damages and 
vulnerabilities and links between those and the other elements (Requirement, 
Context). 

 

Figure 16 Relationship between Static Models and Change Model 

                                                
1
 This deliverable cannot be the place for a detailed presentation of the metamodel and syntax of our DSML, more 

details are provided in [26] [30] [32]. 
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To address change inside this DSML according to Section 3.2.2, we consider a change 
model which is mapped with all models included in the static model. Figure 16 depicts 
the relation between different models defined in the DSML and the relation with the 
change model presented in the next section. 

Inside the Change Model, we distinguish two kinds of Models:  

 The Change Line Model represents relationships between several Changes 
included in one Change Line and Transitions (i.e Change Transition in 
Section 3.2.2) which describes a set of transformation rules between several 
changes 

 The Change Request Model which traces changes inside the Static Model. 
The Change Line Model activates the Change Request Model.  

Inside the Static Model, the Requirement Model must cover risks expressed in the 
Risk Model and requirements are allocated to system elements (e.g. services, 
components) defined in the Context Model. The Context Model is the representation 
of the system; this model is threatened by risks expressed in the Risk Model. 

The Change Request Model modifies all models of the Static Model (represented by 
the <<modifies>> dependency relation). The Change Line Model is described by a 
set of evolution functions which monitors the Static Model: context elements are 
described by several evolution functions, requirements and risk includes evolution 
functions (e.g. time). The dependency relation <<stores_constraints>> presents the 
relationship between constraints and change transitions. Constraints (i.e. contract) 
describe how services (described by essential element) are provided by the system. 
These constraints must be stored in change transition in order to respect these 
constraints inside the Change Request Model. This is why the Change Request 
Model modifies the Context Model with respect to constraints defined in this Model 
(denoted by <<modifies_wrt>> relation). 

3.3.3 Change Model 

To represent traceability between changes and the static model, we add a further 
Model into the DSML: Change Model is composed by several Change Lines. As 
shown by Figure 17, a Change Line is considered as set of Changes and Change 
Transitions to preserve links and grant consistency between successive changes 
which compose a Change Line. 

Change is described by a Change Trigger (e.g. discovery of fault or new threat which 
correspond to Change Event in Section 3.2.2), Change Trigger expresses the rationale 
of Change and activates a Change Request. It is also possible to activate a Change 
Trigger by a threshold defined in an Evolution Function which monitors the static 
model of the system. 

As shown by Figure 17, a Change Request contains a PUID2 to identify it, a 
description a status which represents the state of the Change request (for further detail 
see next section). After the activation of Change Request by the Change Trigger, 
Change Request status is first defined in CCB (Configuration Control Board 
represented by THA_Configuration_Control_Board package3). The configuration (or 

                                                
2
 PUID = Product Unique Identifier 

3
 The description of this package is out of scope in this Deliverable 
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change) control board (CCB) is a periodic meeting between several actors of a 
development team (client, manager, quality, design, integration …) to define change 
requests which are accepted, refused or postponed in the next version of the system. 
The detailed behavior of a Change Request is described in the next section. 

 

Figure 17 Change Model Conceptual Model 

To cover all kinds of static model, Change Request is specialized into the following 
kinds: 

 A Requirement Change Request modifies the Requirement Model 
(Requirement, Objectives). It is possible to map this kind of Change Request 
with a DOORS Change Request (for further details see [32]). 

 A Context Change Request modifies the Context Model (e.g. system 
architecture). 

 A Risk Change Request modifies the Risk Model (Risk, Threat, Damage, and 
Vulnerability). 

These three kinds of Change Request are dependant; a Requirement Change Request 
can impact on a Risk Change Request and a Context Change Request and vice versa. 
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This is why we consider a traceability relation between those Change Requests. This 
relation is described by an ―impacts_on‖ association (see Figure 17). 

3.3.4 Change Request: Behaviour 

For readability sake, Change Request Behavior is described by a UML Statechart 
Diagram. In first, we present the generic behavior of a Change Request including CCB 
status relations. In second, we describe the specific behavior of Risk, Requirement and 
Context Change Request. 

3.3.4.1 General Behaviour of Change Request 

As suggested by Figure 18, Change Request (CR) starts after Change Trigger 
activation (e.g. discover a fault, a new requirement …). The Redactor of a Change 
Request must define the change and trace it with the impacted elements. Change 
Request is per default in Pending State.  

A CCB must be planned; it monitors the Change Request Status which can be in the 
following states: 

 Refused, the CR is not relevant; it is not integrated in the system. The Change 
Request is ended in this state. 

 Postponed, the CR is relevant but it is not possible to integrate it in the current 
version of the system. This CR is planned for the next version. 

 Accepted, the CR is integrated in the current version of the system. 

If the CR is accepted, it will be in the In_process macro state. This macro state is 
specialized for several models of Static Model (Risk, Requirement or Context). Specific 
Change Request Processes are described in the next section. 

A CR is finished if and only if it is closed in CCB with client agreement. 
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Figure 18 Change Request Behaviour 

3.3.4.2 Specific Behavior of a Risk Change Request 

A specific Risk Change Request Behavior starts after the Accepted state in the 
generic behavior. As shown by Figure 19, Risk Change Request Status is represented 
by the following sequence of states: 

 In_progress, the redactor must define the changed risk. 

 To_be_Evaluated, the redactor must re-qualify new or changed risk by setting 
Risk Opportunity and Severity attributes [26] [30]. 

 To_be_Managed, the redactor of the Risk Change Request must take into 
account the impact of this change request with the other elements 
(Requirement and Context) and change them if necessary with new CR(s). 
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Figure 19 Risk Change Request Behaviour 

3.3.4.3 Specific Behavior of a Requirement Change Request 

A specific Requirement Change Request (RCR) Behavior starts after the Accepted 
state in the generic behavior. As shown by Figure 20, the Requirement Change 
Request Status is represented by the following sequence of states: 

 To_be_Managed, the redactor of Requirement Change Request must take into 
account the impact of this change request with the other elements (Risk and 
Context) and change them if necessary with new CR(s). 

 In_progress, the redactor must define changed requirement, the designer must 
model them, and the developer must implement them. 

 To_be_verified, the integrator must take into account these changes in the test 
campaign (and change the test scenario if necessary). 

 Resolved, the RCR Status will reach this state if and only if changed 
requirement is verified in the test campaign. 
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Figure 20 Requirement Change Request Behaviour 

3.3.4.4 Specific Behavior of a Context Change Request 

A specific Context Change Request (CCR) Behavior starts after the Accepted state 
in the generic behavior. As shown by Figure 21, the Context Change Request Status is 
represented by the following sequence of states: 

 To_be_Managed, the redactor of the Context Change Request must take into 
account impact of this change request with the other elements (Risk and 
Requirement) and change them if necessary with new CR(s). 

 In_progress, the redactor must define changed components, the designer 
must integrate it into models, and the developer must implement or use it. 

 To_be_qualified, the integrator must take into account these changes in the 
qualification process. 

 Resolved, RCR Status will reach this state if and only if the changed 
component is qualified. 
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Figure 21 Context Change Request Behaviour 
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4 Change patterns 

The previous section described an overarching security process. In this process, when 
a change occurs, it propagates throughout the whole model of the system. Each 
stakeholder is triggered to perform appropriate actions if that change affects the 
stakeholder‘s view on the system. In this process, the actions that the stakeholder 
needs to execute are not specified, however. In the remainder of the deliverable, we 
focus on what one specific stakeholder, namely the architect, can do to deal with 
evolution. 

In the current section, we propose one specific technique for the architect to deal with 
change. A process is outlined to create architectures that are resistant against 
foreseen security-related changes. To achieve this, we identify the need for a 
catalogue of the architectural solutions that deal with specific kinds of change: change 
patterns. The architect can then select the appropriate solutions from this catalogue 
and apply them to the architecture. After a motivating example, the structure of a 
change pattern is described. Then, the process of using the patterns is outlined in more 
detail, and the process is connected to the overarching security process from the 
previous section. Finally, a catalogue of change patterns for dealing with evolving trust 
relationships is presented, and its use is illustrated. 

In Section 5, a generic architectural blueprint is outlined that is designed to 
accommodate a broad set of changes. The architect can design the architecture using 
this blueprint, and can use it as a starting point for applying change patterns. 

4.1 Motivating example 

Consider an online shop scenario, where clients can order goods from a shop on the 
Internet, and pay using their credit card. For sake of simplicity, assume the payment 
data are forwarded by the shop to the credit card company, which will execute the 
transfer. We will model all samples using a component-based style, using UML 2 
structure diagrams. The expected behaviour of the components is self-evident or 
explained in text; we will not separately depict it in a figure. 

For illustration purposes, we will focus on a non-repudiation requirement for the 
system. By non-repudiation, we mean the inability of a party to deny having performed 
a particular action. In this scenario, the non-repudiation requirement states that the 
clients will acknowledge their orders afterwards (i.e., they cannot plausibly deny having 
placed them), and the shop will execute the orders correctly (i.e., the shop cannot 
plausibly deny having received an order, and cannot plausibly charge the wrong 
amount to the client‘s credit card). 

Initially, assume all clients trust the shop to correctly process the orders, and not to 
abuse their credit card information. The shop, in its turn, is convinced that the clients 
will acknowledge their orders afterwards. In this situation, the non-repudiation 
requirement is resolved entirely by trust. The architecture for this system could look like 
Figure 22. 
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Figure 22 Mutual trust 

Clients place their orders, and the shop processes them. No additional security 
measures need to be taken, given the trust assumptions. Although the non-repudiation 
requirement is fulfilled, resolving the requirement by placing trust upon the appropriate 
parties may be naive in most real-life cases. Nevertheless, a risk analysis could turn 
this into an adequate solution. 

 

The trust assumptions turned out not to hold for the shop, though, and after a while the 
shop gets wound up in its first lawsuit filed by an unhappy customer. There, it becomes 
painfully clear that the shop cannot present any credible evidence that the client has 
indeed placed the disputed order. To avoid this from happening again, the shop wants 
to make sure that suitable evidence exists for all future orders. Therefore, the 
architecture is modified to resemble Figure 23. 

 

Figure 23 Client digitally signs orders 

Clients now have to digitally sign their orders before the shop will process them. 
Therefore, they make use of a cryptography module offering digital signatures. Before 
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processing an order, the shop first deals with the added signature. The signature is 
validated by the shop, using a certification authority (CA) to check the revocation 
status. If correct, the signed order is time stamped by a third party (the time stamping 
authority, TSA) to ensure its validity at the time or purchase, even if the client‘s 
signature key gets compromised afterwards. Finally, the signed order and timestamp 
are stored as evidence on a secure medium connected to the shop‘s systems. Note 
that the shop service component changed significantly. It will now also have to 
collaborate with the CA, TSA and the secure storage. 

 

After some negative experiences with the shop, its clients become more wary of the 
shop‘s interactions with the credit card company. The shop, however, does not provide 
the client with any useful information regarding its actions. Only the order history is 
available. Luckily, the credit card company offers the clients a notification system 
triggered by any activity on their account. The clients will thus monitor the shop‘s 
activities indirectly, by comparing the order history provided by the shop with the 
notifications provided by the credit card company. An architecture for this purpose is 
displayed in Figure 24. 

 

Figure 24 Client monitors activities 

To counter the negative reactions, the shop eventually decides to provide clients with a 
digitally signed proof of the purchase, including details on all products and prices. The 
client will need to store this evidence to be able to use it in case of a dispute. 
Moreover, the shop wants the exchange to be fair, i.e., it should not be possible, nor for 
the shop, nor for the client, to cheat and receive their evidence without providing the 
other party with the necessary evidence. A possible architecture for this case is shown 
in Figure 25. 
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Figure 25 Non-repudiation 

The shop now makes use of a fair non-repudiation protocol between the client and the 
shop. The protocol is implemented in a non-repudiation component (NR Service), and 
needs access to a trusted third party (TTP) to always complete successfully. To store 
the resulting evidence, both client and shop need to use the time stamping services 
from a TSA and have access to a secure storage medium. Since both parties have to 
verify the signatures on the evidence, they need access to the CA as well. The client 
now does not need the notifications from the credit card company anymore. 

 

The evolution of the non-repudiation requirements in this scenario can be captured by 
an evolution of trust. A summary of the trust situations and chosen solutions is 
presented in Table 3. It is apparent that the shop‘s main component, ShopService, had 
to be modified multiple times to accommodate this changing trust. We can conclude 
that it was not designed for this kind of evolution. 

Trust situation Chosen solution 

Mutual trust between client and shop. No additional actions necessary. 

Distrust from shop to client in 
acknowledgement of purchase. 

Client still trusts shop. 

Client provides digitally signed purchase 
evidence to shop. 

Distrust from shop to client in 
acknowledgement of purchase. 

Distrust from client to shop in correct 
payment handling. 

Client provides digitally signed purchase 
evidence to shop. 

Client monitors shop‘s payment handling 
actions through credit card company. 

Mutual distrust between client and 
shop. 

Client and shop use fair non-repudiation 
protocol. 

Table 3 Evolution of trust 
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4.2 Change pattern structure 

To enable the architect to design the architecture such that it can cope with possible 
evolution scenarios, we propose the usage of change patterns. A change pattern 
consists of the following parts: 

1. A change scenario, expressed at the requirements level, which describes 
the change in the requirements or environmental assumptions, and for 
which the change pattern provides a solution. This change scenario will 
consist of a before and after requirements4 model. 

2. One or more solutions. Each solution consists of 

 An (optional) set of architectural support patterns that describe the 
infrastructure that needs to be integrated within the architecture in 
order to use the change pattern. 

 Change guidance, that describes how the change scenario can be 
implemented, based on the infrastructure introduced in the 
architectural support pattern. 

3. A mapping between the elements from the change scenario (at the 
requirements level) and the architectural elements in the solution. A 
mapping can be applicable to a set of change patterns, to a single change 
pattern or even to only one solution of a change pattern. 

Each change pattern thus explicitly describes the evolution scenario it supports. This 
description is abstract, i.e., situated at the requirements level (including the 
environmental assumptions), and is expressed as a (situation before change, situation 
after change) pair. The evolution scenario is described independently of any 
application context, so interpreting the evolution scenario for a specific application 
requires performing a translation from the general scenario elements to the specific 
elements in the application. Besides the change scenario, the pattern provides the 
description of an architectural solution. Following the change guidance from the 
solution should enable the evolution scenario to be incorporated without significant 
impact on the architecture, given that the necessary architectural support patterns are 
already in place in the architecture. Finally, the mapping clarifies how the entities in the 
scenario description map to the entities of the solutions at the architectural level. 

4.3 Process description 

The process in this section describes how the change patterns can be used when 
designing an evolvable system. The process is to be executed by the architect of the 
system. Within the overall process presented in Section 3, it reflects one possible 
strategy that an architect can follow within his domain and responsibility. The process 
is triggered by changes occurring outside this domain, for instance in the requirements 
domain. In its turn, following the process will eventually trigger changes in the 
implementation or deployment domain. 

                                                
4
 For brevity, we will from this point onwards refer to both requirements and environmental 

assumptions simply as ‗requirements‘. 
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The first input necessary for the process is a model representing the set of security 
requirements of the system that is being designed. These requirements do not yet 
need to be complete. Any part of the system that is sufficiently explored can be used 
as an input to the process. Of course, the results will then only be limited to this part of 
the system. Additionally, the process requires a model representing an initial 
architecture that already supports the security requirements. This architecture is not 
expected to support evolution of these requirements; supporting this is the outcome of 
the process. Finally, a catalogue with suitable change patterns is needed. 

Given these inputs, the architect can start. First, matches are sought between the 
security requirements descriptions and the evolution scenarios from the change pattern 
catalogue. An evolution scenario matches with the requirements if the requirements 
describe the ‗before‘ part of the scenario, and a meaningful transition to the ‗after‘ 
situation can be identified. This transition may occasionally be straightforward to 
identify, but often it will require some creative thinking and brainstorming by the 
architect and stakeholders. 

For each matching instance, the importance and likelihood of this change scenario is 
estimated, again by the architect and other stakeholders. This estimation is similar to, 
and in fact closely related to, the risk analysis of the system: the stakeholders will have 
to decide whether the evolution scenario currently needs to be supported by the 
architecture in order to mitigate likely future costs, or whether support for the scenario 
can be deferred. 

The decision to support or discard an evolution scenario, and the reasons for that, 
should be explicitly documented in the architecture‘s rationale. If it is decided that the 
scenario has to be supported, the architecture is updated by instantiating the change 
pattern in it: a solution is chosen, and the architect needs to ensure that the 
architectural support patterns are in place. Later in the lifetime of the application, if the 
evolution scenario actually manifests itself, the change guidance from the solution is 
followed to update the application to this new situation. The goal of the change pattern 
is to help the architect in implementing the change described by the scenario without 
significant impact on the architecture of the system. 

4.3.1 Place in the SecureChange Framework 

A change pattern is related to the SecureChange framework from Section 3 in the 
following way. The common system view from the framework consists of meta model 
elements describing the entire system. Each stakeholder has a specific view on these 
elements: the requirements engineer focuses on the elements related to requirements, 
the software architect on the architectural and design elements, and so forth. The 
change pattern approach describes a process for the architect to deal with change at 
the architectural level. 

In Figure 26, we schematically depict how a change pattern is related to the 
occurrence of changes, i.e., a transition from one system state to another. A change 
pattern consists of a before/after pair at the requirements level, that is, it describes the 
change scenario which it supports at the requirements level. To enable the use of the 
change pattern in the architecture, the architect needs to instantiate the architectural 
support patterns that belong to the change pattern into the architecture. Note that this 
needs to happen before the actual change occurs, as the architectural patterns may 
have a significant impact on the architecture. Finally, the change guide from the pattern 
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describes how the change at the requirements level can be implemented in the 
architectural domain (by the architect), and/or other domains (e.g., implementation or 
deployment), using the architectural patterns that are present in the architecture.  

 

Figure 26 Relating change patterns to changing system state 

Using the change pattern approach in the SecureChange framework requires a change 
pattern metamodel, depicted in Figure 27. The metamodel is largely encapsulated in 
the architectural domain, with some external references. First, it references the 
requirements domain, by means of the change scenarios. Additionally, the change 
guide may contain references to elements from other domains like implementation or 
deployment. 

ArchitecturalPattern

ChangeScenario

Change pattern

Change Guide

Requirement

Architecture

Solution

1

describes

1..*

dealsWith

followedGuides

appliedPatterns

refersTo

handles

1

refers

*

 

Figure 27 A change pattern meta model 

Some of the elements from this metamodel can have state. A change scenario can be 
in two states: the ‗before‘ state, when the real-world situation corresponds with the 
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situation described in the ‗before‘ part of the scenario, and the ‗after‘ state, in which the 
real-world situation corresponds with the situation described in the ‗after‘ part. 

An architectural support pattern can be in two states with respect to a particular 
architecture: the ‗unapplied‘ state, i.e., it has not been applied to the architecture, and 
the opposite ‗applied‘ state. 

Equally, a change guide can be in two states with respect to a particular architecture: 
the ‗unfollowed‘ state, meaning that the change guide has not been followed by the 
architect, and the ‗followed‘ state for when the change guide has been followed. 

The architecture itself (which is partially determined by the applied patterns) can be in 
three states with respect to a particular scenario. First, the architectures ‗matches‘ a 
scenario when the architecture in its current form provides the right guarantees to 
securely fit in the current real-world situation. Conversely, the architecture is at ‗risk‘ 
when it does not match the state of the scenario, because it does not provide enough 
guarantees; this leads to a security risk. Finally, the architecture can be ‗overprotected‘, 
meaning that it does not match the state of the scenario, but it provides more 
guarantees than necessary for the state of the scenario. 

Changes in the scenario state (real world) are caused by events external to the 
architectural domain (e.g., stakeholders changing their minds, deployment in a new 
environment, etc.). Changes in the state of the support patterns, change guides and 
architecture happen due to actions from the architect. In our context, the actions of an 
architect are limited to applying or unapplying an architectural support pattern, 
following or undoing a change guide, or doing nothing. Note that, in order to follow a 
change guide, the referred architectural support patterns must always be in the 
‗applied‘ state. 

All possible transitions for a single combination of scenario, change guide and 
architecture are summarized in Table 4. Note that, for presentation purposes, we only 
consider the case where following a change guide increases the security guarantees. 
Undoing the guide will thus decrease the security guarantees. It is straightforward to 
extend the table in order to include the converse situation. 

The term ‗change guide‘ in this table refers to a change guide described in one of the 
solutions that belong to the scenario; ‗architecture‘ refers to the architecture with or 
without the change guide applied to it. Actions marked with a ‗*‘ denote actions that 
require the support pattern to be in the ‗applied‘ state. 
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ORIGINAL STATE CHANGE NEXT STATE 

Scenario 
state 

Change 
guide 
state 

Architecture 
state 

World 
Changes? 

Action of 
architect 

Scenario 
state 

Change 
guide 
state 

Architecture 
state 

Before 

Unfollowed Matches 

No 
Nothing 

Before 
Unfollowed Matches 

Follow* Followed Overprotected 

Yes 
Nothing 

After 
Unfollowed Risk 

Follow* Followed Matches 

Followed 
Over- 

protected 

No 
Nothing 

Before 
Followed Overprotected 

Undo Unfollowed Matches 

Yes 
Nothing 

After 
Followed Matches 

Undo Unfollowed Risk 

After 

Unfollowed Risk 

No 
Nothing 

Before 
Unfollowed Matches 

Follow* Followed Overprotected 

Yes 
Nothing 

After 
Unfollowed Risk 

Follow* Followed Matches 

Followed Matches 

No 
Nothing 

Before 
Followed Overprotected 

Undo Unfollowed Matches 

Yes 
Nothing 

After 
Followed Matches 

Undo Unfollowed Risk 
Table 4 Change patterns and state transitions 

4.3.2 Automation 

In its current form, the architect has to perform all steps outlined above manually. It is 
interesting to investigate how, and to what extent, the architect can be supported in 
these tasks by model-driven development and automation. This, of course, requires 
that both requirements and architecture are expressed using a model. 

To further support automation, the catalogue with change patterns needs to be 
formalized as well. A formalized change pattern consists of the following: 

- A formal description of the change scenario at the requirements level that is 
supported by the pattern. This description is dependent on the formalism (meta-
model) used to express the security requirements. 

- A formal description of the architectural support pattern that needs to be 
instantiated in the architecture to support the evolution. This description is 
dependent on the formalism (meta-model) used to express the architecture. 
Note that the pattern description may introduce new structural elements, 
describe behaviour, and/or can identify roles that later have to be mapped to 
actual elements from the architecture into which the pattern is instantiated. 

- A formal description of the change guidance. The change guidance should 
relate the necessary changes at the architectural level to the changes at the 
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requirements level. In the description, constructs (e.g., structural elements, 
behavioural elements, roles) introduced by the architectural support pattern 
may also be referred to. Therefore, this description is description is dependent 
on the formalism used to express the change scenario, the formalism used to 
express the architecture, and the architectural support pattern. 

Furthermore, the change pattern can describe additional characteristics, like qualities, 
advantages, disadvantages, consequences, etc. that it exhibits. These descriptions are 
helpful for the architect when choosing a particular pattern and making trade-offs, but 
play no major role in the automation. 

Based on this change pattern catalogue, and the current requirements and architecture 
models, the architect can be supported in multiple ways. For instance, matches 
between the evolution scenarios and the requirements model can be automatically 
sought. For each matching scenario, the architect can be prompted whether or not to 
deal with this scenario. If he chooses not to deal with the scenario, this decision (and 
its motivation) can be explicitly recorded in the architecture‘s rationale. If, however, the 
scenario is chosen, then additional help for the architect can be given, by presenting 
the set of applicable solutions. The architect can then choose a solution to instantiate. 
Mappings for the roles of the solution can be determined automatically if possible, or 
be provided by the architect. Once the mappings are known, an automated 
transformation can be executed that instantiates the architectural support patterns into 
the architecture. Also, support can be given in following the change guidance when 
that becomes necessary. 

In what follows, we will attempt to document change patterns in a formal way. We will 
not, however, elaborate on the automation part any further. 

4.4 Trust evolution 

The approach outlined above is generic. It can be used for any recurring kind of 
change, for which a generic solution can be described. To limit the scope of the 
discussion, this part of the deliverable will illustrate the process using one specific kind 
of change: evolving trust relationships between the entities in the architecture. The 
choice for trust is motivated by the following three reasons. 

1. Trust is a general but important notion when dealing with security, because the 
need for security in a system originates from the presence of untrusted entities. 
Therefore, to be able to effectively secure a system, it is important to know (and 
explicitly state) which entities are trusted for certain tasks, and which are not. 
This establishes a strong connection between trust and security. 

2. While research has been done on the influence on a software architecture of 
‗classical‘ security concepts such as confidentiality, integrity and availability, the 
impact on an architecture of the presence (or absence) of trust relationships 
between two entities is an underexplored area. This makes trust the most 
interesting choice from a research point of view. 

3. There is a large likelihood of experiencing change in the area of trust over the 
lifetime of a system. For instance, systems can be moved from a trusted 
environment to a more hostile world. Additionally, trust relationships between 
humans (and, by extension, between the companies they work for) are volatile 
in nature. Such a change will most likely be reflected in the architecture of the 
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software systems5. Thus, it is expected that trust evolution will occur, and that it 
may have a significant impact on the architecture. 

The change scenarios provided in the next part originally emerged from analyzing the 
case studies of the SecureChange project. After this initial analysis, the findings were 
grouped and abstracted. Finally, the set of scenarios was completed by expressing the 
scenarios in SI* and eliciting missing variants. 

4.4.1 Evolving trust scenarios 

In the remainder of this section of the deliverable, the effect of the evolution of trust on 
a component-oriented architecture is studied. A catalogue of change patterns for this 
kind of evolution is presented, and applied to some examples. 

To reason about the evolution in trust at the requirements level, we need to explicitly 
represent the trust relationships. We use the SI* modelling language [34], adopted by 
the Secure Tropos methodology [35]. SI* offers the best support for representing trust, 
by extending the Tropos language with explicit trust and distrust relationships. We will 
assume the reader is familiar with the notation; otherwise, we refer to [35] for an 
overview of the concepts. 

To elicit architectural solutions that can cope with changing trust at the requirements 
level, we distinguish among various scenarios in which trust changes. We assume that 
we start from a late requirements model, i.e., there already exists an actor that 
represents the system. In SI*, the dependencies between that system actor and the 
other actors define the functional and non-functional requirements of the system [35]. 

For each distinct trust evolution scenario, a change pattern is defined. This pattern will 
detail how the architecture of the system should be designed, such that it can deal with 
the trust evolution scenario. Also, the pattern describes the necessary changes that 
have to be applied whenever the evolution scenario occurs.  

We will focus only on scenarios in which trust decreases. In these scenarios, additional 
measures will have to be introduced to compensate for the lack of trust. Of course, the 
inverse evolution is also possible. The proposed change patterns should, therefore, 
also be capable of handling an increase in trust. This means that every mechanism, 
proposed by the pattern to remedy the decreasing trust, should subsequently be easy 
to undo. 

Finally, recall that both the concept of change patterns and the accompanying process 
are independent of the used requirements elicitation technique or model. Therefore, 
the elicitation technique that was simultaneously developed in Work Package 3 could 
be plugged in as well. 

4.4.2 Mapping trust requirements to architecture 

As discussed before, the catalogue needs to provide a mapping between SI* 
requirement models and component-oriented architectural models, which we will 

                                                
5
 This is an illustration of Conway‘s Law: ―organizations which design systems [...] are 

constrained to produce designs which are copies of the communication structures of these 
organizations‖. (http://www.melconway.com/research/committees.html) 
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express in UML (version 2.0). This mapping is the same for all change patterns in the 
catalogue, and is depicted in Figure 28. 

 

SI* UML 2.0 

Agent A 

 

Component A 

<<component>>

A

 

Agent A, providing service 

 

Component A with operation and port 

+service()

<<component>>

A

 

Delegation of execution from B to A 

 

If the service is a goal or task: operation of A, 
used by B 

 

If the service is a resource: information flow 
from A to B. 

 

Delegation of permission from B to A 

 

Not modelled explicitly 
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Trust of execution from B to A 

 

Not modelled explicitly 

 

Distrust of execution from B to A 

 

Not modelled explicitly 

 

Trust of permission from B to A 

 

Not modelled explicitly 
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Distrust of permission from B to A 

 

Not modelled explicitly 

 

Actor part of other actor 

 

Composite structure 

 : B

 : A

 

Figure 28 Mapping between SI* and UML 

Note that, contrary to the delegation of execution relationships, delegation of 
permission relationships are not reflected explicitly in the architectural model. The 
relationships are reflected only by notes, which can be interpreted as architectural 
assumptions in this case. At the architectural level, it is assumed that components that 
fulfil services already have permission to execute the service, or that they acquire the 
necessary permissions implicitly by means of the received invocations. Mechanisms 
such as access control may restrict the permissions of a component in the system. In 
that sense, an architecture is more likely to reflect the absence of a delegation of 
permission —by the presence of access control mechanisms— rather than the 
delegation itself. 

Remarkably, trust relationships also do not have a companion on the architectural 
level. It will, again, chiefly be a lack of trust that will influence the architecture: when 
trust is missing, mechanisms must be put into place to overcome this situation. Trust 
and distrust relationships are thus mapped to architectural assumptions (for trust 
relationships) or constraints (for distrust relationships).  
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4.5 Change pattern catalogue for trust 

The catalogue that follows presents change patterns in which a trust relationship (trust 
of execution or permission) changes, insofar that the relationship crosses the system 
actor‘s boundary. This means that the changing relationship represents a change in 
requirements or assumptions. 

We assume that, for each trust (or distrust) relationship between two actors, there is 
also a corresponding delegation relationship. Strictly speaking, this is not necessary, 
but trust relationships without a delegation between the actors have little value for our 
purposes: the presence or absence of the trust relationship without a delegation 
relationship has no influence the behaviour of the actors, and as such requires no 
special attention at the architectural level. 

In the catalogue, each change pattern entry shows the situation before and after the 
changing trust relationship using the SI* notation. Also, an example gives a concrete 
illustration of the case. Subsequently, one or more solutions are described. The 
solutions are also applied to the example given before. It is important to keep in mind 
that only architectural solutions are considered. For instance, restoring trust by signing 
an agreement on paper may also be possible, but does not have an architectural 
impact. Also, multiple solutions to the same problem may sometimes be combined. 

It is not claimed that the patterns are the only or best solutions, or that the set of 
patterns or their solutions is complete. They only offer choice, and provide guidance, to 
the architect. When choosing and implementing them, other architectural constraints 
have to be taken into account as well. 

Also keep in mind that we will only focus on the architecture of the system that is being 
developed, and not the architecture of external, connected systems. This means that, 
for some solutions, the external systems may need to be adapted to work with the 
chosen solution. These adaptations are not described in detail, but it is clear that 
change patterns could be used in the design of these external systems as well. 

Finally, we stress that requirements and architecture are not two separate phases. This 
implies that the architectural solutions that are proposed in the next section can usually 
be expressed by a more abstract requirements model as well. We will do so where 
applicable. 

For easy browsing, an overview of the change patterns in the catalogue, with 
references to the corresponding section and page number, is given in Table 5. 
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Change scenario and solutions Section Page 

Evolving trust of execution upon external actor 

 Solution 1: Require commitment 

 Solution 2: Use monitoring 

4.5.1 66 

Evolving trust of execution from external actor 

 Solution 1: Provide commitment 

 Solution 2: Enable monitoring 

4.5.2 75 

Evolving trust of permission upon external actor 

 Solution 1: Apply least-privilege principle 

 Solution 2: Attribute-based access control 

 Solution 3: Use monitoring 

4.5.3 82 

Evolving trust of permission from external actor 

 Solution 1: Request confirmation 

 Solution 2: Enable monitoring 

4.5.4 87 

Delegate execution of a service to a trusted actor  

 Solution: Encapsulate service 
4.5.5 89 

Delegate permission to a service to a trusted actor 

 Solution: Flexible access control 
4.5.6 92 

Providing additional service with delegated execution 

 Solution: Introduce bridge component 
4.5.7 94 

Providing additional service with delegated permission 4.5.8 96 

Table 5 Change pattern catalogue overview 

4.5.1 Evolving trust of execution upon external actor 

For the first change pattern, suppose that the system actor relies on an external actor 
A to execute a certain task (i.e., it delegates execution of the service to A). Originally, 
the system trusts A to (at least) execute the delegated task. Over the course of time, 
this trust relationship may change, and the trust relationship can disappear6. This is 
shown in Figure 29. 

 

 

 

                                                
6
 As a reminder: SI* represents trust using ‗Te‘ and ‗Tp‘ relations, for trust of execution and 

permission, respectively. Distrust is represented by ‗Se‘ and ‗Sp‘. 
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Before After 

  

Figure 29 Evolving trust of execution upon external actor 

This causes a problem: the system expects A to achieve the delegated goal, but at the 
same time, does not trust A to do so. To resolve this problem, additional mechanisms 
will have to reinstate the trust of the system in A. 

Example The system to be built is a travel agency system. The system needs to make 
reservations on flights from an airline. It relies on an external actor, the airline 
reservation system, to make the reservation when requested. Initially, the travel agency 
assumes all reservations will be made correctly. After some clients complained 
because their reservation was incorrect, the travel agency no longer trusts (but still 
needs) the airline system for making the reservations. 

Applying the mapping from requirements to architecture, as given in Figure 28, to this 
example, we obtain the architectures in Figure 30 (before and after the trust 
relationship changes). 

Before After 

 
 

Figure 30 Requirements mapped to architecture 

Achieving this result by applying the mapping is straightforward, and we will therefore 
omit the architectures derived from the requirements using the mapping in the other 
change pattern examples. 

4.5.1.1 Solution 1: Require commitment 

A first solution for the case above is presented as the ‗non-repudiation pattern‘ in [36]. 
To re-gain the trust in A, the system will require assurance from A that it will do what is 
expected. Therefore, before A can fulfil the service, the system requires A to provide a 
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commitment (a piece of evidence) that it will do so. The service is thus split in two: first, 
checking that a correct commitment from A has been received, and second, fulfilling 
the actual service. 

Note that the system trusts A to deliver the commitment; if no commitment is provided, 
the system should choose not to rely on A for fulfilling the service. Alternatively, a (fair) 
non-repudiation protocol could be used between the parties. The protocol then ensures 
that no party can obtain a benefit over the other. 

This solution strategy, expressed in SI* and mapped to the architecture, is shown in 
Figure 31. 

 

Strategy 

 

Strategy mapped to architecture 

Structure 
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Behavior 

 

Figure 31 Require commitment 

Example The travel agency can require a confirmation from the airline system, before 
the reservation is made. This confirmation should include all data that will be used to 
make the reservation. The travel agency should check the information in this 
confirmation, and the reservation should only be made if the travel agency correctly 
verified the information. In case of later dispute, the confirmation can be used as 
evidence by the travel agency. This assurance suffices for the travel agency to restore 
its trust in the airline. 

Architectural support pattern 

At the architectural level, it is clear that this solution requires the system to carry out 
additional actions and checks before and/or after one of its services is invoked. At a 
later point in time, these actions and checks might be removed or replaced. The 
architecture of the application therefore should allow flexible addition and removal of 
these actions and checks, preferably by reconfiguration. 

The architectural support pattern for supporting the above scenario is shown in Figure 
32, and described as follows. The system component can be associated with a number 
of registered handler components. The handlers will perform the additional checks and 
actions that need to be performed. For instance, they could read, modify or delete the 
request parameters, or append additional information. Moreover, they can block the 
request altogether, e.g., when a necessary condition is not fulfilled. 

All information that the handlers need to do their work is encapsulated in a context 
class. An instance of the context class exists for both the delegation request and the 
response. The class should, at least, encapsulate all parameters of the request. The 
exact definition of the class depends on the operation, and is not elaborated here. The 
registration of the handlers with the system could, for example, occur in the 
implementation, or could be handled via configuration options. The exact details are 
not important, and are therefore not elaborated upon. 
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Architectural support pattern 

Structure 

+handleBefore( context : Context )

+handleAfter( context : Context )

<<component>>

Handler

...

+service( params )

<<component>>

System

+getParams()

ContextregisteredHandlers

0..*

 

 

Behavior 

 

Figure 32 Handler architectural support pattern 

Whenever the execution request for the operation is about to be issued, instances of 
the context class need to be created and populated with the relevant information. Then, 
the registered handlers are called sequentially. If none of the handlers prohibited the 
execution of the operation, because of a failed check for instance, then the actual 
operation runs. After the operation has been executed, but before the result is returned 
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to the system, a context instance is created for the result and the handlers are called 
again.  

Without support from the underlying platform, the implementation has to be done 
manually for each operation. In this case, it is clear that aspect-oriented technologies 
can provide a significant benefit. They enable the modular interception technique that 
is needed for this pattern. 

When a middleware platform is used, this functionality is often available by default. For 
example, in the Java Enterprise Edition, web service clients written using JAX-WS can 
specify client handlers in a handler chain. These handlers will be called before any 
operation of the web service is called, and/or before any result is returned to the caller. 
The handlers have the possibility to, among others, inspect the entire SOAP body and 
add header fields. 

Change guidance 

To implement the solution when the trust relationship change occurs, a commitment 
handler needs to be developed (see Figure 33). This handler must request a 
commitment from the other party (called the commitment provider). This commitment 
must include the values of the (relevant subset of the) parameters that will be used in 
the actual fulfilment of the service. The commitment handler must resolve a reference 
to the commitment provider, request a commitment and verify the validity of the 
returned commitment (both its contents and the digital signatures). If the commitment is 
valid, it needs to be stored, and the fulfilment of the request can continue. If the 
commitment is invalid, or has been forged, the request must be aborted. 

Structure 

<<component>>

CommitmentHandler

SecureStorage CryptoModule CommitmentProvider

<<component>>

Handler
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Behaviour 

 

Figure 33 Applying the handler architectural support pattern 

The component that corresponds to the system must have the architectural support 
pattern applied. The commitment handler can then be added to the set of registered 
handlers (in the implementation, or by means of configuration), as shown in Figure 34. 

 : CommitmentHandler

CommitmentProvider CryptoModule SecureStorage

 : SecureStorage : CryptoModule

 : System

 : A

 : registeredHandlers

 

Figure 34 Adding a commitment handler 

The commitment handler should also be configured such that it applies only to the 
operation that needs protection, i.e., the operation that corresponds with the delegated 
service as described in the change scenario. 

The addition of this handler ensures that the negative effects of the change in trust 
relationships are mitigated. 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 73 / 132 

 

4.5.1.2 Solution 2: Use monitoring 

A second solution in this case is the use of monitoring (Figure 35). The system 
delegates the task of monitoring the execution of the service to a monitor agent. The 
monitoring gives the system enough assurance to trust upon the execution of the 
service by A. Note that the monitoring does not prevent A from executing the service 
incorrectly. However, because of the high chance of failure being detected, A now has 
more incentive to execute the service correctly. 

Monitoring can be performed using communicating software components, but could 
also be handled by intervening humans (e.g., using e-mails, telephone, letters, etc.). 
Therefore, the exact monitoring mechanism is not part of the solution. In general, 
however, monitoring an agent requires that some information from that agent is 
provided to the agent that performs the monitoring, either spontaneously or upon 
request. 

 

Strategy 

 

Strategy mapped to architecture 

Structure 
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Behaviour 

 

Figure 35 Use monitoring 

Example The travel agency system can send an e-mail to inform one of the employees 
that a reservation with an airline has been made. The employee should then confirm 
with the airline that the reservation has been made correctly, and if not, contact the 
airline and make sure the problem gets resolved. From the viewpoint of the system, the 
reservation will certainly be handled once it has been sent to the airline system and the 
e-mail to the employee has been sent. Therefore, its trust in the airline system is 
restored. 

Architectural support pattern 

This solution also requires interception of the service execution, and will require the 
architectural support pattern introducing configurable handlers as described in Section 
4.5.1.1. 

Change guidance 

To implement this solution when the trust relationship changes, a monitor handler 
needs to be developed (see Figure 36). This handler gets invoked before the service 
from the external component is requested. 

The exact implementation of the monitor depends on the type of monitoring chosen, 
and has to be defined on a case-by-case basis. For instance, the monitor could 
periodically retrieve information from the external component, or it could send an e-mail 
to a person responsible for monitoring the service fulfilment. 
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Structure 

<<component>>

MonitorHandler

<<component>>

Handler

   

Behaviour 

 

Figure 36 Developing a monitor handler 

The monitor handler can then be added to the set of registered handlers (in the 
implementation, or by means of configuration), as shown in Figure 37. 

 : MonitorHandler

 : System

 : registeredHandlers

 

Figure 37 Register the monitor handler 

The monitor handler should also be configured such that it applies only to the operation 
that needs protection, i.e., the operation that corresponds with the delegated service as 
described in the change scenario. 

The addition of this handler ensures that the negative effects of the change in trust 
relationships are mitigated. 

4.5.2 Evolving trust of execution from external actor 

In this change pattern, the system provides certain services that are relied upon by an 
external party. Initially, the external party trusts the system to fulfil the service correctly, 
but this trust may disappear later during the lifetime of the system. This scenario is 
depicted in Figure 38. 

This case is the complement of the previous case. Here, the system actor is the actor 
that is no longer trusted. As expected, the solutions to this case are related to the 
previous case. Instead of requiring a commitment, the system will now have to provide 
one. Similarly, instead of monitoring the external agent, the system will now have to 
enable monitoring by another agent. 

 

 

 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 76 / 132 

 

Before After 

  

Figure 38 Evolving trust of execution from external actor 

Example The system we are building is an airline reservation system. The system is 
relied upon by an external actor, the travel agency. Initially, the airline believes all 
travel agencies trust their reservation system. After some disputes about reservations, 
though, the travel agency no longer trusts (but still needs) the airline reservation 
system for making the reservations. The airline reservation system now needs to be 
changed, such that the trust from the travel agency is restored. 

4.5.2.1 Solution 1: Provide commitment 

The system can offer commitments for the services requested by other parties, as 
illustrated in Figure 39. The commitment is provided before the actual service is 
fulfilled. Note that, similar to the converse situation, the external actor trusts the system 
to deliver the commitment. If this is unacceptable, a (fair) non-repudiation protocol can 
be used between the parties. The protocol then ensures that no party can obtain a 
benefit over the other. 

Strategy 
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Strategy mapped to architecture 

Structure 

 

Behavior 

 

Figure 39 Providing a commitment 

Example The airline reservation system can provide a confirmation to the travel 
agency. This confirmation contains all information that will be used to make the 
reservation. The travel agency then verifies the confirmation. Only if the verification is 
successful, the reservation is made. Because the commitment assures the travel 
agency of the correctness of the reservation, its trust is restored. 

Architectural support pattern 

The system should be designed such that it is easy to validate the parameters used for 
providing the commitment, i.e., it should be ensured that no commitment is generated 
for a request that cannot be fulfilled. A possible solution for this is the introduction of a 
validator component as part of the system, which is responsible for validating a set of 
parameters for a service. This support pattern is shown in Figure 40. 
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Architectural support pattern 

Structure 

 : Validator

 : System

 

Behaviour 

 

Figure 40 Validator architectural support pattern 

Moreover, to digitally sign the commitment, the system should have access to a 
component offering cryptographic operations (Figure 41). 

Structure 

 

Figure 41 System accesses a cryptographic module 

Change guidance 

To implement this solution when the trust relationship changes, the system needs to be 
extended with a service to provide a commitment. This service will contact a validator 
to ensure the validity of the parameters, before constructing the commitment. If the 
parameters are valid, the commitment is digitally signed and returned. From this point 
on, the system has committed to fulfil the service with the given parameters. This is 
shown in Figure 42. 
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Structure 

<<new>>+provideCommitment()

+fulfillService()

...

<<component>>

System

  

 : Validator

 : System

 : CryptographicModule

 

Behaviour 

 

 

Figure 42 Applying the change guidance 

4.5.2.2 Solution 2: Enable monitoring 

A second solution to restore the trust from the external party is to enable monitoring of 
the service execution (Figure 43). The external party delegates the task of monitoring 
the system to a monitor actor, which is then responsible for checking the fulfilment of 
the service by the system. Although this does not ensure the correct fulfilment of the 
service, but will most likely lead to a bigger incentive for the system actor to ensure a 
correct execution. Note that monitoring can happen continuously and automatically by 
using a software monitor, or can be performed occasionally and manually (by an 
auditing company, for instance). 
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Strategy 

 

Strategy mapped to architecture 

Structure 

 

Behaviour 

 

Figure 43 Enable monitoring 
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Example The airline reservation system can enable external actors (i.e., airline 
employees, or travel agency employees) to observe its actions. For example, a travel 
agency employee could be able to request information about a reservation, to ensure 
its correctness. In this way, additional assurance is given to the travel agencies about 
the reservations, and the trust relationship is restored. Alternatively, an external audit 
company could be responsible for discovering misbehaviour of the airline reservation 
system. 

Architectural support pattern 

The system should be extended with a status collector component (Figure 44), which 
gets informed about the status of each service execution, and stores this information. 
This status collector can be a separate component dedicated to this purpose, or can, 
for instance, be part of the auditing and logging infrastructure. 

 

Architectural support pattern 

Structure 

 : StatusCollector

 : System

 

Behaviour 

 

Figure 44 Status collector architectural support pattern 

Change guidance 

To implement this solution when the trust relationship changes, the status information 
obtained by the status collector must be made available to the monitor component 
(Figure 45). This could be achieved entirely using software, or the information could be 
made available to humans (e.g., displaying on a screen). Whatever the used 
mechanism, the information needs to be accessible to the outside of the system. 
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Figure 45 Enable monitoring using a status collector 

4.5.3 Evolving trust of permission upon external actor 

This change pattern does not deal with trust of execution, but rather with trust of 
permission. Suppose a system allows an external actor to fulfil a service, and trusts 
this actor not to abuse this permission. Over time, this trust relationship can disappear, 
so that the actor still receives the permission (as it may need it to perform its work), but 
is no longer trusted with it. This scenario is shown in Figure 46. 

Before After 

 
 

Figure 46 Evolving trust of permission upon external actor 

Example The system we are building is a hospital information system. The system 
gives permission to another actor, a nurse of the hospital, to access all information 
about the patients. Initially, the hospital trusts the nurse not to abuse this permission. 
After the nurse was caught using this permission to gain illegitimate access to a 
celebrity‘s medical records, the hospital system does not trust the nurses anymore. 

4.5.3.1 Solution 1: Apply least-privilege principle 

Instead of giving the external actor permission to the complete service, the permission 
can be made more fine-grained. If the service consists of (or can be split into) multiple 
sub-services, giving permission to execute a small subset of these may suffice; access 
to all other sub-services can be denied. This corresponds to applying the well-known 
principle of least privilege, and is shown in Figure 47.  
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Strategy 

 

Strategy mapped to architecture 

Structure 

 

Behaviour 

  

 

Figure 47 Apply least-privilege principle 
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Example Instead of having access to all known information about a patient, the nurse 
in the hospital may now only access the information which she needs for her job. All 
other information is not accessible to her anymore. 

Applying least privilege may have a significant impact on the architecture, however. 
Therefore, it is hard to create an architecture that can, in the future, be modified to 
comply with the least privilege principle without requiring significant alterations to the 
architecture. This means that picking this solution would require the architect to design 
the architecture from the beginning according to the least privilege principle. If this is 
impossible, one of the other solutions needs to be chosen. 

4.5.3.2 Solution 2: Attribute-based access control 

Instead of giving the external party permission to the complete service, an access 
control policy can be put in place (Figure 48). The policy will define permissions based 
on the identity of the external party. The permissions can be further refined by 
attaching conditions that depend on the context (e.g., parameters for the service, 
attributes of the subject or a resource, the current time, etc.). 

Strategy 
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Strategy mapped to architecture 

Structure 

 

 

Figure 48 Attribute-based access control 

Example The nurse can only access the patient information of patients for who she is 
a designated nurse, and only within the nurse‘s working hours. A nurse has to identify 
herself before gaining access to patient information. The context information can be 
obtained from multiple systems: the designated nurses for a patient are provided by the 
patient administration system, while the working hours of the nurse are provided by the 
scheduling system. This restricted access control limits the possible scope of malicious 
actions of the nurse, so that the trust is restored. 

Architectural support pattern 

This solution requires the presence of an access control infrastructure. This can be 
done, for instance, by using an authorization enforcer (Figure 49). The authorization 
enforcer will, before an operation is executed, check whether the subject that invoked 
the operation has permission to do this. 

Architectural support pattern 

Structure 
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Behaviour 

 

Figure 49 Authorization enforcer architectural support pattern 

Almost every framework or middleware has built-in support for access control. For 
instance, in the Java Enterprise Edition framework, role-based access control can be 
easily enabled for every remotely accessible operation, without writing any custom 
code. 

If access control needs to be implemented by hand, the access control functionality 
can be developed using the handler pattern as described in Section 4.5.2.1. The 
authorization enforcer is then implemented as a handler for each operation in the 
system that needs access control. 

 

Additionally, all information that is needed to make access control decisions need to be 
available to the authorization enforcer. This means that each component that can 
provide necessary information needs to act as a context provider (Figure 50). 

Change guidance 

To implement this solution when the trust relationship changes, the authorization 
enforcer in the architecture needs to be updated with the new, attribute-based policy. It 
also needs to be configured such that it can access all context providers that are 
necessary to evaluate the new policy. 
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provider1 : ContextProvider

provider2 : ContextProvider

 : AuthorizationEnforcer

 : System

 

Figure 50 Applying the authorization enforcer support pattern 

4.5.3.3 Solution 3: Use monitoring 

Alternatively, all service executions can be monitored. The monitor is responsible for 
verifying that permissions are not abused. 

Example A nurse can still access the information from all patients in the hospital, but 
every access attempt is logged and periodically reviewed by the responsible doctor. 
Because of the increased risk in being detected when illegally accessing patient files, 
the trust in the nurses is restored. Note that, in this case, the doctor acts as the 
monitor. 

The technical solution is the same solution as Solution 2: Use monitoring as described 
in Section 4.5.1.2. 

4.5.4 Evolving trust of permission from external actor 

In this change pattern, the system obtained permission from an external actor to fulfil 
some service. The external party also trusts the system not to abuse this permission. 
Later, however, this trust disappears. This is shown in Figure 51. 

Before After 

  

Figure 51 Evolving trust of permission from external actor 

Example The system we are building is a hotel booking website. The site obtains 
permission from its customers to process the credit card information of the user. The 
users trust the hotel site not to abuse this information. When illegitimate use of the 
information is detected (e.g., the credit card is used for additional purchases), the users 
no longer trusts the hotel with their credit card information. 
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4.5.4.1 Solution 1: Request confirmation 

Each time the system performs a service, it needs to request a confirmation from the 
external party that the service may be fulfilled, as illustrated in Figure 52. This 
conformation can take various forms. For instance, it could be digitally signed evidence 
created by the external party whenever necessary. The system could store the 
obtained permission, in case of later disputes. Alternatively, if some piece of 
information that is required to fulfil the service is never stored by the system, and must 
always be provided by the external system, the submission of this information by the 
external party can be seen as a confirmation as well. The latter case is what happens 
with the CVV2 number on credit cards. 

Strategy 

 

Strategy mapped to architecture 

Structure 

 

Behaviour 

 

Figure 52 Request confirmation 
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Example The hotel booking website needs the CVV2 number to initiate a transaction 
with the payment gateway. Since the credit card security standards require the system 
never to store this number, the hotel booking website will need to obtain the CCV2 
number from the client for each transaction. By entering this number, the client thus 
gives a confirmation of the transaction to the hotel booking website. 

Architectural support pattern 

Obtaining and verifying the confirmation needs to be done before the service 
execution. This can be achieved using the handler architectural pattern from Section 
4.5.1.1. 

Change guidance 

When the system is no longer trusted with the permission for a service by the external 
party, a confirmation handler is developed and configured for the service (Figure 53). 
This confirmation handler will take care of obtaining and verifying the confirmation, 
before allowing the service to be fulfilled. 

  

 : ConfirmationHandler

 : System

 : registeredHandlers

 

Figure 53 Adding a confirmation handler 

  

4.5.4.2 Solution 2: Enable monitoring 

Alternatively, the system can allow the monitoring of its service fulfilment. 

Example The credit card company can monitor the transactions of the hotel booking 
system. With this information, the credit card company can offer a service to notify the 
customer of all initiated transactions concerning his credit card. 

The technical solution is the same as ‗Solution 2: Enable monitoring‘ described in 
Section 4.5.2.2. 

4.5.5 Delegate execution of a service to a trusted actor 

For this change scenario, assume the system uses a certain service that it provides 
itself. Over time, the provisioning of the system may move to an external actor (e.g., 
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outsourcing), as shown in Figure 54. We assume that the external party is trusted by 
the system for executing this service. If this is not the case, the change pattern from 
Section 4.5.1 needs to be considered together with this pattern. 

Before After 

 

 

Figure 54 Delegate execution of a service to a trusted actor 

Example Consider a route planning system. Originally, the system was designed for a 
single country, and used its custom written software for geo-coding (converting street 
names to geographic coordinates). When the system is extended to work 
internationally, an external geo-coding service is used. The system needs to be 
modified so that this external service is used. 

4.5.5.1 Solution: Encapsulate service 

To easily enable the transition from the internal to the external service implementation, 
the service should be encapsulated from the rest of the application, as illustrated in 
Figure 55. This is a well-known design solution for creating maintainable software 
solutions. 

Strategy 

 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 91 / 132 

 

Strategy mapped to architecture 

Structure 

  

 : ServiceProvider

 : System

 : A

 

 

Behaviour 

 

 

 

Figure 55 Encapsulate service 

The service can now be changed from the internal to the external implementation, 
without modifications to the rest of the system. As an additional advantage, if the 
external actor decides to change the functionality of the service, the service provider 
can be modified such that the functionality exposed to the system does not change. 
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Example The route planner system contains a geo-code component. Originally, the 
geo-code component contains the custom implementation. When the decision is made 
to use an external service, the implementation is changed to access that service. 

Architectural support pattern 

A service provider component should be introduced in the architecture, as shown in the 
strategy mapped to the architecture above. 

Change guidance 

When the change scenario occurs, the implementation of the service provider needs to 
be modified such that it uses the external service instead of the internal 
implementation. The rest of the system remains unchanged. 

4.5.6 Delegate permission to a service to a trusted 
actor 

In this change scenario, assume the system owns a certain service. Over time, the 
system may be opened for external actors. This means that external actors gain 
permission to fulfil the service. Or, the service may already be available for some 
external parties, but needs to be available to an additional one. This scenario is shown 
in Figure 56. We assume that the external party is trusted by the system for not 
abusing this permission. If this is not the case, the change pattern from Section 4.5.3 
needs to be considered together with this pattern. 

Before After 

 

 

Figure 56 Delegate permission to a service to a trusted actor 

Example Suppose the system we are developing is a social network site. The system 
owns information about its users. Over time, the social network site wants to allow an 
advertising company to access this information, in order to deliver personalized 
advertisements. Of course, other external parties should not be allowed access to this 
data. 

Note that this scenario will often happen together with the scenario in Section 4.5.7. 

4.5.6.1 Solution: Flexible access control 

A solution for this evolution scenario is putting flexible access control in place (Figure 
57). Before the service is fulfilled, the request is evaluated by an access control 
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monitor. The policy that is enforced by this actor should be easy to modify, preferable 
through updating the configuration. 

Strategy 

 

Strategy mapped to architecture 

 

 : AccessMonitor

 : System

 

 

Figure 57 Flexible access control 

Example The social network site creates an API for obtaining user data, but restricts 
access to this API to the advertising company.  

Architectural support pattern 

This solution requires the presence of an access control infrastructure, as described in 
Section 4.5.3.2.  
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Change guidance 

To implement this solution when the new trust relationship appears, the policy of the 
authorization enforcer in the architecture needs to be updated to grant permission to 
the new external party. 

4.5.7 Providing additional service with delegated 
execution 

In this scenario, consider a service of the system originally only used by the system 
itself. Over time, an external party may decide to rely on the system for this service. 
This means that the system exposes new (but already implemented) services to its 
environment. Since external parties do now rely on this service, the service cannot be 
modified without breaking the external actors. This scenario is shown in Figure 58. 

Note that we assume that the external party trusts the system for executing this 
service. If this is not the case, the change pattern from Section 4.5.2 needs to be 
considered together with this pattern. 

Before After 

  

Figure 58 Providing additional service with delegated execution 

Example The system under development is a system for a car rental company. An 
important service offered by the system is creating a reservation for a car. Originally, 
the reservation service is only used within the car rental company, but over time the car 
rental company wants to give travel agencies the opportunity to create car reservations 
as well. Once the first travel agency is connected to their system, changing the 
reservation service becomes difficult because the travel agency depends on it. 

4.5.7.1 Solution: Introduce bridge component 

Introduce a bridge component for the service, which remains stable over time. External 
systems connect with this bridge component. When the internal implementation of the 
service changes, the bridge is modified such that it provides the same functionality, but 
uses the new implementation. It achieves this by converting the input given to the 
internal service, and result that is returned. In this way, the changed implementation 
has no observable effects. The solution is illustrated in Figure 59. 

This solution is a widely-known and common technique to create evolvable systems. 
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Strategy 

 

Strategy mapped to architecture 

Structure 

  

 : ServiceBridge

 : System

 : A

 

 

 

 

 

 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 96 / 132 

 

Behaviour 

 

 

Figure 59 Introduce bridge component 

Example The car rental company implements a service bridge, which is used by the 
external systems. When the internal implementation of the service needs to change, 
the bridge is modified as well so that nothing has changed from the viewpoint of the 
external systems. 

Architectural support pattern 

A service bridge component should be introduced in the architecture, as shown in the 
strategy mapped to the architecture above. 

Change guidance 

When the change scenario occurs, the external system is connected to the service 
bridge instead of to the internal implementation of the service. 

4.5.8 Providing additional service with delegated 
permission 

In this final scenario, consider a system that owns and provide a certain service. Over 
time, the ownership of the service may be transferred to another actor, while the 
system keeps providing the service, as shown in Figure 60. 
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Before After 

  

Figure 60 Providing additional service with delegated permission 

Since this evolution has no influence on the behaviour of the system (because the 
system will still provide the service, just as before), no architectural solutions are 
necessary for this evolution scenario. The transfer of ownership will manifest itself as 
an action outside the system (e.g., the signing of a contract). 

This scenario may need to be considered together with the scenario described in 
Section 4.5.4, when the trust of permission from the external party may disappear over 
time. 

4.6 Illustrations 

4.6.1 Online shop 

In this section, we will revisit the motivating example about the shop from the 
introduction. We will model the evolving trust of the scenario in SI* and show how an 
architecture can be designed so that it supports this evolution. The architecture is 
designed by applying the change patterns from the previous section. Then, it is shown 
how the architecture can deal with the evolution described in the example at the 
beginning of this section. 

4.6.1.1 Initial situation 

The initial situation is a situation in which all parties trust each other. More specifically, 
the client trusts the shop to a) correctly sell goods (e.g., ship the ordered goods when 
paid), and b) not to abuse submitted credit card information (e.g., charge more than 
agreed). The shop (maybe naively) trusts the client to provide a purchase acknowledge 
in case of a dispute, i.e., the shop trusts its clients never to repudiate a placed order. 
This situation is depicted in the SI* diagram in Figure 61.  
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Figure 61 Simplified SI* diagram for online shop 

We can create a corresponding architecture by applying the mappings from Section 
4.4.2. The result is depicted in Figure 62. 

 

Figure 62 Corresponding architecture 
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4.6.1.2 Applying change patterns 

To design the architecture for the shop we start from the initial SI* diagram in Figure 
61. We will go through each change scenario from the catalogue and search for 
possible matches. Finding a match means that we have identified a possible future 
change in a trust relationship in the system. The stakeholders need to identify and 
select the likely and important matches, which the architect then needs to incorporate 
in the architecture, by using one of the solutions provided by the pattern catalogue. 

The iteration over the cases and possible matches are presented in Table 6. The first 
row in the table is obtained as follows. The change pattern in Section 4.5.1 describes a 
situation in which trust upon an external actor disappears. In the shop system, there 
are two trust relationships from the shop upon external actors. 

First, the shop system trusts the client to provide acknowledgements of their purchase. 
While the initial shop system may be designed to cooperate with a limited number of 
trusted customers, it is easy to imagine a situation in which this trust relationship is 
unjustified. Therefore, the likelihood of clients not providing this acknowledgement is 
very high, and the stakeholders will require that the architecture is prepared for this 
situation. 

The second matching trust relationship is that upon the credit card company for correct 
payment processing. While it can be imagined that the credit card company will not be 
trusted anymore, the stakeholders have determined that this is unlikely to happen in 
the foreseeable future, and as such support for this evolution scenario is not included 
in the current architecture. 

The other rows in the table are obtained in a similar way, by matching with the other 
patterns from the catalogue. Eventually, the rows with a ‗×‘ were selected as likely and 
important scenarios by the stakeholders, and will need to be resolved in the 
architecture. 

 

4.5.1 - Evolving trust of execution upon external actor 

× 

Current situation Shop trusts client to provide purchase order acknowledgement 

Possible change Client is no longer trusted to do this 

Likelihood Very high 

 Current situation Shop trusts credit card company to correctly process payment 

Possible change Credit card company is no longer trusted 

Likelihood Very low 

4.5.2 - Evolving trust of execution from external actor 

× 

Current situation Client trusts shop to correctly handle orders and sell goods 

Possible change Shop is no longer trusted to handle orders and sell goods 

Likelihood Medium 

4.5.3 - Evolving trust of permission upon external actor 

 No matched identified 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 100 / 132 

 

4.5.4 - Evolving trust of permission from external actor 

× 

Current situation Client trusts shop not to abuse credit card information 

Possible change Shop is no longer trusted with credit card information 

Likelihood High 

4.5.5 - Delegate execution of a service to a trusted actor 

 

Current situation Shop takes care of order shipment itself 

Possible change Shipping of orders is outsourced to dedicated shipping 
company 

Likelihood Low 

4.5.6 - Delegate permission to a service to a trusted actor 

 Current situation Shop does not share customer preferences 

Possible change A marketing company is given access to customer preferences 

Likelihood Low 

4.5.7 - Providing additional service with delegated execution 

 Current situation The shop only ships its own orders 

Possible change An external company uses the shipping services from the shop 

Likelihood Low 

4.5.8 - Providing additional service with delegated permission 

 No match identified 

Table 6 Result of following the change pattern process 

The architect now chooses solutions for each of the chosen evolution scenarios. This 
choice is based on architectural trade-offs, and relies on the knowledge and 
experience of the architect. Suppose the architect prefers the following solutions: 

 For the first evolution scenario (where the client is no longer trusted to 
acknowledge its purchases), the architect chooses the solution based on 
requiring a commitment of the client (Section 4.5.1.1). 

 The second evolution scenario (where the shop is no longer trusted to correctly 
handle orders), the solution in Section 4.5.2.1 is chosen (providing a 
commitment). 

 For the third evolution scenario, the solution based on monitoring (Section 
4.5.4.2) is picked. 

The architect now has to integrate all architectural support patterns of these solutions 
into the architecture of the shop. This is a manual effort, and the result is depicted in 
Figure 63 (only the structural part has been shown). Recall that this is the result before 
any of the aforementioned evolutions occurred; only the necessary support 
infrastructure has been put in place. It is apparent that the introduction of the 
architectural support patterns has significantly influenced the architecture. Since no 
evolution has occurred, however, all the trust assumptions of before (represented using 
notes) are still in place. 
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Figure 63 Resulting architecture 

The introduction of the handler pattern enables the registration of handler components 
with the shop, which will be invoked before (and after) every order made by a client. 
The newly added status collector keeps track of the order history, and the status of 
each order. The validator component validates the parameters of a purchase order, 
before the order can be fulfilled. Finally, one of the change patterns prescribes that the 
system needs to have access to a cryptographic module, capable of placing digital 
signatures. 

We stress that the system, using this architecture, does not yet comply with any of the 
evolution scenarios. The architecture of the system has merely been prepared to 
handle the evolution scenarios, should they occur in the future. However, remark how, 
for example, the need for keeping an order history has emerged from analyzing 
possible trust evolutions using change patterns. Of course, this feature would most 
likely be present in any commerce system, but our analysis has highlighted its 
relevance with regard to evolving trust. 

4.6.1.3 Handling evolution 

In this section, we will replay the evolution from the motivating example at start of the 
chapter, but now with the architecture created in the previous subsection. 

In the first part of the story, the trust between the shop and the client disappears. Since 
this trust evolution matches with the change pattern in Section 4.5.1 (Evolving trust of 
execution upon external actor), for which the first solution was chosen, the change 
guidance from Section 4.5.1.1 needs to be followed. This guidance prescribes the 
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development of a commitment handler, and deploy it as a registered handler for the 
shop system. This means that a new handler component needs to be developed, which 
extracts the digitally signed commitment from the order request created by the client, 
validates the commitment and stores it. This handler then needs to be registered with 
the shop component. These actions happen in the implementation and deployment 
domain, and can be performed without modifications to software architecture of the 
system. Indeed, the introduction of the handler pattern, as prescribed by the change 
pattern, enables easy addition of this functionality. 

For the second evolution, the trust from the client upon the shop for correctly using 
their credit card information disappears. This evolution also corresponds with a change 
pattern applied to the architecture, namely ―Evolving trust of permission from external 
actor‖ (Section 4.5.4). Here, the architect has chosen the solution of enabling 
monitoring (Section 4.5.4.2). That solution‘s change guidance describes that the status 
information, obtained by the status collector component, must be made available to the 
monitor. In this example, the monitor is the client component itself, and the status 
information is the order history. To overcome the decreasing trust, the order history 
should thus be made available to the clients of the shop, if this was not already the 
case before. The clients need this order history to align the order history with the 
notifications from the credit card company. 

In the third (and final) part of the scenario, the clients lose their trust in the shop system 
entirely, and the change guidance from the chosen solution (providing a commitment, 
Section 4.5.2.1) must be followed. A new service needs to be provided by the shop, 
which provides a commitment to the clients who request one. Note that this is an 
architectural change, because a new service is introduced at the side of the shop. 
However, the newly introduced service is not essential, and clients who do not require 
the commitment can still place their orders. Old clients do not have to be changed 
immediately, and therefore the change only has a small impact on the overall software 
architecture. 

The illustration above demonstrates how the use of change patterns for designing an 
architecture enables evolution with little to no impact on the architecture. Of course, the 
example consists of a simplified scenario. Additional validation, on a more realistic 
case, is necessary. 

4.6.2 HOMES 

In the second year of the project, the HOMES case study will be used to validate the 
process of using change patterns to design an evolvable architecture. In particular, we 
will focus on the part of the HOMES case study that is concerned with the access 
control and policy enforcement for devices on the network. Especially the Home 
Gateway component will play an important role in this validation. 

4.6.2.1 Challenges 

When performing the validation on the HOMES case study, the following challenges 
are expected to be encountered. 

1. The change pattern process assumes a trust model of the application under 
development is available. In the current case study, however, no explicit and 
complete list of trust assumptions is available. The validation exercise will thus 
need to provide a list of these trust assumptions, and can be used to assess the 
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feasibility of one of the requirement of the process (i.e., working with an explicit 
trust model) in an industrial context. 

2. The outlined process requires the stakeholders of the system to decide on the 
likelihood, and eventually the inclusion of a solution in the architecture, of an 
evolution scenario. It is currently unclear in the case study in which evolution 
scenarios (related to trust assumptions) are likely to happen and should be 
foreseen in the architecture. The validation will assess how the outlined process 
performs with respect to identifying and classifying these evolution scenarios. 

3. The presented catalogue of trust change patterns is not complete. Change 
scenarios may be missing, or solutions may not yet be described. Performing 
the validation on the case study will give an indication about the usability of the 
current catalogue, and may identify missing patterns and solutions. 

4.6.2.2 Approach 

For the validation, we plan to perform the following steps in close cooperation with the 
industry partner. 

First, we model the situation of the case study as it is envisaged to be built, with no 
specific attention for evolving trust requirements. This model comprises both an 
architectural model in UML, and a corresponding trust model in SI*. 

Then, the process as outlined in Section 4.3 needs to be executed. This activity will 
identify various possible change scenarios related to trust, which have to be assessed 
with respect to their likelihood and importance by the stakeholders from the case study. 

Finally, the relevant change patterns need to be applied to the architecture. Also, we 
will need to verify with the industrial partner whether the resulting architecture is 
realistic and useful. 

4.7 Conclusion 

Change patterns are proposed as a helpful concept for designing secure, evolvable 
systems. A change pattern is attached to a change scenario, which represents a high-
level evolution of the security requirements of the system. The change pattern also 
contains one or more solutions. Each solution may refer to some architectural support 
patterns, which prepares the architecture for an upcoming evolution scenario. 
Additionally, the solution contains change guidance, which describes the necessary 
steps to update the architecture such that it reflects the new security requirements, 
once these have changed. 

Dealing with evolution of security at the architectural level consists of three steps. First, 
likely evolution scenarios need to be identified, for instance by questioning whether 
each of the change patterns is applicable and likely to happen. If so, the second step 
needs to be executed: picking a solution to handle this case needs and incorporate it in 
the architecture. This step prepares the architecture for the expected evolution. The 
third step consists of updating the system once the identified evolution actually 
happens. The main goal of the change patterns is dramatically decreasing the possible 
impact on the architecture during this last step. 

We presented a catalogue of change patterns that deal with changing trust 
relationships in a component-oriented architecture. The techniques to deal with these 
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changing trust relationships can be divided in two broad categories. One category are 
the typical, general principles to achieve maintainability in a software architecture: 
decoupling the points of variation from the rest of the system, so that they can evolve 
independently. The second category is more specific for trust relationships, and 
involves the introduction of a monitoring infrastructure. 

The proposed approach requires an explicit representation of all the trust relationships 
involving the system. Moreover, when following the approach, each trust relationship 
will be questioned and assessed. This systematic approach helps the architect in 
achieving a more complete solution when compared to identifying and resolving the 
likely change scenarios in a more ad-hoc manner. 
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5 Security as a service 

In this Section we define an architectural blueprint that transposes the model of 
Software as a Service to the security domain and thereby realizes Security as a 
Service (SeAAS). The proposed architecture is robust in the sense that it is flexible 
enough to cope with a broad variety of changes and thus supports long-lived, evolving 
systems. Based on the architectural blueprint we define a reference architecture 
leveraging the principles of Service Oriented Architectures (SOA) and Web Services 
technologies.  

In the context of the overall deliverable D 2.1, the proposed reference architecture 
represents a possible target infrastructure for the change-driven security engineering 
process as defined in Section 3.1, where architectural components and services map 
to the System Operator‘s view. The architecture can also serve as a target 
infrastructure accommodating architectural solutions as proposed by the Catalogue of 
Change Patterns presented in Section 4. 

We structured this section as follows. Section 5.1 opens with a brief problem statement 
linked to the current practice of enforcing security in service oriented systems 
exclusively at the service endpoint. Section 5.2 introduces a motivating use case from 
healthcare that will serve as a first running example for illustration purposes. The 
example will be replaced by a scenario from the HOMES case study in years two and 
three. In Section 5.3 we analyze the limitations of endpoint security and make the case 
for an architectural blueprint leveraging the paradigm of Security as a Service to 
support long-lived, evolving systems. We present the architectural blueprint for Security 
as a Service in Section 5.4 and elaborate a specific reference architecture based on 
the principles of SOA and Web services technologies in Section 5.5 followed by a brief 
discussion in Section 5.6. Section 5.7 introduces the HOMES case study. The case 
study will be used to validate the general idea of Security as a Service in context of the 
change-driven security engineering process as defined in Section 3.1 in the years two 
and three. 

5.1 Introduction 

Inter-organizational workflows spanning multiple domains of business partners involve 
the sharing of sensitive resources. The examples are numerous and ever-growing. In 
healthcare, a patient‘s electronic health-record stored with a hospital may be updated 
with a radiography produced by an external specialist, complemented with a diagnosis 
together with a regular update of the medication prescribed by the patient‘s 
practitioner. Or a company‘s financial statement may be forwarded to its auditors 
before being turned in as an electronic tax declaration with financial authorities (e.g., 
[53, 54]). Those large-scale software systems can be characterized as heterogeneous, 
distributed systems spanning across many enterprises under the control of as many 
―ownership domains‖. Often, they are realized based on the blueprint of Service 
Oriented Architecture (SOA). However, the decentralized security models and 
distributed infrastructures of SOA turn the enforcement of security requirements into a 
major challenge. 
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Technical interoperability was addressed first and with some success. To make sure 
companies were using ―compatible‖ technology for cooperation with their peers, 
software engineers and architects could turn to the paradigm of SOA with its 
standardized technical underpinning, the stack of Web services standards and 
technologies. However, up until now, the standards only address basic security 
requirements (the triad of traditional information security, namely confidentiality, 
integrity and availability) and resolve issues at a low, technical level. This makes 
security engineering incredibly complex and – as a consequence – implementations 
error-prone. 

According to current practice, security infrastructures enforce security exclusively at the 
service endpoint. They ignore the peculiarities of SOA‘s decentralized peer-to-peer 
architecture which outmodes traditional security solutions and mechanisms, among 
them the concept of perimeter security and the centralized security models (cf to [69, 
70] for interesting discussions). Besides placing a significant processing burden on 
service nodes, endpoint security renders maintenance and management of the 
distributed security infrastructures cumbersome, and impedes interoperability with 
external service providers and requesters. To meet these challenges, we propose a 
reference security architecture that transposes the model of Software as a Service to 
the security domain and thereby realizes Security as a Service (SeAAS). The proposed 
architecture goes beyond the mere bundling of security functionality within one security 
domain as it realizes complex security requirements for processes involving two or 
more domains.  

The reference architecture complements the SECTET framework for model-driven 
security engineering [53]. The framework will serve as starting point for the elaboration 
of an approach for the high-level configuration of security-critical systems as planned in 
the description of work under T2.2 as part of the second year.  

5.2 Motivating example 

Our scenario draws the security requirements from use cases of the healthcare 
industry. They were elaborated in the context of national initiatives in Europe with the 
aim to realize the Electronic Health Record (EHR) [44, 51, 53]. We begin with a 
functional description in Section 5.2.1 and proceed to security requirements in Section 
5.2.2. 

5.2.1 The Electronic health record - a use case 

Figure 64 shows the various stakeholders modeled as roles and their interactions with 
an EHR system modeled as message exchanges in a typical scenario. Security-
relevant communication is indicated in red. 
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Figure 64: Roles and Message Exchanges in a Distributed Healthcare Scenario 

Markus Maier (role Patient) goes to see Dr. David Daum, his family doctor (role 
General Practitioner) for his yearly medical check-up. In step 1, Dr. Daum accesses 
Markus Maier‘s Electronic Health Record over the centralized EHR service (ELGA2). In 
its essence, an EHR represents a consolidated virtual medical record assembled from 
information distributed across various healthcare providers, which produced clinical 
information during past consultations and treatments. In Markus Maier‘s case these 
were the City Hospital and the City Sanatorium as Public- and Private Healthcare 
Provider respectively and the City Health Insurance as a 3rd Party Institution. After a 
first examination, Dr. Daum decides to refer Markus Maier to the radiologist Dr. Rudolf 
(role Specialist). He does so by issuing an electronic Referral which updates the EHR 
(step 3). In consultation with his patient, Dr. Rudolf accesses Markus Maier‘s EHR 
(step 4), and updates his EHR with the produced Radiography (step 5). Afterwards, 
Markus Maier may have to submit to a couple of further checks (not shown here), e.g., 
have blood samples checked by a medical laboratory, and submit to a stress 
electrocardiogram with an internal specialist etc., before he pays his final visit to Dr. 
Daum for a discussion of the medical statement. On this occasion, Dr. Daum updates 
Markus Maier‘s EHR with the Medical Statement. 

5.2.2 Security requirements 

Based on that common scenario, we can identify a broad array of security 
requirements. Sections 5.4 and 5.5 discuss in depth how our architecture realizes 
these requirements. Details are illustrated by taking Non-repudiation as an example for 
a complex security requirement.  

Authentication (And Identity Management). The EHR infrastructure facilitates the 
identification, registration and authentication of professional users – (be they humans 
or services) – based on digital certificates and public key technology. Users access 
medical information in the EHR based on role credentials issued by ELGA Certification 
Authorities. The credentials are valid across the security domains of involved 
stakeholders in the overall scenario. Nevertheless, a single health organization is very 
likely to manage identities within its own security domain running a ―local‖ certification 
or registration authority. The local identities of users and applications which 
interoperate with the EHR system are mapped to ―global‖ identities managed by the 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 108 / 132 

 

ELGA Certification Authorities. For example, although Dr. Daum may have 
authenticated himself to his local application, he would have to authenticate himself a 
second time with his global credentials to the EHR system to access his patient‘s 
records via ELGA. 

Authorization. Role credentials define the permissions to access health records. 
Realizing the principle of Least Privilege, users are given those privileges necessary to 
perform their job as specified by system roles (e.g., Specialist, Healthcare Provider 
etc.). This entails the necessity for a fine grained protection of the resource. For 
example, the role Pharmacist only needs access to those parts of the EHR containing 
the prescription of medication. In the EHR System, there is a default Permission-Role 
assignment that may be overwritten by the record owner. Although a user holding the 
role General Practitioner may be given the most comprehensive access to his patient‘s 
medical records (if he is the primary care physician), a Patient may confine his 
privileges. Markus Maier may not want his father-in-law working as a psychiatrist in the 
City Hospital to see medical records about a psychotherapeutic treatment he had to 
undergo a couple of years ago due to a mental problem. So he could define a Negative 
Access Permission to these records for his father-in-law. Other complex authorization 
policies that come into play in standard use cases are the Delegation of Rights, Four-
Eyes-Access-Control, Break-Glass-Policy, and Dynamic Access Control. A 
comprehensive treatment on the modeling and enforcement of complex access control 
policies in healthcare with the SECTET framework, can be found in [51] and [53]. 

Non-repudiation. This requirement aims at preventing parties in a communication 
from falsely denying having taken part in that communication. In our context, this is a 
security requirement whose enforcement is typically transparent to users [39]. It comes 
in two flavors. Non-repudiation of Reception requires the addressee to return a proof of 
receipt (e.g., a signed message carrying a time-stamp) to the sender to be kept in case 
dispute resolution is needed. In our scenario, Dr. Daum and Dr. Rudolf will both get a 
proof of receipt from the EHR system after having updated Markus Maier‘s EHR with 
the produced documents and artefacts (Referral, Radiography, and Medical 
Statement). Complementarily, Non-repudiation of Origin requires the sender to produce 
a proof of submission and make it accessible to the receiver. The EHR system will log 
the updates to Markus Maier‘s EHR. The security infrastructure takes care of producing 
and consuming the messages and initiating logging activities. 

Security Compliance and Governance. Security compliance aims at the detection of 
deviation from allowed behavior, specified interaction patterns, or message structures. 
In the current state of the SECTET framework, we view security compliance in its 
narrowest sense. It defines the adherence of messages to predefined structures or 
interaction patterns based on supported security infrastructures and mechanisms (e.g., 
type of tokens, encryption, signature algorithms, request-reply, one way etc.). It is 
enforced by the security infrastructure and is offered as a service to local applications 
and users. 

5.3 Security as a service - making the case 

In this subsection, we motivate the need for Security as a Service (SeAAS) as a 
paradigm for security architectures and present related work as we pursue our line of 
argument. 
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5.3.1 Limitations of endpoint security 

According to current best practice, Web service security is mostly enforced at the 
physical node providing the service or the component proxying the service (henceforth, 
we will call the service and / or its proxy component service endpoint). In a typical Web 
services based request, the service endpoint applies basic cryptographic processing to 
inbound and outbound messages leveraging XML based standards [57, 42, 47]. It 
extracts and validates tokens of incoming messages, decrypts encrypted parts, 
validates signatures etc. Outbound messages are processed and their structure 
extended so to comply with policy requirements as imposed by the service endpoint‘s 
communication peer. 

Traditional endpoint security falls short on two fundamental issues of large-scale 
business solutions. The first issue is related to the complexity of security engineering. 
Web services standards and technologies are constantly evolving. New security 
standards are added to the stack of Web services standards to cover new 
requirements and use cases (c.f. [58] for an overview). This fast moving target is a 
challenge to security experts and software engineers alike. Traditional methods of 
software engineering can hardly cope with the plethora of standards combined with the 
complexity of security solutions needed for the realization of enterprise-wide and inter-
organizational business solutions. This is often considered to be a major obstacle to 
the rapid adoption of Web services as a reference platform to large-scale solutions. 
Another issue is related to the consistent enforcement of security policies in enterprise-
level solutions. These environments are characterized as large-scale distributed 
architectures with thousands of services deployed on hundreds of endpoints and 
possibly as many internal and external consumers. Nevertheless, any access decision 
has to be attributable to security policies that meet the obligations imposed by laws and 
regulations like the Sarbanes-Oxley Act and complying corporate governance policies. 
This necessitates policy management concepts and security mechanisms that 
guarantee consistent enforcement of security policies in distributed, heterogeneous 
environments. 

5.3.2 Declarative security 

The concept of declarative security was a first step to cope with the issues exposed in 
the previous section. It addresses three challenges. 1. Development. Security concerns 
are separated out of actual application and service development. The burden of 
security enforcement is shifted from service developers and service requesters to 
security experts who codify security requirements into policies based on rules. This 
simplifies the realization of security-critical use cases. XACML is an example standard 
for declarative access control [75]. It proposes a declarative access control policy 
language implemented in XML and an architectural blueprint for the communication 
between infrastructural components. 2. Interoperability. Security requirements on 
message structure and syntax are codified as rules in the machine readable XML 
standard WS-Security Policy [41] and advertised to potential service requesters. This 
improves interoperability of security solutions that cross organizational boundaries. 3. 
Policy Management. Security policies expressed in declarative statements can be 
checked for consistency and – once consolidated – distributed to the application which 
is meant to enforce them. This fosters the consistent application of policies across all 
solutions in an enterprise. 
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Even with declarative security, the realization of security-critical inter-organizational 
scenarios still faces two major hurdles. For one, with enforcement left to the endpoint, 
security solutions are scattered over the service landscape. This means that in order to 
keep up to date with evolving technologies and changing security requirements that 
demand new functionality, security engineers have to propagate the changes to every 
single endpoint – a very inefficient form of reusability. Secondly, the state of the art in 
Web service and SOA security technology indicates that for the moment only very 
basic security requirements like those based on the application of cryptographic 
operations are realized. This is actually the main criticism advanced by industries that 
are primarily concerned about complex security requirements in an inter-organizational 
setting like in healthcare and e-government. Here, use cases have to accommodate 
security requirements derived from complex industry regulations and laws (cf. Section 
5.2.2). 

Existing standards and specifications do not address these security requirements at all. 
The reason is, that their realization would overstrain the capacities of a single endpoint, 
either in terms of the complexity of the underlying security concept (e.g., the protocols 
of non-repudiation), or in terms of the processing power (e.g., evaluation of log-files for 
security monitoring), or in terms of functionality (e.g., basically stateless service 
endpoints are not supposed to have all information necessary to infer unusual user 
behavior for fraud detection). A very technical account on how to realize declarative 
security that covers basic security for Web services (authentication, confidentiality, 
integrity) in an SOA is given in [61]. 

5.3.3 The Enterprise Service Bus 

These practical problems (processing burden, complexity of security) and conceptual 
issues (statelessness of services) suggest the outsourcing of security tasks to an 
architectural component with the needed capabilities. A very promising approach is put 
forward by the paradigm of SOA: the Enterprise Service Bus is the technical backbone 
of a SOA landscape. This centralized communication infrastructure is responsible to 
provide interoperability between heterogeneous systems. This means connecting them 
in a loosely coupled way (independent of technical protocol details), mapping data-
types, transforming formats and guaranteeing transparent routing dealing with 
technical aspects, such as load balancing and failover. It is considered to be the ideal 
candidate to offer value-added services such as security, monitoring and debugging 
[59]. 

Up until now, security has only been integrated at a very basic level. For example, [61] 
gives a detailed technical account on how to secure SOAs, but only covers 
authentication, authorization, confidentiality and integrity. The focus is set on a 
centralized setting confined to a single security domain (as opposed to the 
decentralized setting of inter-organizational scenarios presented in the next section). 
[54, 53] give a detailed account on issues related to the realization of security-critical 
decentralized SOA. 

[71] describes how to realize the concept of a centralized communication infrastructure 
– the ESB – with open source software in all details. Security is only covered at a very 
basic level. In [51] the authors move a step further and discuss security as an 
infrastructure service in the context of an Enterprise Service Bus (ESB) and other 
patterns for the deployment of an SOA-security infrastructure. Nevertheless their 
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solution only covers the standards basic security services (e.g., authentication, key 
management etc.). 

5.3.4 The SECTET framework for model driven security 

Model Driven Security is an engineering paradigm that specializes Model Driven 
Software Engineering towards information security. It pursues two objectives: first, the 
integration of security aspects at an early stage of the engineering process and 
second, to shift the burden of security implementation from the software engineer to 
the security engineer. The term Model Driven Security was coined in [43]. The paper 
describes a software development process that supports the integration of access 
control requirements into system models. The models form the input for the generation 
of .net and J2EE security infrastructures. [60] Presents a framework for the formal 
verification of basic security requirements for security protocols based on UML models. 
Focusing on Service Oriented Architectures, in [48] the authors propose a framework 
for the platform-independent configuration of security infrastructure with authentication 
information. 

Pursuing a much broader goal, the SECTET [53] framework supports business 
partners during the development and distributed management of decentralized peer-to-
peer scenarios. Primarily developed for the realization of decentralized, security critical 
collaboration across domain boundaries – so-called inter-organizational workflows, it 
realizes a domain architecture aiming at the correct technical implementation of 
domain-level security requirements. It consists of three core components: 

1.  Security Modeling. The modeling component supports the collaborative 
specification of a scenario at the abstract level in a platform independent 
context. The component implements an intuitive domain specific language, 
which is rendered in a visual language based on UML2 for various modeling 
tools. The modeling occurs at a level of abstraction appropriate to bridge the 
gap between domain experts on one side and engineers on the other side, roles 
chiefly involved in two different phases of the engineering process – the 
requirements engineering and the design phase respectively. 

2.  Code Generation & Model Transformation. Model information is translated it 
into platform independent models (PIM) based on security patterns and 
protocols enforcing security requirements. The PIMs are refined into platform 
specific models of various granularities until they can be mapped into 
configuration code for the components of the target architecture. The layered 
approach is detailed in [66]. 

3.  Web services Based Reference Architecture. The architecture specifies a 
Web services based target runtime environment for local executable workflows 
and back-end services at the partner node. The workflow and security 
components implement a set of workflow and security technologies based on 
XML- and Web services technology. 

The SECTET reference architecture as presented in [53] enforces security mostly at 
the service endpoint. As already exposed, the approach exhibits significant limitations, 
especially when it comes to the realization of the complex security requirements. In the 
present contribution we propose an alternative blueprint realizing Security as a Service. 



 

D2.1 - An architectural blueprint and a software 
development process for security-critical lifelong systems 

| version 2.2 | page 112 / 132 

 

Nevertheless, the framework will serve as starting point for the elaboration of an 
approach for the high-level configuration of security-critical systems as planned in the 
description of work under T2.2 as part of the second year. 

5.3.5 Security as a service 

Security as a Service was introduced a couple of years ago in a series of publications. 
[69] first advocated the transition from traditional perimeter security to the concept of 
Service Oriented Security – a framework for risk analysis and management focusing on 
assets of a decentralized (service based) software architecture. Security is realized 
through decoupled, composeable services. The contribution focuses on identity and 
risk management, omitting complex security requirements. [70] discusses how the field 
information security failed to resolve key challenges of SOA security and arguments 
very much in line with our strategy that workable solutions have to move beyond 
traditional information security which only considers the CIA traid. Other publications 
on various aspects of security services in SOA that we discuss in this deliverable are 
[52, 49, 68]. 

We define Security as a Service (SeAAS) as the delivery of security functionality over 
infrastructure components in a service-oriented manner. For SOA, this means that 
security services are accessed through common Web services technologies and 
standards. Our definition thus goes beyond the common understanding which confines 
SeAAS to the practice of delivering traditional security application functionality (e.g., 
anti-virus software, anti-spyware, etc.) on-demand over the Internet (e.g., [63, 67, 72]). 
We identified the following security services (in order of increasing complexity): 

Cryptographic and message processing services ensure basic confidentiality and 
integrity e.g., en-/ decryption of XML documents, signature validation etc. 

1. Security inter-operability services facilitate interoperability of security 
mechanisms with external partners e.g., mapping of a user credentials to a 
kerberos token Services can be provisioned by an internal or an external 
security token service. 

2. Authentication is a basic service necessary to all other requirements. Local or 
external service requesters are identified and authenticated relying on local 
identity stores and / or external identity providers. 

3. Authorization services provide access control to resources. Authorization 
policies can be very complex. We cover static and dynamic role-based access 
control, four-eyes principle, negative access permissions, delegation, and 
break-glass policies. 

4. Security compliance services check inbound messages in inter-domain 
communication for compliance with stated security requirements, e.g., valid and 
complete messages, presence of tokens, format, etc. 

5. Protocol based security services are statefull services executed between two 
or more partners. A very prominent example is non-repudiation of sending or 
receiving in inter-domain communication. 

6. Security monitoring & auditing services facilitate business- or application 
level security requirements, e.g., fraud and intrusion detection. 
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To cope with all classes, the proposed architecture goes beyond the mere bundling of 
security functionality within one security domain. For example, the execution of 
protocol based security (e.g., non-repudiation) realizes complex security requirements 
for processes involving two or more domains. 

It is noteworthy, that in some cases, especially for the sake of security interoperability 
and efficient manageability, endpoints already rely on centralized services. We 
identified the following cases. 1. Authentication. To authenticate a service requester, 
an endpoint commonly relies on a centralized identity store for identity management in 
its own security domain. In [49], the author identifies dedicated security services for 
advanced authentication and authorization requirements. 2. Interoperability. In some 
cases, an endpoint may issue a request for a token mapping with a trusted 3rd party 
security token service. Here, interoperability seems to make the case for a ―service-
ization‖ of security. It is a way to cope with the heterogeneity of distributed, inter-
organizational processes with different infrastructure owners organized into separated 
security domains. 3. Authorization. Within a security domain, authorization is enforced 
at the endpoint, but relies on a central policy decision point for decisions on access 
requests. The XACML dataflow model [75] defines a reference architecture for the 
enforcement of access control in a service based environment within a security 
domain. 

5.4 Architectural blueprint for security as a service 

5.4.1 Architecture 

Figure 65 shows the conceptual architecture for the proposed SeAAS approach (EI 
Pattern names in italics). The upper part shows the ELGA Healthcare Services 
Architecture. Service Endpoints provide business functionality. ELGA offers a number 
of healthcare services, such as access/update a patient‘s EHR, add Radiography to 
EHR etc. The service endpoints are decoupled from the security and messaging 
components. Inbound and outbound messages are delivered over the ESB. A business 
message contains service requests and responses whereas a security message 
contains security protocol data. 

An ESB handles internal communication among the various components of a domain 
and external communication with business and security components of other domains. 
It intercepts inbound requests and forwards them to the SeAAS Engine for security 
evaluation. The SeAAS Engine is the central part of the SeAAS Component. To 
evaluate security, it retrieves the applicable security policy from Policy Repository. The 
security policy defines the security requirements for a particular request. The SeAAS 
Engine parses the policy, retrieves the security requirements and decides which 
security services will be needed to fulfill those requirements. It composes a security 
process to call those services in an appropriate order. For simplicity, our prototype 
currently uses a static process with a pre-defined order of execution of security 
services. For example, Authentication, Authorization and Non-repudiation Services are 
executed in following order: Non-repudiation → Authentication → Authorization. 

The SeAAS Component offers security functionality as a set of Security Services 
implemented as Security Components. Primitive Security Services consist of 
Encryption, Signature and Time-stamping services. All other services (e.g., 
Authentication, Authorization, etc.) are considered Advanced Services. They leverage 
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primitive security services. For example, the Non- repudiation service uses them to 
encrypt, sign and timestamp evidence. Primitive security services need 
keys/certificates, which are stored in the Key Repository. One key feature of the 
SeAAS architecture is the realization of security through decoupled components so to 
attain technology and language independence. All components can be implemented in 
any language and/or technology without any inter-dependence. Communication is fully 
message-oriented and is carried out over an ESB. Our prototype is based on Apache 
ServiceMix [40] – an open source ESB. 

5.4.2 The SeAAS component 

Deployed within a security domain, the SeAAS Component consists of a number of 
security services. Depending upon the requirements of the domain, new security 
services can be deployed during runtime. The Policy Repository (PR) and the PKI 
Repository offer supporting services. The PR holds the policies which specify security 
requirements, whereas PKI Repository is a local store for keys and certificates. 

1. Authentication. The authentication Service provides intra- and inter-domain 
authentication. In case of an internal request, the authentication service 
validates the user‘s local identity and sends the signed authentication decision 
to the endpoint. For a request from an outside domain, the authentication 
service first resolves the identity of the external user: it contacts the external 
identity provider (e.g., a Security Token Service (STS)) using WS Interface. 
After the STS validates the user, the authentication service creates a security 
context. This provides the functionality for Identity Federation. 

2. Authorization. The Authorization Service verifies permissions assigned to 
users. They are defined in the policies stored in Policy Repository. Based on 
the policy, the service takes a decision and sends the result to the service 
endpoint for enforcement. 

3. Non-repudiation. This service executes an out-of-band non-repudiation 
protocol between requester and the endpoint and stores evidence for dispute 
resolution (Section 0 is dedicated to a detailed discussion of non-repudiation). 
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4. Security Compliance. This service verifies the compliance of an inbound 
message with the security policy of the target service endpoint. The security 
policy of service endpoint defines the supported security mechanisms such as 
types of tokens, encryption and signature algorithms, message parts to be 
protected etc. The authentication service depends upon the evaluation 
performed by the compliance service. If a request is compliant, then the 
authentication service proceeds with token validation. 

5. Security Monitoring. This service monitors significant security events 
generated by the security services of the SeAAS Component. For instance, the 
compliance service reports a security event, if a message does not meet an 
endpoint‘s security policy. The Non-repudiation service notifies a protocol 
failure, when the external endpoint does not follow the Non-repudiation 
protocol. The monitoring service of a domain‘s SeAAS component forwards 
these events to a central service accessible to all domains. The purpose of 
monitoring security centrally is to receive the security events from different 
domains and notify responsible and affected endpoints. 

6. Logging. This service logs notifications sent by endpoints related to various 
business requests, responses, errors and exceptions. Externalizing security 
functionality as a set of services significantly reduces endpoint complexity. 
Moreover, the composition of security services as SeAAS components 
facilitates the deployment and the configuration of existing and new security 
components at deployment time and even during runtime. 
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Figure 65: Conceptual SeAAS Architecture 
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5.4.3 Enterprise Integration Patterns 

Patterns provide sound solutions to commonly known problems. In today‘s business 
world application integration is more complex, as the systems are loosely-coupled and 
use heterogeneous technologies. Message-oriented integration (MOI) aims at 
achieving integration among heterogeneous applications based on Enterprise 
Integration (EI) patterns. Figure 65 shows the EI patterns used by components instead 
of language-specific modules to realize message-oriented communication. EI patterns 
will help the security developer implement proposed SeAAS architecture, irrespective 
of what tools, technologies and languages she is using. A full catalogue of EI patterns 
is presented in [55]. As discussed below, we used some of those patterns, which are 
appropriate for designing the SeAAS components (EI patterns are circle-numbered in 
Figure 65 as well as in the text below). 

The ESB uses Channels (1) to send/receive business and security protocol messages. 
As the integration of components in SeAAS is message-oriented, there should be 
certain mechanisms to relate the incoming and outgoing messages at any component. 
The CorrelationID (2) is used for matching requests and responses by the business 
and security components. Every message that enters and leaves the boundaries of a 
domain or a component in the domain is assigned a unique CorrelationID. The global 
correlationID for a domain is assigned by the ESB, whereas the local correlationIDs are 
assigned by components such as SeAAS Engine and Security Services. The Message 
Router (3) pattern is used for routing, so that the ESB sends the messages to 
appropriate destinations. A Message Dispatcher (4) consumes messages from 
Message Router and distributes them to their destinations. ESB uses this pattern to 
dispatch (business/security) messages to SeAAS Engine, Security Services, Service 
Endpoints and external domains. The service endpoints use Message Endpoints (5) 
pattern to indicate a client of messaging system i.e. ESB to send/receive messages. 
The Process Manager (6) pattern is used to model the SeAAS Engine for security 
process composition. The Control Bus (7) pattern indicates that the ESB sends logging 
and security events to the Logging and Security Monitoring components, which monitor 
failures, exceptions and security violations. The order of the messages is important, 
when the security services send and receive security protocol messages. The 
Message Sequence (8) pattern is used by security services to maintain the required 
order of security protocol messages. The ESB uses a separate Channel to store a 
copy of the messages into Message Store (9) to analyze the message before it delivers 
it to the target destination. The non-repudiation service uses this pattern to store the 
signed messages in a local persistent database. Similarly, Logging and Security 
Monitoring services store event notifications associated to certain message for security 
analysis. 

5.4.4 Realizing complex security requirements with 
SeAAS 

Complex security requirements are realized through advanced security services. Here, 
we illustrate the working of one of those services taking Non-repudiation as an 
example. There is much research related to the design of non-repudiation protocols 
[50, 65, 62]. Most is focused to the achievement desired properties like Fairness and 
Timeliness. Another issue extensively covered in research is concerned with the 
design of protocols with or without a Trusted Third Party (TTP) [64]. The protocols 
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achieve non-repudiation among two or more protocol participants. A non-repudiation 
protocol is a cryptographic protocol that provides irrefutable evidence to its participants. 
A protocol is called Fair, if it provides the originator and the recipient of the message, 
with some evidence after completion of the protocol, without giving a participant an 
advantage over the other at any stage. Our design of NR protocol is based on ZG‘s 
protocol to achieve non-repudiation properties of fairness and timeliness [50]. 

The basic assumption is that a service endpoint handles both the business messages 
and protocol messages (i.e. keys, evidences etc). As already mentioned, our prime 
objective is to free the service endpoints from performing security related tasks. Here, 
we will apply the same principle to design and implement a fair non-repudiation 
protocol. 

Although in [39] a first step has been achieved by integrating non-repudiation 
communication into Web service communication, there exists only a logical separation 
between non-repudiation messages and business messages. In this section we explain 
how these messages can be separated from business messages, by executing an out-
of-band non-repudiation protocol. The proposed protocol does not only separate the 
business and security messages, but also maintains the desired properties of non-
repudiation i.e. fairness and timeliness. In the next section, we will illustrate, how we 
design the non-repudiation protocol in the SeAAS architecture. 

5.4.5 Enforcing a fair non-repudiation protocol in the 
SeAAS architecture 

There are two different approaches to execute a NR protocol. The protocol is either 
enforced by the service endpoint [78] – in which case the service endpoint has to 
handle the security protocol messages in addition to business messages – or the 
service endpoint delegates the responsibility of executing the protocol to a dedicated 
non-repudiation service. The SeAAS architecture leverages the second approach.  

In this approach, the protocol executes out-of-band between two dedicated non-
repudiation services. The result is then communicated to the service endpoints, as 
shown in Figure 68. The NR services in domains 1 and 2 execute the protocol on 
behalf of the GP‘s Client Application (used by GP) and the ELGA service endpoint. 
Both delegate the security task to NR services through their respective SeAAS 
Engines. The detailed message communication to achieve fair non-repudiation in 
SeAAS architecture is shown as a UML Sequence Diagram in Figure 66. It shows the 
inter-domain communication between two non-repudiation services of the domains 1 
and 2 and intra-domain communication among various components of each domain. 
The protocol is based on the ZG‘s protocol, which ensures Fairness and Timeliness.  

The request to access the medical service is sent by a GP, through a Client 
Application. The ESB in domain1 intercepts the request and forwards it to the service 
endpoint of domain 2. The ESB in domain2 receives the request and routes it to the 
SeAAS Engine for security evaluation. The SeAAS Engine retrieves the policy that 
applies to the request from the Policy Repository and assigns the task to NR Service. 
Further security communication will take place among the non-repudiation services of 
two domains based on the detailed non-repudiation policy (an example is given in 
Section 6). Non-repudiation is achieved by exchanging the evidences of messages 
sent and received: NRService@Domain2 requests NRService@Domain1 for the 
evidence of the service request sent by GP (Mess. 5). NRService@Domain1 retrieves 
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the request details from ESB through SeAAS Engine (Mess. 6-9), signs the message 
and sends the signed message NRO1 to NRService@Domain2 as evidence. This 
message (Mess. 10) consists of a URI‘s of NRServices@Domain1 & 2 (represented by 
letters A & B respectively), timestamp (i.e. T), Label for any other information (i.e. L) 
and NRO1(i.e. evidence). Note, unlike ZG‘s fair Non-repudiation Protocol, we don‘t 
send the service request in this message. Because, a service request is a business 
message, which has already been sent to service endpoint before beginning the NR 
protocol (Mess. 2). However, the encrypted message C requires a key i.e. K, and so 
far, the NRService@Domain1 has not sent that key to NRService@Domain2 for 
decrypting the request message. 

To continue the protocol, NRService@Domain2 stores the evidence and sends a 
signed acknowledgment to NRService@Domain1. This is shown in Message 11 as 
Non- repudiation of Receipt (NRR1). At this moment, both NR services have the first 
part of evidence. The second part of the evidence will be signed by the TTP. Therefore, 
in Message 12, NRService@Domain1 sends the key K to TTP. TTP publishes the key 
and the second piece of evidence i.e. NROR2. Both the NR services retrieve this piece 
of evidence after time T. This completes the fair non-repudiation protocol between the 
NR services. After successful completion, the NRService@Domain2 sends the 
decrypted message and protocol completion notification to the service endpoint 
through SeAAS Engine (Messages 16-18). The service endpoint then sends the 
response to the client application. Thus, the protocol has executed out-of-band and the 
service endpoints were never involved. With this, we have not only separated the 
security from the business components in the architecture, but also the security 
communication from business communication. 
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Figure 66: Inter- and Intra- domain communication for Fair NR Protocol in SeAAS Architecture 
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5.5 Reference architecture 

The Reference Architecture (RA) is shown in Figure 67 as an UML deployment 
diagram. It shows components deployed; their relationships and Web services 
standards used. A service requester uses a Client Application to access the healthcare 
services offered by ELGA. The healthcare services are deployed at Healthcare 
Systems Application Server. The ESB Server provides a message-oriented 
middleware, which uses a Dispatcher component for inter- and intra-domain 
communication. The SeAAS Server hosts a SeAAS Engine component, which 
evaluates security based on the policy retrieved from the Policy Repository. The 
SeAAS Engine delegates the security task to security components4, which are 
deployed at the Security Server. The Security Server deploys a number of security 
components i.e. Authentication, Non -Repudiation, Authorization etc. The security 
components are configured at deployment time based on Service Component 
Architecture (discussed below) and the configurations are stored in a SCA deployment 

 

Figure 67: Reference Architecture 
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Configurations file. The security components use different Web services security 
standards for performing security tasks.  

Policy assertions for functional and non-functional requirements are defined with WS-
Policy [77]. For example, the Non-repudiation component specifies the specific policy 
describes supported protocols, types and contents of the evidence and cryptographic 
methods required for message protection.  

Figure 67 shows an example non-repudiation policy. It describes policy requirements 
as WS-Policy Assertions. The Evidence Type assertion defines that DigitalSignature on 
the message is required as an evidence. Elements of Evidence assertion defines that 
what should be the contents of a non-repudiation evidence. This implies that an 
evidence should contain the Message With Token, MessageTimeStamp, URI’s of 
EvidenceOriginator/EvidenceRecipient and EvidenceExpiry. The ProtocolType 
assertion defines that a Fair Non-repudiation Protocol is required which involves an 
Online TTP, defined in the TTPRole assertion. 

Security requirements of a service endpoint are defined as security assertions 
embedded into WS-Policy assertions WS-SecurityPolicy [76]. We use this standard 
to write the security policy of an endpoint, which defines supported type of bindings, 
tokens, encryption/signature algorithms. Two of the security components (security 
compliance and authentication) deployed at the Security Server use the WS-
SecurityPolicy standard. The security compliance service checks the service request‘s 
compliance with the security policy. After the check, the authentication service 
proceeds for token validation for which it sends the requester‘s credentials to the 
Security Token Service (STS). 

 

Figure 68: Example Non-Repudiation Policy (WS-Policy) 

The Security Assertion Markup Language (SAML) is used to exchange security 
information between security domains [73]. In the RA, two components of Security 
Server i.e. authentication and Authorization components, use SAML standard. The 
authentication component creates authentication request/response based on SAML 

 
<wsp:Policy wsu:id="NR_policy">

  <wsp:ExactlyOne>

    <wsp:All>

<!-- Evidence Type Assertion: -->

 <nrp:EvidenceType>

   <wsp:Policy>

     <nrp:DigitalSignature/> 

    </wsp:Policy>

</nrp:EvidenceType>

<!---Elements of Evidence Assertion-->

<nrp:EvidenceElements>

  <wsp:Policy>

     <nrp:MessageWithToken/>

     <nrp:MessageTimeStamp/>

    <nrp:EvidenceOrginator/>

    <nrp:EvidenceRecipient/>

    </nrp:EvidenceExpiry>

  </wsp:Policy>

</nrp:EvidenceElements>

. . . . 

 . . . .

<!-- NR Protocol Type Assertion-->

<nrp:NRProtocolType>

  <wsp:Policy>

   <nrp:FairNRProtocol/>

  </wsp:Policy>

</nrp:NRProtocolType>

<!-- TTP Role for NR Assertion-->

<nrp:TTPRole>

  <wsp:Policy>

      <nrp:onlineTTP> 

      <nrp:TTP_uri uri="ttp01.org"/>

    </wsp:Policy>

  </nrp:TTPRole>

    </wsp:All>

  </wsp:ExactlyOne>

</wsp:Policy>
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protocols. Using these protocols, the Security Token Service (STS) validates the 
tokens and sends a signed authentication SAML assertion to the authentication 
service, which forwards them to the service endpoint through SeAAS Engine. The 
Authorization component uses SAML in a similar manner. It makes authorization 
decision according to service requester‘s authorization policy and sends the decision 
as SAML authorization assertions to the service endpoint for enforcement. 

The Extensible Access Control Markup Language (XACML) is a standard for 
authorization policies [75]. We use it to define permissions of a service requester. The 
Policy Decision Point (PDP) of the authorization service, makes decisions based on the 
permissions assigned to the roles (e.g. practitioner), defined as XACML rules. 

WS-Trust provides interfaces for token issuance and validation [74]. A service 
consumer can get security tokens from an STS. The authentication component uses 
the WS-trust interface to get token validation decision by STS. 

We use WS-Notification to send event notifications to Logging and Security 
Monitoring components [37]. Logging notifications carry information pertaining to the 
service requests and responses, whereas security alerts are notifications for security 
monitoring. 

The Service Component Architecture (SCA) model is used for composition of 
security services performed by SeAAS Engine [38]. Security components are 
integrated to a Security Composite, which realizes a set of security requirements. SCA 
composite is written in the XML-based Service Composition Definition Language 
(SCDL). 

The component-based architecture facilitates language- and technology- 
independence, reusability, and improves extensibility and maintainability. We use SCA 
properties for Deployment-time Configuration of security components based on 
security policy of a domain. These configurations are stored in Deployment 
Specifications as an SCA Deployment Configurations file, as shown in Figure 67. 

The Lightweight Directory Access Protocol (LDAP) is used for directory access to 
retrieve certificates, policies and related information [56]. The policy repository is used 
for storage and retrieval of security policies, Authorization policies, and component 
policies like e.g. Non-repudiation used by SeAAS Engine and the Security services. 
The PKI Repository holds certificates and keys of service endpoints. 

5.6 Discussion 

In Section 5 we presented an architecture based on the paradigm Security as a 
Service. We motivated our approach with a discussion of the many limitations of 
endpoint security, the current practice in SOA security to enforce security with the 
endpoints. By default, the engineering intuition seems to impose a turning away from 
the concept of centralization entailing the threat of a single-point-of-failure or 
unbearable communication overhead. 

But we showed how concepts of SOA, like declarative security, the Enterprise Service 
Bus and Model Driven Security, an advanced method of software engineering can 
open a new venue to the efficient realization of security critical, inter-organizational 
processes. The reference architecture is able to cope with the complex security 
requirements imposed by use cases from industries that have to deal with security-
critical processes spanning multiple security domains. 
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The objection that SeAAS creates a single point of failure or a bottleneck can be 
countered by balancing the workload over replicated service components – an inherent 
advantage of SOA-style architectures. Taking communication overhead into account it 
does not always make sense to outsource all security functionality to a SeAAS 
provider. Tasks like basic XML processing can be left with the endpoint. It is up to the 
architect to decide upon the degree of service centralization. A hybrid approach 
distributes the tasks between endpoints and the SeAAS according to specific need. We 
currently envisage the extension of our architecture to support the flexible, run-time 
adjustment of the degree of centralization. Security services are registered with the 
SeAAS engine and advertised to potential consumers. Authorized requesters would 
access them as needed. 

5.7 Case Study 

The general idea of an architectural blueprint based on security services will be 
validated using a scenario derived from the description of the HOMES case study as 
described in Deliverable D1.1. - Description of the Scenarios and their Requirements. 

The main idea of a reference architecture based on the paradigm Security as a Service 
is the support of a broad variety of architectural alternatives. Each alternative enforces 
one or more security requirements based on various participants, protocols and 
technologies – with a constellation that may possibly even change over time. This 
demands a highly flexible architecture.  

The scenario should validate the claim that a security infrastructure  

1. designed according to the blueprint ―Security as a Service‖,  

2. complemented by a methodology supporting model driven configuration,  

3. and embedded in a change driven process for security-engineering  

facilitates efficient and effective security engineering as well as management of 
evolving systems. 

5.7.1 Scenario Description 

This is a sketch of a scenario that will be elaborated in depth with the industry partner 
providing the HOMES case study. 

We consider a third party service provider offering information services (e.g., an airline 
keeping passengers informed about flight details). An interested party (e.g., a 
passenger) can subscribe to various notification services. Communication basically 
runs over a subscriber‘s domotic network - called Home Network - which provides 
multiple channels for message forwarding (e.g., pager, mobile, blackberry, laptop etc). 
In such a scenario, connectivity to notification services is established through the 
deployment of one or more software bundles on the Home Network‘s Home Gateway. 
The latter identifies the subscriber, receives and forwards messages. 

In case of security-critical transactions or communication additional security services 
may be needed to enforce security requirements or policies. For example, to make 
sure that neither the airline nor the passenger can deny having sent or received 
messages, the Home Network needs to provide a non-repudiation service). 
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5.7.2 Challenges 

5.7.2.1 Architecture 

Concerning the architecture, the key challenge is linked to the many alternatives on 
how a security service like non-repudiation may be realized (e.g., protocol type, 
software platform, algorithms etc.). In this respect, the proposed architecture should 
provide the highest degree of flexibility, thereby catering to various evolution paths.  

The proposed solution consists in a robust reference architecture for an open, evolving 
service-oriented system that can cope with change in its many facets. The scenario will 
illustrate  

1. How the architecture copes with changing security policies. To meet this 
challenge we will introduce concepts that support the high-level (platform-
independent) configuration of security-critical systems. 

2. How the architecture enforces a broad set of evolving security requirements. 
The key to this challenge will be the architecture‘s modular (or service based) 
design which will support the continuous evolution of security services. 

5.7.2.2 Process 

A second major challenge is related to the management of security-services in an 
evolving system and/or context.  

In this context, the architecture will serve as a target system infrastructure for the 
change-driven process for security engineering which supports the collaboration and 
cooperation among different stakeholders with their specific views on the target system 
infrastructure as defined in Section 3.1. 

The scenario will illustrate how the collaboration and cooperation among different 
Stakeholders is supported by a tool-based framework, taking into account the different 
perspectives and responsibilities of stakeholders. 

5.7.3 Outlook 

The following activities will be pursued in Year 2.  

1. The architectural blueprint for the home network will be mapped to a suitable 
reference architecture that may accommodate a variety of alternative or 
complementary technical platform (e.g., OSGI, Linux services, etc.). 

2. Security services will be identified and implemented at one or more appropriate 
layers (e.g., OSGI, JVM, User Space, Kernel, etc.). 

3. Concepts to support the high-level configuration and administration of security 
services in the reference architecture will be elaborated.  

4. The engineering, deployment and management of the various security services 
will be analyzed in context of the change-driven security engineering process as 
defined in Section 3.1. 
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6 Conclusion 

In the preceding sections we have presented the results of WP2 of the first year 
focusing on the aspects of security engineering processes and security architectures 
for evolving systems.  

The SecureChange security engineering process is the first security engineering 
process which is fully driven by change events and change propagation. This novel 
process provides generic mechanisms for change propagation across stakeholders´ 
views. 

The process is complemented by a framework and a catalogue of change patterns. 
Change patterns provide guidance for architectural change within the process, 
assisting the designer to develop an architecture that is resistant against certain 
foreseen evolutions of the requirements and assumptions. 

Finally, at the architectural level we addressed the question of how a robust security 
architecture can be designed in order to support a broad range of changes. Our 
Security as a Service Approach (SEASS) applies well established mechanisms of 
functional architectures to the security domain, like the separation of abstraction layers, 
model-based configuration and orchestration of services. 

The results of our research efforts have been published in three international 
publications (one further publication is submitted). 

For the second year our activities will go in the following directions. 

Concerning the SecureChange process we will develop a first prototype for tool 
support based on the experiences of the preliminary study (Section 3.3). The 
SecureChange Engine will at least support the concepts of change events, change 
propagation and the management of model states and model element dependencies. 
In addition we will develop an integrated view of the process as an umbrella all work 
packages of the project. This will be complemented by a case study in the ATM 
context. 

Concerning change patterns and the SEASS approach, the activities in the second 
year will have a focus on validation based on the HOMES case study. 
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7 Glossary 

An architectural support pattern is a software pattern referenced by a change 
pattern that needs to be instantiated in a software architecture to prepare this 
architecture for future evolution. 

An artefact distinguishes on an abstract level the different models and concepts which 
are used by the different Work Packages. 

Change is described by a Change Trigger. 

A change event is a general trigger of change which is derived from a set of change 
scenarios. 

A change line model represents relationships between several Changes included in 
one Change Line and Transitions which describes a set of transformation rules 
between several changes 

The change guidance is described by a change pattern, and outlines the steps that 
an architect of a system should follow to update the software system when a change 
scenario manifests itself. 

A change pattern is a combination of a possible change scenario, architectural 
support patterns and change guidance that can be used to prepare an architecture 
for future evolution. 

A change request is a general description of some change in the system. 

The change request model traces changes inside the Static Model. 

A change scenario is the description of a change in requirements of assumptions, that 
can be accommodated by using a change pattern. 

A change transition is a description of all the differences from one change to another. 

A change trigger expresses the rationale of Change and activates a Change Request. 

The Common System View represents the conceptual underpinning for the security 
management process. Its elements are the conceptual units subject to change. 

Declarative security, technique of configuring security components through machine 
readable policies. 

Dependencies describe the associations between various model elements allowing 
change to percolate through the Model Layers. 

A domain is any subset of a conception (being a set of elements) of the universe that 
is conceived of as being some 'part' or 'aspect' of the universe. 

DSML stands for Domain Specific Modeling Language. 

Electronic Health Record, European initiative aiming at realising the infrastructure for 
nation-wide centralized repositories of electronic patient records. 

ELGA (Elektronische Gesundheitsakte), German acronym for „electronic health 
record―, stands for the consortium driving the realization of an HER in Austria. 
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Endpoint security, method of enforcing security in Web services based environments 
directly at the node hosting the service as opposed to a centralized service as in 
Security as a Service. 

Enterprise Service Bus, technical backbone of a SOA landscape. This centralized 
communication infrastructure is responsible to provide interoperability between 
heterogeneous systems. 

Meta-Model Plugins extend the Functional System Meta Model with specific concepts 
that cover different aspects of the System (e.g. Security Plugin, Verficiation Plugin). 

Model Element States reflect the milestones in the lifecycle of the modelled artefacts 
and are used to reflect relevant changes. 

A Model Layer is comprised of a set of model elements types which capturing different 
levels of abstraction or degrees of granularity. 

The Functional System Meta Model defines functional system concepts like business 
processes, information objects, roles, components and their relationships. 

Model-driven security is an engineering paradigm that specializes Model Driven 
Software Engineering towards information security.  

Reference architecture, specific technical platform or infrastructure realised according 
to an architectural paradigm (e.g., Security as a Service). 

Robustness, property of a component, system or architecture referring to the ability to 
easily accommodate changes. A robust architecture thus supports long-lived, 
evolving systems.  

SECTET, a framework for model driven security engineering in SOA. 

Security as a Service (SeAAS) stands for an architectural paradigm. It defines an 
architectural blueprint that transposes the model of Software as a Service to the 
security domain. 

The security micro process is executed by each of the stakeholders within her 
specific domains and consists of a set of activities result in a set of newly created or 
updated security artefacts. 

Service-oriented architecture (SOA), architectural paradigm for distributed systems 
relying on loosely coupled software components called services. SOA is based on a 
set of flexible design principles.  

The Static Model is a set of interrelated models and an instantiation of a Functional 
System Model which is extended with different Meta-Model Plugins. 

A View consists of a selected set of model elements (together with selected 
interdependencies) and corresponds to the usual notion of a representation of a 
system from the perspective of a related set of concerns. 
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