

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong
systems

Ruth Breu, Mukhtiar Memon, Frank Innerhofer-Oberperfler, Manuela
Weitlaner, Michael Breu, Michael Hafner (UIB)
Riccardo Scandariato, Koen Yskout, Koen Buyens (KUL)
Benjamin Fontan (THA)
Federica Paci, Elisa Chiarani (UNITN)

Document information

Document Number D2.1

Document Title
An architectural blueprint and a software
development process for security-critical lifelong
systems

Version 2.2

Status Final

Work Package WP 2

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 19 January 2010

Responsible Unit KUL

Contributors KUL, UIB, THA, UNITN

Keyword List Reference Architecture, Process Model

Dissemination level PU

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 2 / 132

Document change record

Version Date Status Author (Unit) Description

0.1 17 Sep 2009 Draft K. Yskout (KUL) Outline

0.2 15 Oct 2009 Draft
R. Breu, M. Hafner
(UIB)

D. 2.1

0.3 5 Nov 2009 Draft M. Hafner (UIB) Enhanced Structure

0.4 5 Nov 2009 Draft M. Hafner (UIB) Draft Section 3.1

0.5 6 Nov 2009 Draft K. Yskout (KUL) Draft section 1, 2, 4

0.6 13 Nov 2009 Draft M. Hafner (UIB) Draft Section 2.4

0.7 17 Nov 2009 Draft B. Fontan (THA) Draft Section 3.3

0.8 18 Nov 2009 Draft R. Breu (UIB) Enhanced Meta Model

0.9 20 Nov 2009 Draft R. Breu (UIB) Revision of 3.1

0.10 20 Nov 2009 Draft M. Hafner (UIB) Minor revisions on section 5

0.11 20 Nov 2009 Draft K. Yskout (KUL) Enhanced section 4

0.12 9 Dec 2009 Draft K. Yskout (KUL) Restructuring, introduction

0.13-
0.14

10 Dec 2009 Draft M. Hafner (UIB)
Added HOMES Case Study to Sec.
5

0.15 10 Dec 2009 Draft B. Fontan (THA)
Update Conceptual Models of
DSML; Define Global model of
DSML

0.16 10 Dec 2009 Draft M. Hafner (UIB)
Finished HOMES Case Study in
Sec. 5; related Sec. 5 to Sec 3 and
4

0.17-
0.18

13 Dec 2009 Draft R. Breu (UIB)
Executive Summary and
Conclusion

0.19 14 Dec 2009 Draft
F. Innerhofer-
Oberperfler (UIB)

Enhanced introduction and section
3 with integrated process

0.20 14 Dec 2009 Draft K. Yskout (KUL) Background, section 4, bibliography

0.21 15 Dec 2009 Draft
F. Innerhofer-
Oberperfler (UIB)

Section 3: case study, refinement of
process, integration of UIB with
THA process

0.22 16 Dec 2009 Draft M. Hafner (UIB) Completed Section 2.3.1

0.23-
0.24

16 Dec 2009 Draft K. Yskout (KUL)
Extended section 1.2, 1.3, 2.2.2
and 4.6

0.25 17 Dec 2009 Draft R. Breu (UIB) Minor changes (typos etc.)

0.26 18 Dec 2009
Internal
review

K. Yskout (KUL) Version for internal review

1.0 4 Jan 2010 Draft F. Paci (UNITN) Internal review

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 3 / 132

1.1 07 Jan 2010 Draft B. Fontan (THA)

Add connections between WP2
metamodel and THA metamodel in
section; Fix some spelling
mistakes; Simplify
THA_Change_Model

1.2 08 Jan 2010 Draft R. Breu (UIB)
Changes concerning the internal
review comments

1.3 08 Jan 2010 Draft
F. Innerhofer-
Oberperfler (UIB)

Replaced Figure 5

1.4 08 Jan 2010 Draft E. Chiarani (UNITN)
First quality check completed;
minor remarks.

1.5 11 Jan 2010 Draft K. Yskout (KUL)
Implemented remarks from first
quality check.

1.6 12 Jan 2010 Draft K. Yskout (KUL)
Implementing internal review
comments: general, section 4,
glossary, bibliography

1.7 13 Jan 2010 Draft K. Yskout (KUL)
Additional implementation of
internal review comments for
section 2 and 4.

1.8 14 Jan 2010 Draft M. Hafner (UIB) Added glossary for section 5

1.9 14 Jan 2010 Draft
F. Innerhofer-
Oberperfler (UIB)

Added glossary for section 3

1.10 14 Jan 2010 Draft B. Fontan (THA) Updated glossary

2.0 14 Jan 2010
Quality
review

K. Yskout (KUL)
Prepared deliverable for quality
check

2.1 19 Jan 2010 Draft E. Chiarani (UNITN) Final quality check; minor remarks

2.2 19 Jan 2010 Final K. Yskout (KUL)
Implemented final quality check
remarks

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 4 / 132

Executive summary

WP2 is both concerned with security engineering processes and security architectures

for evolving systems. In this deliverable we present three novel paradigms which

contribute to achieve an integrated framework for management and design of long

living security-critical systems.

The SecureChange security engineering process (Section 3) is revolutionary in the

respect that it is fully change driven. The view of existing security engineering

processes as sequences of actions (e.g. risk analysis and requirements elicitation)

performed on the whole system has been replaced by the view of change events

causing change propagation and state changes in the security engineering artefacts.

This change of paradigm provides for the first time a systematic way of handling

changes based on dependencies between artefacts. Beyond that the SecureChange

process incorporates concepts for the collaboration of different stakeholders in security

engineering, ranging from the IT manager and requirements engineer to the security

architect and system administrator. The goal of this collaborative approach is to

support continuous security management and to achieve an adequate level of security

at any time in the software lifecycle.

The SecureChange process is generic in the respect that it is independent of artefacts

(e.g. Risk Model, Requirements Model, etc.). As a reference model we present a

general meta model of artefacts and their dependencies. At the same time we

elaborated a first version of a meta model integrating the artefact structure and change

perspectives of the whole project. While development of rigorous tool support of the

process will be launched in the second year, one of the partners (THA) already started

to materialise the SecureChange process in its existing tool environment.

While the SecureChange process is independent of artefacts and kinds of changes, the

concept of Change Patterns (Section 4) provides guidance for the architectural

changes within the process. Thus, change patterns build the bridge between the

security engineering process and security at architectural and design level.

A change pattern guides the architect in designing an architecture that is resistant

against certain foreseen evolutions of the requirements and assumptions. A change

pattern explicitly records the change of requirements it supports. Applying a change

pattern then consists of two steps. First, preparing the architecture up-front for the

evolution (even though it has not yet occurred), based on a likelihood and importance

analysis of the evolution. Second, once the evolution occurs, the architect is triggered

to perform the necessary steps to update the application such that it conforms to the

new situation. These two steps are reflected in the solutions that belong to the change

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 5 / 132

pattern: architectural patterns for the up-front preparation, and change guidance for

performing the actual update of the application. A catalogue of change patterns for

changing trust relationships is described, and its use is illustrated.

Change patterns provide guidance for architectural changes. Additionally, it is

important to have a generic blueprint of an architecture that is designed to

accommodate a broad set of changes, and that can serve as a starting point for

applying change patterns. This research question has been addressed by the Security

as a Service Architecture (SEASS) approach (Section 5). Our goal has been to

develop an architectural blueprint for a pluggable security architecture which supports

evolution by applying similar mechanisms that have been shown fruitful in the

functional parts of architectures (e.g. separation of abstraction layers, model-based

configuration, and orchestration of services).

The partners of WP2 have been involved in the conceptual design of the

SecureChange case studies ATM and HOMES. Section 2.3.2, 4.6.2 and 5.7

summarise the results.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 6 / 132

Index

DOCUMENT INFORMATION ... 1

DOCUMENT CHANGE RECORD .. 2

EXECUTIVE SUMMARY .. 4

INDEX .. 6

1 INTRODUCTION... 9

1.1 Process .. 9

1.2 Architecture .. 10

1.3 Outline of the deliverable .. 12

2 RELATED WORK ... 14

2.1 Security engineering processes ... 14
2.1.1 CLASP ... 14
2.1.2 SDL .. 14
2.1.3 Touchpoints .. 15
2.1.4 Process support for change ... 16

2.2 Software architecture and security .. 17
2.2.1 Software architecture ... 17
2.2.2 Architecture and security ... 18

2.3 Case studies ... 18
2.3.1 HOMES .. 18
2.3.2 ATM .. 19

3 CHANGE-DRIVEN SECURITY ENGINEERING ... 20

3.1 Process .. 20
3.1.1 Introduction .. 20
3.1.2 Change in the context of security... 21
3.1.3 Requirements ... 23
3.1.4 The Secure Change framework ... 27
3.1.5 Meeting the requirements of a change driven security process 33
3.1.6 Case Study ... 36

3.2 Integrated Process ... 37
3.2.1 Artefacts and relations between artefacts .. 37
3.2.2 Integrated SecureChange process metamodel ... 38

3.3 The security analysis method by Thales ... 41

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 7 / 132

3.3.1 The security risk analysis method: Principles .. 41
3.3.2 Security DSML: Overview .. 43
3.3.3 Change Model .. 44
3.3.4 Change Request: Behaviour .. 46

4 CHANGE PATTERNS .. 51

4.1 Motivating example .. 51

4.2 Change pattern structure .. 55

4.3 Process description ... 55
4.3.1 Place in the SecureChange Framework .. 56
4.3.2 Automation ... 59

4.4 Trust evolution ... 60
4.4.1 Evolving trust scenarios ... 61
4.4.2 Mapping trust requirements to architecture ... 61

4.5 Change pattern catalogue for trust .. 65
4.5.1 Evolving trust of execution upon external actor ... 66
4.5.2 Evolving trust of execution from external actor .. 75
4.5.3 Evolving trust of permission upon external actor ... 82
4.5.4 Evolving trust of permission from external actor .. 87
4.5.5 Delegate execution of a service to a trusted actor... 89
4.5.6 Delegate permission to a service to a trusted actor... 92
4.5.7 Providing additional service with delegated execution .. 94
4.5.8 Providing additional service with delegated permission .. 96

4.6 Illustrations ... 97
4.6.1 Online shop .. 97
4.6.2 HOMES .. 102

4.7 Conclusion .. 103

5 SECURITY AS A SERVICE .. 105

5.1 Introduction... 105

5.2 Motivating example .. 106
5.2.1 The Electronic health record - a use case ... 106
5.2.2 Security requirements .. 107

5.3 Security as a service - making the case .. 108
5.3.1 Limitations of endpoint security .. 109
5.3.2 Declarative security .. 109
5.3.3 The Enterprise Service Bus ... 110
5.3.4 The SECTET framework for model driven security ... 111
5.3.5 Security as a service .. 112

5.4 Architectural blueprint for security as a service .. 113
5.4.1 Architecture .. 113
5.4.2 The SeAAS component ... 114
5.4.3 Enterprise Integration Patterns .. 116

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 8 / 132

5.4.4 Realizing complex security requirements with SeAAS .. 116
5.4.5 Enforcing a fair non-repudiation protocol in the SeAAS architecture 117

5.5 Reference architecture .. 120

5.6 Discussion .. 122

5.7 Case Study .. 123
5.7.1 Scenario Description .. 123
5.7.2 Challenges ... 124
5.7.3 Outlook ... 124

6 CONCLUSION .. 125

7 GLOSSARY .. 126

8 BIBLIOGRAPHY... 128

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 9 / 132

1 Introduction

Engineering a secure software system is hard. Ensuring that the system remains
secure throughout its lifetime within a dynamically evolving environment is even harder.
This can partly be attributed to the unpredictability of the world in which the system is
functioning. Additionally, however, security is a discipline that involves multiple
stakeholders, which have to collaborate as a well-oiled machine. Not all of these
people are security experts, or even software engineers. For instance, a change in the
legal or business context can have a negative impact of the security of the system, if
that change is not adequately dealt with.

In this deliverable, the impact of change on developing secure software will be studied.
First, this will be done from a broad viewpoint, i.e., the development process. Then, the
focus will be placed on a specific phase from the development process: architectural
design.

1.1 Process

Traditional secure software development processes focus on activities that have to be
performed, described in a step-by-step process guide. When an application evolves,
the activities from such development process need to be re-executed, requiring
assistance of all stakeholders. This can be inefficient, especially if changes occur often.
Therefore, traditional secure software development processes are less suitable for
lifelong adaptable, secure systems, because the impact of multiple occurring changes
can be (too) large.

In this deliverable, an alternative for an activity-centric process is proposed. The
alternative is described as change driven process. For this process, the system is
modelled as a set of tightly coupled artefacts. Each artefact contributes to a certain
viewpoint and a certain level of abstraction. Evolution is now characterized by changes
in the artefacts. Since the artefacts are tightly coupled, a change in one artefact can
propagate to other artefacts. If a stakeholder, depending on his viewpoint, is
associated with a set of artefacts, he can be notified when a change occurs for which
he needs to take action. In Section 3.1 we describe a concrete process which is Work
Package 2 specific.

To support this process, a model of the artefacts needs to be available. This model is
described by a metamodel of an integrated process which provides an abstract
description of change and change propagation overarching all the solutions provided
by the various SecureChange work packages. The integrated SecureChange process
is still work in progress, but the final goal is to provide Work Package independent
concepts of change and to outline how different software engineering artefacts relate to
each other. The dependency relations between these different artefacts provide the
means to propagate change and describe different handling of different classes of
change. In Section 3.2 a strategy for the development of an abstract integrated process
is described which provides an integration of the solutions of the different
SecureChange Work Packages.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 10 / 132

1.2 Architecture

During the lifetime of the system, its requirements will undoubtedly change, as well as
the assumptions that were made about the application‘s environment. These changes
may very well have an impact on the security of the system. This is definitely the case
when a security-relevant requirement or assumption changes; something in the system
will then have to change to ensure that the desired security properties of the system
are maintained.

While it may be possible to fulfil the updated requirement without changing the existing
architecture, for example by some localized changes to configuration, implementation
or protocols, sometimes (significant) alterations to the architecture are necessary.
Since in the architectural phase, the most substantial decisions are made regarding the
system that is being developed, it is important to understand the nature and impact of
changes regarding the architecture.

Security-related changes in the architecture can be triggered by multiple events. Since
software design is an iterative process, changes to an architecture are first of all
possible because of problems or constraints that only arise in the implementation or
deployment phase of the software. Besides better planning or prototyping, not much
can be done to lower this impact, and therefore we will not consider this cause of
architectural change any further.

The other important source of architectural evolution, often leading to major
adaptations of the architecture, are changes coming from the artefacts generated by
the earlier phases of software development, i.e., requirements engineering. This is also
true for the security-related aspects. In particular, we discern the following cases.

Changes in the functional requirements

When a functional requirement changes, this will often have an impact on the security
properties associated with that requirement. For instance, a newly introduced feature of
the system may need to be protected from unauthorized users. Also, new features can
interact with other features, giving rise to new vulnerabilities.

Changes in the security requirements

A changing security requirement will, by definition, lead to a security-related change in
order to fulfil it. For example, a previously unprotected piece of information that now
needs protection requires that mechanisms are put in place to take care of this
protection.

Changed assumptions about the environment

The security of an application is always based on security assumptions about the
environment in which it would serve. These assumptions may change for various
reasons. For instance, the application may simply become deployed in a new
environment, in which these security assumptions do not hold. Even within the same
environment, the environment‘s properties can evolve. Equally, a better risk analysis
may have been performed, invalidating some assumptions about the target
environment (or giving rise to new assumptions, that were not thought to be viable
before). All these changes may lead to evolution of the architecture.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 11 / 132

The impact of an architectural change can be dramatic, especially when the system is
almost entirely implemented, or, worse, already deployed. Unfortunately, it is
impossible to create an architecture that permits all future changes. Therefore, it is
important to understand how to design an architecture, such that it supports foreseen,
security-related evolution without (or with minimal) impact on the architecture?

Consider Figure 1. An application is developed using an initial architecture, and may
subsequently be distributed or deployed. In the following period, changes in the
environment may lead to minor revisions of the application. If these revisions were
foreseen in the initial architecture, or can at least be applied without significant effort,
this is no problem. However, due to some unexpected situation, the current
architecture may not be able to accommodate one or more necessary changes. At this
point, a major refactoring of the architecture is necessary.

Figure 1 Changes in an application

A change can impact the architecture to different degrees, as illustrated by Table 1.
First, a change can have no impact on the architecture at all. For instance, the change
can be handled by an adaptation of the detailed design, or by modifying the
deployment configuration. Next, a change can have a local impact on the architecture.
The change is then confined to a single element (or a limited number of related
elements) of the architecture. For instance, the specification of one component in the
architecture may change. Third, a non-local change modifies multiple elements
(typically across the entire architecture). However, the architectural approach itself
remains unchanged (i.e., architectural integrity or style is preserved). Examples of this
kind of impact are a single change that has a ripple effect throughout the entire
architecture, or a change that applies to all connectors in the architecture. Finally, a
change with architectural impact redraws the fundamental ways in which the elements
interact, and therefore violates the original architectural approach. An example is the
need for clients in a client-server system to communicate directly. This violates the
original client-server style of the architecture.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 12 / 132

No impact Local Non-local Architectural

/ Confined to single
element

Modifies multiple
elements, but
follows architectural
approach

Changes fundamental
ways in which elements
interact

E.g., change
in detailed
design,
configuration
, ...

E.g., change
specification of
single element

E.g., a change
propagating through
the system (ripple
effect)

E.g., clients in client-
server also need to
communicate directly

Table 1 Possible impact on the architecture of a change

A change can have impact in two dimensions. First, the impact of the change during
the development (design) of the architecture. That is, given that the architect wants to
support a given evolution scenario, what is the impact of the changes that need to be
applied to the architecture such that it is prepared for the occurrence of the scenario in
the future. Note that this does not refer to the impact of implementing the evolution
scenario immediately, but only to the impact of implementing the necessary
infrastructure to enable the implementation of the scenario it in the future. Note that the
development impact will typically manifest itself at a point in time where a major
refactoring (as discussed before) is made to the system.

In the other dimension, there is the impact of the change during maintenance of the
application. That is, given that a certain evolution occurs, what is the impact of the
changes needed to actually support this new situation. This impact can be low (if the
architecture is prepared for the change) or high (if the change does not fit the
architectural style).

1.3 Outline of the deliverable

This deliverable concerns both security engineering processes and security
architectures for evolving systems. After presenting related work (Section 2), three
paradigms are presented which contribute to achieve an integrated framework for
management and design of long living security-critical systems.

The SecureChange security engineering process (Section 3) is a fully change
driven process. This provides for the first time a systematic way of handling changes
based on dependencies between artefacts. Beyond that, the SecureChange process
incorporates concepts for the collaboration of different stakeholders in security
engineering. The goal of this collaborative approach is to support continuous security
management and to achieve an adequate level of security at any time in the software
lifecycle.

While the SecureChange process is independent of artefacts and kinds of changes, the
concept of Change Patterns (Section 4) provides specific guidance for the software
architect who is using the process. Thus, change patterns build the bridge between the
security engineering process from Section 3 and security at architectural and design
level. A change pattern guides the architect in designing an architecture that is

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 13 / 132

resistant against certain foreseen evolutions of the requirements and assumptions. A
catalogue of change patterns for changing trust relationships is described, and its use
is illustrated.

Change patterns provide guidance for architectural changes, but require that an initial
architecture is available. As such, it is also important to have a generic blueprint of an
architecture that is designed to accommodate a broad set of changes, and that can
serve as a starting point for applying these change patterns. This research question
has been addressed by the Security as a Service Architecture (SEASS) approach
(Section 5). Our goal has been to develop an architectural blueprint for a pluggable
security architecture which supports evolution by applying similar mechanisms that
have been shown fruitful in the functional parts of architectures (e.g. separation of
abstraction layers, model-based configuration, and orchestration of services).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 14 / 132

2 Related work

2.1 Security engineering processes

There are several processes for secure software development in the field. Based on a
survey on security engineering processes [1], we present three of the best known
processes: OWASP´s CLASP [2], Microsoft´s SDL [3] and McGraw´s Touchpoints [4].
All of them provide an extensive set of activities covering a broad spectrum of the
development life-cycle.

2.1.1 CLASP

Originally defined by Secure Software and later donated to OWASP, CLASP is a
lightweight process for building secure software. It includes a set of 24 top-level
activities, which can be tailored to the development process in use. Key characteristics
include:

Security at the center stage: The primary goal of CLASP is to support the construction
of software in which security takes a central role. Furthermore, the activities of CLASP
are defined and conceived primarily from a security-theoretical perspective and, hence,
the coverage of the set of activities is fairly broad.

Limited structure: CLASP is defined as a set of independent activities that have to be
integrated in the development process and its operating environment. The choice of
the activities to be executed and the order of execution is left open for the sake of
flexibility. Moreover, the execution frequency of activities is specified per individual
activity and, hence, the coordination and synchronization of activities is not
straightforward. Two road maps (‗legacy‘ and ‗greenfield‘) have been defined to give
some guidance on how to combine the activities into a coherent and ordered set.

Role-based: CLASP defines the roles that can have an impact on the security posture
of the software product and assigns activities to these roles. Roles are responsible for
the finalization and the quality of the results of an activity. As such, roles are used as
an additional perspective to structure the set of activities.

Rich in resources: CLASP provides an extensive set of security resources that facilitate
and support the implementation of the activities. For instance, one of these resources
is a list of 104 known security vulnerabilities in application source code (e.g., to be
used as a checklist during code reviews).

2.1.2 SDL

As a result of its commitment to trustworthy computing proclaimed in 2002, Microsoft
defined the SDL to address the security issues they frequently faced in their products.
SDL comprises a set of activities, which complement Microsoft‘s development process
and which are particularly aimed at addressing security issues. SDL can be
characterized as follows:

Security as a supporting quality: The primary goal of SDL is to increase the quality of
functionality-driven software by improving its security posture. Security activities are

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 15 / 132

most often related to functionality-based construction activities. For instance, threat
modeling starts from architectural dependencies with external systems, while an
architecture could in fact reduce such threats in the first place. SDL is designed as an
add-on to the software construction process.

Well-defined process: The SDL process is well organized and related activities are
grouped in stages. Although these stages are security specific, it is straightforward to
map them to standard software development phases. Furthermore, several activities
have a continuous characteristic in the SDL process, including threat modeling and
education. As such, the SDL process incorporates support for revising and improving
intermediate results.

Good guidance: SDL does a good job at specifying the method that must be used to
execute activities, which, on average, are concrete and often somewhat pragmatic. For
instance, attack surface reduction is guided by a flow chart and threat modeling is
described as a set of sub-processes. As a result, the execution of an activity is quite
achievable, even for less experienced people.

Management perspective: SDL takes a management perspective for the elicitation and
description of many activities. This is nice, given the inherent complexity of security,
and it shows that security as a quality has to be managed in order to be realized in
practice.

2.1.3 Touchpoints

Touchpoints provides a set of best practices that have been distilled over the years out
of the extensive industrial experience of its proposer. Most of the best practices,
named activities from here on, are grouped together in seven so-called touch points.
Touchpoints can be characterized as follows:

Risk Management: Touchpoints acknowledges the importance of risk management
when it comes to software security. It tries to bridge the gap by elaborating a Risk
Management Framework (RMF) that supports the Touchpoints activities.

Black vs. White: The touch points provide a mix of black-hat and white-hat activities,
both of which are necessary to come to effective results. Black-hat activities are about
attacks, exploits and breaking software (e.g., penetration testing). White-hat activities
are more constructive in nature and cover design, controls and functionality (e.g., code
review).

Flexibility: The touch points can be tailored to the software development process
already in use. To facilitate this, the documentation provides a prioritization of the
different touch points. This allows companies to gradually introduce the touch points,
starting from the most important ones.

Examples: Touchpoints is rich on examples. For instance, when describing abuse
cases, there is an example giving the reader a good feel about what they might look
like in a particular situation.

Resources: To further aid the execution of activities, Touchpoints provides links to
resources and also explains how to use them. To this aim, a part of the book is
dedicated to security knowledge (which the resources are part of). For instance, attack
patterns are provided in order to be used in the elicitation of abuse cases.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 16 / 132

2.1.4 Process support for change

The general characteristics of the three processes described before are summarized in
the top part of Table 2. We will now discuss how these processes deal with evolution.

 CLASP SDL Touchpoints

General

Focus
Security at center

stage
Security as

supporting quality
Risk management

Structure
Limited

(independent
activities)

Well-organized set
of activities

Grouped activities
(best practices)

Guidance
Rich set of
resources

Concrete activities
Rich examples and

resources

Evolution

New security
vulnerability

Software updates

Security advisories

Software updates

Security advisories
Not supported

Change in
security
assumptions

Not explicitly
supported

Some continuous
activities

(e.g., threat
modeling)

Not explicitly
supported

Table 2 Comparison of CLASP, SDL and Touchpoints

As we know, security is a moving target. Applications change, executing environments
change and attackers change. Thus the process should include continuous support to
address new security vulnerabilities during the lifetime of an application, under the
assumption that previously articulated security assumptions remain valid. This is
supported in CLASP and SDL by including activities that focus on software updates
and security advisories. Touchpoints does not seem to cover this.

Second, and more challenging, when intermediate results turn out to be incorrect (such
as an incomplete threat model), or when security assumptions change after
deployment, the process must be backtracked in order to correct the no-longer valid
decisions and assumptions. In a process, backtracking can be supported by
introducing iterative cycles, or by inserting dedicated checkpoints and feedback loops.
This kind of support is limited in the mentioned processes. At least, this would require
the explicit documentation of the dependencies between the various activities and their
outcome, which none of the processes provide.

Concluding, all the mentioned processes provide a set of actions (e.g., requirements
elicitation and risk analysis) on the whole system. However, there is no explicit support
for evolution in these processes. The process outlined in Section 3 replaces the view of
existing security engineering processes as sequences of actions (e.g. risk analysis and
requirements elicitation) performed on the whole system by the view of change events
causing change propagation and state changes in the security engineering artefacts.
This provides a systematic way of handling changes based on dependencies between
artefacts.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 17 / 132

2.2 Software architecture and security

2.2.1 Software architecture

In [5], software architecture is defined as the triple {elements, form, rationale}.
Elements can be processing elements, data elements or connecting elements. Form
consists of properties of and relationships between the elements. The rationale, finally,
captures the motivation of the architect for the choices that were made.

A similar definition is found in [6], namely ―the structure or structures of the system,
which comprise software elements, the externally visible properties of those elements,
and the relationships among them‖. The authors, while not ignoring the importance of
rationale, do not consider rationale to be part of the architecture itself. They state that
an architecture, once created, can be analyzed independently of any knowledge of the
process by which it was designed.

Yet another definition of architecture can be found in the IEEE/ISO standard for
architecture descriptions [7]: ―The fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution‖.

All definitions are similar to a certain extent, and describe an architecture as the
collection of elements, their relationships, and some degree of rationale.

Moreover, in [6], the attribute driven design (ADD) development approach for
architectures is described. The approach decomposes the architecture based on the
quality attributes (non-functional requirements), such that the most important quality
attributes of the system are certainly fulfilled. This implies that the main drivers for an
architecture are its non-functional requirements.

The definitions of an architecture introduced above are quite generic, and only talk
about ‗elements‘ (or ‗components‘). There are many different ways to interpret an
element, however, which can be captured in the notion of an architectural profile.

A profile defines the vocabulary and rules that can be used to define an architecture
using that profile. For instance, a component-oriented profile defines components and
connectors, and states that components can only communicate through connectors. A
service-oriented profile on the other hand defines services, participants and workflows.
An aspect-oriented profile would define architectural elements such as aspectual
components and join points. A component-oriented architecture usually suffers from
more coupling than a service-oriented architecture, which is loosely coupled by
definition. Similarly, an aspect-oriented architecture is designed to reduce coupling
even more.

When an architecture evolves, its elements and/or form will change. Elements may be
added, removed, or changed. The architecture‘s form, that is, the properties of the
elements or the relationships between them, may change as well.

In principle, the rationale of an architecture does not evolve, although a change in the
supporting claims of the rationale may lead to the re-consideration of the decisions that
were made before. This may eventually lead to a change in the architecture. For
instance, when a critical assumption that was relied upon when creating an
architecture turns out to be false later, the architecture needs to change.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 18 / 132

Creating an evolvable architecture thus means creating an architecture such that
changes that are likely to happen, will be easy to implement. This implies that
architectural changes should be avoided.

2.2.2 Architecture and security

Security at the architectural level can be looked at from different viewpoints. In this
deliverable, we approach architecture from a constructive viewpoint. In this respect,
the question on how to create an architecture that has certain security qualities needs
to be answered. Often, security patterns [8, 9] are used to this aim. The NFR
framework also uses patterns to create secure designs [10, 11]. In [12], Van
Lamsweerde proposes a patterns-based approach of creating architectures. Besides
patterns, security principles are also commonly used as a guidance for creating secure
architectures. For instance, in [13] an attack surface metric is proposed, which can be
used to measure the security of a design and improve it. Equally, the principle of least
privilege can be used as a guidance for improving the security of architectures [14].

Next to the constructive viewpoint, also the notation that is used to describe the
security properties of an architecture can be studied. Existing architectural description
languages (ADL‘s) can be extended to support security, for example xADL [15]. Also,
UML can be used or extended to represent security properties, as is done in UMLsec
[16] and SecureUML [17].

Finally, it can be investigated how an architectural description can be used to perform a
security analysis. The STRIDE [18] risk analysis method is performed using an
architectural description as input. Besides providing security-specific notations,
UMLsec can also be used to perform a formal analysis on the design. For more
background on analysis techniques, we refer to the survey in [19].

2.3 Case studies

The concepts in this deliverable will be validated in the second year, by applying them
to two case studies from the SecureChange project: the HOMES case study and the
ATM case study.

2.3.1 HOMES

Taking the description of the HOMES case study in the document ―Description of the
Scenarios and their Requirements (D1.1)‖ as a frame of reference, we are interested in
architectural changes to the Home Gateway – a critical component for the enforcement
of security policies in the NAC architecture.

More specifically, we plan to investigate two scenarios in the second year of the
project, based on the results in this deliverable. In the first scenario, we will focus on
the evolution of trust relationships that are present in the HOMES case study (for
example, examining the implications of moving the policy decision point (PDP) from the
provider side to the Home Gateway). More details are given in Section 4.6.2. The
second scenario is the enforcement of a new security requirement (taking non
repudiation as an illustrative example) through the deployment and configuration of a
new security service onto components (e.g., Home Gateway) of the service oriented
infrastructure. Further information on this scenario can be found in Section 5.7.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 19 / 132

2.3.2 ATM

To highlight the SecureChange process, we elaborate a concrete example based on a
specific change scenario. In concrete we will treat the introduction of a new service in
the architecture, the AMAN (Arrival Manager). The introduction of this new service
triggers a range of additional changes. Among the most important ones are changes in
the architecture, changes in the work procedures and the introduction of new threats
and hazards. The scenario is sketched in Section 3.1.6.

Special emphasis of the application of the SecureChange process to the ATM case
study will be put on the handling of changes. We will focus on how the states of various
model elements are updated following specific activities. Particular focus will be put on
the concept of change propagation which is based on state change and the
dependencies between different artefacts.

The result of this work will be a complete walkthrough through the SecureChange
process, providing concrete examples and instantiations for all the concepts described
in Section 3.1.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 20 / 132

3 Change-driven security engineering

In this Section we describe the SecureChange security engineering process which is
fully change driven. The process is change driven in the sense that every change
triggers state changes in the related security engineering artefacts. The dependencies
between the various security engineering artefacts provide a frame for change
propagation. In addition the SecureChange security engineering process supports the
collaboration among different stakeholders which have their specific views on a
system. Using the concept of change propagation based on the dependencies between
artefacts it is possible to support also the collaboration of different stakeholders which
can be notified of change events which impact their specific view.

This section is structured as follows: Section 3.1 describes the SecureChange security
engineering process, beginning with a short introduction to the problem. After a
classification of different types of changes in the context of security we discuss the
requirements for a security engineering framework which supports change. Following
the requirement we describe our vision of ―Living Security‖ – a framework supporting a
process of secure change. After a description of the core concepts of ―Living Security‖
we outline how the initially mentioned requirements are addressed by this framework.

In Section 3.2 we describe an integrated process which is abstract and generic and
encompasses and relates all the solutions provided by the different Work Packages.
The integrated process is an abstraction of the SecureChange security engineering
process described in Section 3.1 and is independent of any specific artifact. We
describe the overall strategy for integrating the different Work Package specific
solutions and their artifacts and our strategy for developing a generic description of
change and change handling.

Section 3.3 describes the security analysis method of one of the partners of
SecureChange (THA), which already started to materialize the SecureChange Process
in its tool environment. The Section starts with an outline of the principles of the
security analysis method and is followed by an overview of the Security DSML. In the
next subsections the Change Model used by THA and the behavior of a Change
Request is presented.

3.1 Process

3.1.1 Introduction

The engineering and management of security-critical systems imposes evident
requirements onto procedures applied and tools used. The management of information
security needs to be effective – producing the desired effect of protection – and
efficient – producing effectively with a minimum of effort. But, in an ever-changing
world, socio-organizational as well as IT systems become a moving target. They
constantly evolve, adapting to changes in their environment. In order to meet the two
basic requirements of information security management in the context of
evolving security-critical systems we need to rise to three basic challenges.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 21 / 132

Relevance. First and foremost we need to identify the kind of events that indicate
relevant changes. Change is generally captured indirectly through an event‘s impact
on a system. This can e.g., be expressed as the deviation of the current status from
some targeted status. Thus, change is relevant if the event alters (for better or for
worse) the capability of some socio-organizational and/or IT systems to work as
supposed – which means to comply with functional and non-functional requirements. In
security, any deviation from a target may be seen as a change for the worse.

Abstraction. Second, once indicated, change triggers effective action only if it is
interpreted appropriately. This means that information about the event has to be
meaningful to the person holding a specific role (e.g., CSO, network administrator,
software engineer etc.). The person should understand the consequences so that she
can carry out necessary action according to her responsibilities (e.g., set up security
policy, deploy component, configure network etc.). This entails the need for an
appropriate conceptualization and visualization of the event and its impact on the
system from a certain angle. This perspective should open a view on information about
a system‘s changing state at an appropriate level of abstraction.

Propagation. Third, change may ―materialize‖ in any of the stakeholders‘ perspective
and percolate to other perspectives, possibly affecting various levels of abstraction
each time calling for some action to be taken. As an example we may take a business
analyst specifying a new security requirement for a business process in the IT
Management view. The requirement is translated into a non-functional requirement of
the requirements model in the software engineer‘s view. The engineer can then model
and trace the dependencies between the requirement, the component in the software
architecture enforcing the requirement and the actual code through the respective
layers of his view. The interrelationship between sub-systems may allow change to
propagate in unforeseen ways. Thus, to take effective actions, stakeholders need to
consider the whole system including IT as well as socio-organizational aspects.

We propose Living Security a framework for the model based development,
management and operation of security critical, evolving service oriented systems. The
main idea is to facilitate the cooperation of stakeholders in IT management, software
engineering and systems operation. The framework links an abstract, but coherent
view of a complex system‘s security status integrating the perspectives of
all stakeholders to the running IT-system and implemented organizational procedures.

The link between the models and the technical and organizational controls facilitates a
flow of information in both directions. Models and artefacts evolve together. Change
thus becomes a first-class citizen in a security process linking security engineering,
information security management and risk management.

3.1.2 Change in the context of security

We develop our understanding of relevant change based on the two dimensions as
elaborated in [26]. Hence, we focus on two aspects, for one the particular nature of
change and, two, its origin.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 22 / 132

Proactive Reactive

Evolution

Revolution

Imposed Evolution

Planned Revolution

Planned Evolution

Imposed Revolution

Figure 2 Four basic types of change

Generally speaking, change can manifest itself as either a gradual evolution of a
system in smaller steps or as a radical ―revolution‖ with major impact on the system‘s
structure and functionality. So, change either comes in the shape of Evolution or
Revolution.

As to the origin of change, it is important to know whether change was planned or
imposed by the outside. In the first case, a Proactive approach leads to planned
change. In case change is imposed, it can only by reacted upon, thus resulting in a
Reactive approach.

Classifying change types along these two dimensions, we identify four basic types of
change (cf. Figure 2).

Security requirements engineering (as described in [21]) views (r)evolution as
emanating from a change in a system‘s requirements, specification, and/or
context. Living Security follows this engineering approach for supporting the
management of the effects of change. This means realigning evolving systems to
existing security requirements or to adapt the systems to changing security
requirements or context. The handling of each of the four basic types of change is
exemplified in a general use case in the context of security management and
engineering.

A. Enforcing Security - Planning Small System Changes

In most cases, a system evolves over time according to a specific plan so to meet a
specific set of requirements. For example, the anti-virus software component of a
network needs a weekly software update. Thus, we anticipate small changes in the
system‘s context (new virus threats) by planning gradual changes (weekly updates) to
enforce a security policy (the requirement of integrity). The framework keeps the
network administrator informed about the ―effectiveness‖ of the security measure
based system‘s current status, whereas IT management can judge on the measure‘s
―efficiency‖ by tracing the dependency between the security measure and its
contribution to meet business requirements or – thinking inversely – the impact of its
failure.

B. Monitoring Change - Reacting to Minor Changes in Context or Requirements

Often the triggers are small changes in the system‘s context or in the requirements
specification. In other terms, change occurs in the shape of unplanned events. If

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 23 / 132

the anti-virus component‘s weekly update failed, we would face change (lower security)
imposed by an unplanned event (failed update). To react appropriately, all
stakeholders would have to understand and evaluate the event‘s impact onto their
domains and take coordinated measures. The latter means that various stakeholders
must always bear their activities‘ potential impact on other domains in mind. Living
Security visualizes the events in the specific views and facilitates coordinated
measures by tracing dependencies across views and layers.

C. Scenario Planning - Planning Major System Changes

A system may occasionally have to undergo a major change. For example the merger
of two companies may require the integration of two IT systems. In that case,
the stakeholders need to plan and anticipate a series of changes to an already existing
system. They need to understand the impact of these changes on the systems
security. In this respect, Living Security contributes to a clear understanding of the
system‘s security status ―as-is‖ and facilitates the analysis of security challenges in
relation to the various alternatives.

D. Realizing Change - Reacting to Major Changes in Context or Requirements

Living Security would not be able to cope in a reasonable way with large unforeseen
change fundamentally impacting a system‘s structure or functionality. So we consider
this use case as being beyond scope.

3.1.3 Requirements

After the definition of useful categories of change in context of security management
and engineering we move on to specify the requirements for a framework supporting
secure change. We illustrate these requirements with a running example for an
evolving, security-critical large-scale system. The same example will be used in
the description of the concepts which realize the framework.

Figure 3 Integrated view

Example 1: The example used in this deliverable is a financial trading platform which
allows traders to place orders in specific market segments. The trading platform is
directly connected with the systems of major financial institutions who use the platform
to place large volume orders. In addition, individual traders can use an online frontend
or download a client to use the services. The trading platform is developed and
operated by a medium sized specialized company which offers services and support
for the platform and sells licenses to its users. The trading platform is developed in

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 24 / 132

house by a team of software developers who develop, deploy and actively manage the
systems which are hosted in an outsourced data center. The trading platform uses
standardized financial communication protocols and is realized as a SOA. The
company is certified according to ISO 27001 to underline their emphasis on
security. Currently, the company offers access to specialized niche markets, but is
planning to extend its service to stock markets in the near future.

3.1.3.1 R1: Integrated view

To keep a complex and interconnected system running despite change a variety of
stakeholders have to collaborate in their daily operations. To support the collaboration
of these different stakeholders (e.g., Chief Information Officer, legal experts, system
administrators, software developers) an integrated view on the system is
required. Such an integrated view needs to incorporate aspects from different
disciplines such as IT management, system operation and software engineering. While
all these disciplines have their own perspective on a system and use a different level of
abstraction, the challenges related to change cannot be tackled from a single
perspective. Instead it is necessary to focus on a changing system from all these
different angles to keep it running in a secure manner. Figure 3 shows the concepts of
an integrated view.

Example 2: A financial trading platform has to fulfil a range of security requirements,
stemming from special requests of large customers, general legal regulations for the
financial services market, and the contractual obligations which arise from docking on
to the financial systems of major partners and markets. The company has a
Chief Information Officer (CIO) and a Chief Information Security Officer (CISO). In
addition the company employs two legal experts who are aware and responsible for all
the legal and compliance requirements that have to be fulfilled by the systems. The
platform is constantly evolving due to the addition of new services (e.g. access to new
market segments can be offered to the clients), the continuous extension of
the platform (i.e. 3.000 new accounts are opened every month), and the incorporation
of a range of new regulations which were enacted as a result of the financial crisis.
Whenever legal requirements change, system capacity needs to be extended or a new
service to be deployed in the platform, changes cannot be tackled in isolation but have
an impact on many aspects of a system. Therefore it is important to understand which
parts of the system are affected by a new compliance requirement, which new services
might introduce unbearable risks in the already running platform and what system
updates and transitions could cause an interruption of critical services. An
integrated view on the systems combines all these aspects and relates these
perspectives to each other. A software developer needs to be aware of those
requirements which have to be considered in the design and the adaptation of a
service. Similarly, a system operator needs to know what the capacity requirements
of soon-to-be deployed services may be. An integrated view is therefore an essential
instrument to provide a basis for a common understanding of the systems and its
dependencies and serves as a platform for communication among all the different
stakeholders.

3.1.3.2 R2: Domains and Responsibilities

A framework which supports collaboration and cooperation among different
stakeholders needs to take into account the different perspectives and responsibilities

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 25 / 132

of stakeholders. Not every stakeholders needs to understand and analyze every aspect
of a system. Instead each stakeholder is equipped with knowledge and experience for
a specific domain of the entire system. While it is important to support cooperation
among these stakeholders it has to be taken into account that each stakeholder has a
tailored view on a system and its security.

A stakeholder carries responsibility for a specific domain, i.e. a subset of the
constituting elements of a system. It is important to have a clear understanding of
these governance aspects to be able to handle change effectively in an
organization. Depending on the type and extent of change, certain stakeholders need
to cooperate to provide solutions to handle such change.

Example 3: In the example of the trading platform a domain could be the technical
infrastructure (physical layer) which is overseen by a senior system and network
administrator. The set of all nodes and locations for which he is responsible represents
a domain. In a similar way legal experts are responsible for their own domain
which could be the set of all compliance requirements defined on the business layer.

Similarly the responsibilities of these stakeholders are differing with respect to handling
change. The legal experts are the ones who are informing other stakeholders about
new requirements and the available time frame for reaching compliance. The software
developers together with the system operators are proposing different solutions for
reaching these new compliance requirements and IT management will have to decide
together with software architects which solution fits best with the organizations
business and technology strategy.

3.1.3.3 R3: Change Propagation

A framework which supports a change-driven security process needs to provide a
foundation for propagating change to the right stakeholders in an organization.
Change is perceived as an event which triggers a series of consecutive steps. As
already outlined in Section 3.1.2 there are different types of changes in a security
context.

Change propagation includes on the one hand the registration of relevant change
events. On the other hand it requires a systematic way of identifying parts of
the system and stakeholders affected by change.

Example 4: In the concrete example of the financial trading platform it is not sufficient
to have an integrated view on the system and a clear attribution of responsibilities
and domains to various stakeholders, but it is a central requirement to propagate
change based on these two foundations. The Living Security framework needs to
provide support in the process of identifying what parts of the system are impacted and
who needs to be informed, who is consulted, and who has to make decisions in
response to a change event.

Continuing the concrete example from above, consider a new legal requirement has
been identified by the legal experts and has been attributed to the business
process ―Place orders‖. Change propagation includes identifying which parts of the
system are related to the specific business process, who the responsible domain
owners are, and the steps they need to take to respond properly to the event. The
business process ―Place orders‖ processes the two information objects ―Order details‖
and ―Account information‖ and calls two services in the infrastructure, namely
―Order authorization‖ and ―Transaction execution‖. The responsible domain owners are

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 26 / 132

the information architect and the software developer. Both are responsible for
maintaining the two services.

In order to be able to identify the interrelationships between the parts of a system and
their respective owners, a systematic analysis of the model depicting these
interdependencies and responsibilities is required. In addition, a tool-based
framework needs to provide communication means for informing the various
stakeholders about relevant change events.

3.1.3.4 R4: Bidirectional Flow of Information between Models
and Executing System

The bidirectional flow of information from models to executing system and vice versa is
essential to ensure the efficient and effective management and engineering of
an evolving security-critical system.

On the one hand, the target architecture of a Living Security framework is a security
infrastructure equipped with sensors collecting information and feeding it back into the
modeling environment. Once there, information is interpreted at the level of Model
Elements in context of the System Model. On the other hand, the security
infrastructure ought to be configurable from a modelling perspective.

Example 5: In the example of the financial trading platform the bidirectional flow of
information between models and executing system can be describe using the
following two scenarios:

a) Information flow between executing system and models: On the infrastructural and
service layer of the system, various sensors which constantly collect information
regarding the status of nodes and components in the network can be deployed.
Relevant information could be captured through traditional metrics like capacity
utilization, throughput, and number of handled orders to name just a few. Using such
indicators and putting them in relation with security objectives and
requirements extends the integrated view on a system with meaningful key indicators.
Consider as an example a service level which is guaranteed to the premium customers
of the trading platform. The requirement ―Maintain 99.999% uptime per month for the
premium services‖ can be extended with key figures collected from the executing
system, which constantly monitor the uptime of these key services.

b) Information flow between models and executing system: If the services are
implemented and deployed in a specific target security architecture it is possible to
configure the security properties of the system using models. As an example, consider
the communication in the business process ―Place Order‖. Calling the respective
services for authorization and transaction execution is designed to be based on using
encrypted and authenticated messages. A specific premium customer might require an
additional electronic signature by the financial service provider confirming specific
details of an order to comply with additional audit requirements. If the service is
deployed in a specific target security architecture it is possible to configure such
security services using models.

3.1.3.5 R5: Information Consistency and Retrieval

Stakeholders need explicit support to appropriately visualize and query security related
information in its various contexts. They need to understand the connection

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 27 / 132

between the various levels of abstraction. This requires appropriate mechanisms that
guarantee the consistency of all the information in the model. Consistency can be
provided by defining and checking certain constraints in the model of a system.

Information Retrieval goes beyond the mere checking of constraints on model
elements in that stakeholders can access semantically enriched information.
Depending on his or her background and responsibilities, a stakeholder may require a
specific view on a system in a specific representation. While some of the stakeholders
might favour a traditional spreadsheet to represent specific information about the
system, others might require graphical representations like process maps, or a
dependency matrix outlining the relations between services and infrastructural
components. Depending on the information a specific stakeholder request the models
and specific views can be enriched with additional information which is either collected
from sensors in the infrastructure or based on an analysis of the model itself.

Example 6: For example, a CSO would like to check whether every security threat at
the technical level is related with some security threat at business level (describing
the business impact of the technical threat). Such types of analysis can be run in a
model using specific queries and checks. The resulting information can be represented
in different ways, e.g. either using a simple table or in a graphical diagram.

Similarly, the security engineer would like to check whether each security requirement
is complemented by an appropriate security service at the architecture level.
The security engineer might in turn favour a network diagram or another graphical
representation outlining which security requirements are not yet complemented by
technical security solutions.

3.1.4 The Secure Change framework

Here, we describe our vision of ―Living Security‖ – a framework supporting a process of
secure change. We describe the core concepts of Living Security and outline how the
before mentioned requirements can be addressed.

3.1.4.1 Common System View

The framework supports stakeholders in their various daily operations. This happens
through Stakeholder-Centric Modeling Environments, perspectives on the system‘s
security status, customized to an appropriate level of abstraction. The analysis of
security attributes requires the analysis of interdependencies across the layers ranging
from IT management, software engineering and system management. Although the
framework also facilitates the cooperation among the stakeholders (Chief Information
Officer, Chief Security Officer, Network Administrator, Security Engineer etc.), it does
not necessarily need to provide an integrated and homogeneous modeling
environment. Rather, these stakeholdercentric modelling environments, rely on a
common metamodel, the Common System View.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 28 / 132

Figure 4 Sample functional system meta model

The Common System View represents the conceptual underpinning for the security
management process. Its elements are the conceptual units subject to change.
Dependencies between the various concepts are modeled as associations
between elements allowing change to percolate through the Model Layers.

Functional system concepts like business processes, information objects, roles,
components etc. are defined in the Functional System Meta Model logically grouped
into the various domains of the Modeling Environments. The latter can be composed of
Model Layers each one capturing another level of abstraction or degree of granularity.
Figure 4 exemplarily shows a sample Functional System Meta Model and the three
Layers of the Modeling Environment Software Engineering, namely
Requirements, SW-Architecture, and Code.

Security related concepts like threats, risks, requirements etc. are introduced into the
meta-model as Meta Model Plug-Ins. Every element of the System Meta Model can
be decorated with security-related semantics. Figure 5 shows a sample security meta
model that plugs into the Functional System Meta Model as an extension for security.
Here we assume that each model element in the Sample system meta model (cf.
Figure 4) inherits from the generic class ModelElement.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 29 / 132

Figure 5 Security plug-In

Example 7: Consider as an example the business process ―Execute order‖ which
requires many different running services in the trading platform, which in turn require
system and network capacities. If a legal expert identifies a new requirement (e.g. new
contractual obligations related to premium customers) which is valid for the business
process ―Execute order‖, then she links this requirement to the concept business
process. In the example in Figure 6 the objective is ―Maintain Service Level
Agreements‖. The dependencies and relation between the different layers serve as a
means to identify which parts of the infrastructure are impacted by such a new
requirement (e.g. the service ―execute order‖ requires an uptime of 99.999%‘).

Figure 6 Example system model extended with a security plug-in

In doing so a system operator might receive notice that certain parts of the
infrastructure he is responsible for are impacted by this new requirement. Another
advantage of the Common System View is the provision of stakeholder
specific perspectives. In this example a software architect focuses mainly on the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 30 / 132

deployed components which realize the services and how these components
communicate with each other.

The System Meta Model together with its plug-ins describes all aspects of the system
across the levels of abstraction in a highly interlinked way. Additionally, we define the
notion of a View (cf. Figure 7). A View consists of a selected set of model elements
(together with selected interdependencies) and corresponds to the usual notion of a
Model or an artefact in many approaches (like a Security Analysis View/Model, a
Software Architecture View/Model or a Requirements View/Model). Note that different
views may be related by common meta model elements or interdependencies.

Figure 7 View meta model

3.1.4.2 Model Element States

To depict changes and distinguish different states of an information object, we want to
have the possibility to model not only the dependencies between business
and technical artefacts, but furthermore we want to differentiate information objects
with regard to their life-cycle. We model security relevant milestones in the lifecycle of
model element as Model Element States. Changes of Model Elements States can
propagate over the complex ―network‖ of model elements as defined in instances of the
System Meta Model and its plug-ins.

Typical states for Security Requirements which are basically attached to Model
Elements like Role or Operation are e.g., added, pending, evaluated, and
implemented.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 31 / 132

Figure 8 State machine of meta model element security requirement

The concept is realized through (UML) state machines associated with each meta
model element of the System Model and its plug-ins. As an example, Figure 8
shows the state diagram of the meta model element Security Requirement. State
transitions are triggered by the following events:

 time events (e.g. triggering analysis actions to be performed periodically), ∙

 conditions on the system state (e.g. the state of a security requirement is
changed from complete to evaluated if all associated risks are in state
evaluated),

 action events initiated by the stakeholders (e.g. with the action event complete
in Figure 8, the stakeholder declares the set of associated risks to be
complete) ∙

 change events caused by the modification/ creation/deletion of some model
element.

Example 8: In the example outlined in Figure 6 the risks related to the service ―execute
order‖ have two different states. The first risk R1 has already undergone a
risk evaluation and its state is therefore set to ―evaluated‖. The second risk R2 has only
been identified but not evaluated yet, therefore its state is set to ―pending‖.

The related security requirement SR1 will remain in the state ―pending‖ until all related
risks (R1, R2) have reached the state ―evaluated‖. Only then the security
requirement SR1 will also reach the state ―evaluated‖.

Similarly, if the security requirements were already in the state ―evaluated‖ and a new
risk R3 was added, its state would immediately switch back to ―pending‖,
thus indicating that a change occurred and additional steps are required to reach a new
security state.

In the System Meta Model we extend the class ModelElement by an association to
class StateMachine (cf. Figure 9), leaving the structure of a State Machine unspecified
at this place.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 32 / 132

Figure 9 State machine meta model

3.1.4.3 Persistence, Tracing

As instances of the System Meta Model, System Models are the actual targets of
change. They capture the status (functional and non functional) of a system at all
relevant levels of abstraction. But to indicate change and facilitate planning they have
to be made persistent. This allows the definition of system (r)evolution as a sequence
of modeled status snapshots. Like the model elements, the System Meta Model itself
may undergo change and evolve over time.

Persistence also facilitates model versioning which is a prime requirement for planning.
Stakeholders can compare alternatives in terms of their impact (e.g., comparison
of safeguards with respect to the trade-off risk reduction vs. costs) by creating new
branches, cloning or merging System Models.

Cooperation among stakeholders is facilitated through information traceability which is
conceptually anchored in the meta model of the Common System View. Depending
on his Role, a stakeholder has a tailored view of a system‘s security status rendered in
his Modelling Environment. The Role Model defines Roles – job functions of the
stakeholders and their Rights – and permissions with respect to operations on model
elements. The Role Model is associated to the System Meta Model.

Example 9: In the concrete example Persistence can be explained using two
examples. First, consider a situation in which new security requirement has been
identified as a change event and will be introduced in the common system view. The
new requirement triggers a series of actions which are executed by different
stakeholders. For instance, the software developer will be re-evaluating whether
there are any new potential risks which might be related to the new security
requirement. By keeping persistent versions of all the model snapshots, which are
reflecting the ongoing security process it is on the one hand possible to provide
an audit trail of the analysis and the resulting decisions. On the other hand it is possible
to trace specific security solutions which are still in place back to a now possibly
obsolete security requirement.

Second, Persistence allows different future scenarios to be modelled. Consider a new
security requirement for which several options of security controls might be
considered. Using different planning scenarios and snapshots of the model it is
possible to evaluate the impact of the planned controls on the current system
architecture.

Figure 10 shows a simplified way of handling versions. Every System Model (holding
all information of the system) is attached at any point of time with a unique Version

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 33 / 132

object. A tree structure (modelled by the previous association) describes the versions
of a System Model along the lifetime of the system (including branches).

Figure 10 Model versioning

3.1.4.4 Tight Coupling of Models and Code

As the framework aims to support security engineering and management activities
targeting the running system, the underlying models have to appropriately reflect the
system‘s current security status. In Living Security, a consistent state between models
and evolving system in a changing environment is maintained through the tight
coupling between models and the executing system. Together with the
Integrated View, this principle provides stakeholders with a Modeling Environment that
is directly linked to the executing system.

In Section 5 we present an architectural framework which supports such a seamless
transition from models to security architectures.

3.1.5 Meeting the requirements of a change driven
security process

The requirements listed in Section 3.1.3 are tackled in our vision of a change-driven
security process. The change driven security process contains the classical steps of
well established security-processes [27], [28]. What distinguishes our vision of a
change-driven security process is that the process steps are initiated by change
requests and change events (cf. Figure 11). These change events affect the state of
model elements.

Figure 11 Change meta model

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 34 / 132

A change request is a general description of some change in the system such as
exchange component X by a technology mitigation or implement compliance regulation
Y. Each change request object is a ModelElement which means that change requests
have a state and may have associated information (like the risk attached with the
change). Each change request triggers one or more change events. Change events
are directly related with model elements and cause state changes as described in the
process below.

Change is propagated in the System Model based on their interrelationship with other
model elements. Change events are sent to the current System Model where actions
are triggered and the effects percolate through the different layers . Change is handled
according to the following procedure of the Change Driven Process:

A. State transition – A change event may induce a state transition of a model
element. For instance, the state of a security requirement is changed from
evaluated to added if the related model element (e.g. a software component) has
been modified.

B. Change propagation – The state transition of the model element may trigger state
transitions in related model elements according to stated propagation rules.
For instance, the modification of a security requirement attached with a business
process may cause state transitions in information objects and services
supporting this business process. The propagation rules are specific to each
meta model element.

C. Modification of task list – Each stakeholder is associated with a task list
describing the pending action events of model elements he/she is responsible
for. After each state transition new tasks may be pending and have to be added
to the task list. Consequently fired action events (e.g. after the evaluation of a
model element) are withdrawn from the task list.

Using the concept of change events and model element states it is possible to assign
and distribute the tasks of the security process to the according stakeholders.
Based on the concept of domains and responsibilities we are able to identify required
tasks and assign them to the respective stakeholders.

This implies a distributed security micro-process which is executed by each of the
stakeholders within his specific domains. Figure 12 highlights this concept of
distributed instances of a security process. Of course the stakeholders do not work
independently on their security related tasks, but a lot of coordination and cooperation
is necessary. Hence the first three requirements discussed in Section 3.1.3 are
realized using the concepts of a common system view, and model element states.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 35 / 132

Figure 12 The concept of distributed security processes

Example 10: Using for instance the example outlined in Figure 5, the security process
will be schematically described in the following.

The identification of the new security objective ―Maintain Service Level Agreements‖
was brought up by the legal experts based on new contractual obligations with
premium clients. The legal experts introduced the new security objective in the
common system view using a security plug-in and attached it to the model element
―place order‖. Based on the dependencies of the system depicted in the common
system view, this change event percolates through the processed information objects
(eg. ―Account information‖ and ―Order‖) to the respective services (eg. ―log transaction‖
and ―execute order‖).

The software architect whose domain and responsibility contains the services and the
elaboration of the related security requirements receives a notification to evaluate
the existing services according to the new security objective. She or he then identifies
and translates the abstract security objective in the concrete security requirement ―SLA
99.999% uptime‖. This event which was triggered by the introduction of the new
security objective by the legal experts again triggers new actions.

In the concrete case, a security engineer whose domain consists of the threats and
risks related to services receives the notification to conduct a threat and risk analysis
for the service ―execute order‖ since a new security requirement with the status
―pending‖ has been added. The security engineer then introduces two new risks (R1,
R2) which are related to the security requirement SR1.

As can be seen in the example, the progress of the steps taken by the security
engineer is also reflected as a series of changes in the common system view. She or
he has already evaluated the new risk R1, which state is set to ―Evaluated‖. As soon as
the remaining risk R2 will be evaluated, the software architect will receive a notification
that his or her security requirement SR1 has too reached the state ―evaluated‖.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 36 / 132

In this manner it becomes possible to translate change events in a series of tasks
which have to be fulfilled by different domain owners. The progress of the
different distributed actions will be reflected by the model element states and allow to
analyze whether or not the whole system has again reached a stable security status.

The change propagation process is related with the versioning concept of Model
Versioning (cf. Figure 10) in the following way.

 The lifetime of a change request may involve many versions of the System
Model. This reflects the fact that a change request may be a complex task
potentially involving several stakeholders.

 Any change event (as well as the automatic change propagation process along
the interdependencies between model elements) affects one specific version of
System Model and causes modified model elements in the next version (e.g.
state transitions or introduction of new model elements).

3.1.6 Case Study

The ATM case study provides a perfect scenario to highlight the SecureChange
process as described in Section 3.1 in a concrete manner. The partners of Work
Package 2 and Deep Blue have agreed to cooperate in order to build a concrete
example of how change is handled in the SecureChange process. The concrete goals
of the case study are:

- To outline on the basis of a specific change scenario how the SecureChange
process deals with change.

- To provide a practical example of how change propagation works in the
SecureChange process.

The introduction of a new service in the ATM network will provide the basic scenario on
which we will elaborate the case study. The concrete component which will be treated
is the AMAN (Arrival Manager). Introducing such a new service in a information
network such as the SWIM architecture provides a good basis to highlight:

- How the introduction of such a new service impacts the architecture and
requires changes in the system model.

- With the introduction of this new service comes also a change in the work
procedures.

- How the changes in the system model require an updated security analysis of
certain aspects of the architecture, as new threats and hazards are introduced.

In the current state we have collected all required information for building a model of
the system. In addition Deep Blue provided us with a set of security objectives and
requirements.

The following activities will be pursued in Year 2.

1. An initial version of a global and local functional model will be created based on
the available documentation.

2. A description of the workflow changes which are required because of the
introduction of a new service will be provided.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 37 / 132

3. A concrete description of how the related changes are handled following the
SecureChange process, with particular emphasis on the concepts of states of
model elements and the concept of change propagation using dependencies
between different artefacts.

3.2 Integrated Process

In order to integrate the solutions by all the different activities in the Work Packages we
enhance the SecureChange process by an integrated view. This integrated view is
based on the following concepts:

 Taxonomy: provides a classification of changes and attitudes to changes

 Artefacts: distinguishes on an abstract level the different models and artefacts
which are used by the different Work Packages

The taxonomy can be used on the one hand to identify different basic change
scenarios. These change scenarios on the other hand can be used to describe how
change is handled on an abstract level by the different Work Packages.

The artefacts provide an overview of all the different types of models used by the
various Work Packages of SecureChange. These artefacts are described on the meta
level and abstract from concrete concepts. That way it is possible to treat method-
specific conceptual models as black-boxes and plug-in different methods and
approaches to the integrated SecureChange process. Examples for such artefacts are
a system model which includes all artefacts related to the system, ie. architecture,
code, constraints and others. Other specific artefacts are a verification model, a risk
model, a requirements model and a test model.

Independently from which requirements engineering method and model is used, it is
clear that a change in a requirement has to trigger some changes in the test model.
Using the change scenarios derived from the taxonomy and case studies it can be
described how the different artefacts are updated and trigger changes in other models.
That way it is possible to outline how the results and solutions provided by one Work
Package impact the other Work Packages.

3.2.1 Artefacts and relations between artefacts

As a first basis for distinguishing an abstract approach is followed. This is at the
moment a non-exhaustive list which reflects the main types of artefacts which are
treated by the different SecureChange Work Packages. The different artefacts are:

 System Model: The System Model includes all artefacts related to the system
(from architecture to code, including constraints). It is a placeholder for the
system model of Work Package 4 and all types of system models used
throughout the other Work Packages.

 Verification Model: The Verification Model contains artefacts which are specific
to Work Package 6.

 Risk Model: The Risk Model includes all artefacts related to risk analysis (e.g.
assets, vulnerabilities, threats, controls, risk). It is a placeholder for different
conceptual models of risk, such as the CORAS model, the THALES risk model

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 38 / 132

or the ProSecO security model and therefore integrates mainly the artefacts
from Work Package 2 and Work Package 5.

 Requirement Model: The Requirement Model reflects all artefacts which are
related to requirements engineering. It is mainly related to Work Package 3.

 Test model: The Test Model contains the artefacts related to testing, and is
related to Work Package 7.

Figure 13 outlines an overview of these different types of artefacts. Seen from an
overall integrative perspective the different artefacts are strongly related to each other.
The result of a requirement analysis will provide input for the test-engineers and be
used to verify code and infrastructure components.

Figure 13 Integrated view of SecureChange artefacts and their dependencies

The meta model which is described in Section 3.1 is a working model in a specific
context. It maps to the integrated view of SecureChange artefacts in the sense that it is
a specific instantiation of a system model, partly a requirements model and a risk
model. That way the specific working model can be mapped to one or more of the
artefacts depicted in Figure 13.

3.2.2 Integrated SecureChange process metamodel

The description of the overall SecureChange process will deliver concepts of change
derived from all the solutions of the different SecureChange Work Packages. The goal

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 39 / 132

is to provide an integrated meta model of change related concepts which is
independent from any Work Package specific solution (cf. Figure 14).

Consider as an example a change in the infrastructure that requires a change in the
system model. The system change triggers a system analysis to analyse the changes
with the result of an updated system model. An updated system model might affect the
current set of requirements and therefore triggers a requirements analysis resulting in a
new updated requirement model. The update of the requirement model and the update
of the system model both potentially impact the current test model. Therefore both
changes trigger new test engineering with the result of a new updated test model.

The dependency relations between the different types of artefacts are the frame for
change propagation.

Currently this change model is in a conceptual development phase and will be
elaborated during Year 2 and Year 3. The different change related concepts provide a
basis for the description of change handling in the integrated SecureChange process.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 40 / 132

Figure 14 The integrated SecureChange process metamodel

At the moment we have identified the following list of change concepts in the various
work packages (cf. Figure 14):

 ChangeScenario: is expressed at the requirements level and describes the
change in the requirements. This change scenario will consist of a before and
after requirements model.

 ChangePattern: consists of a specific change scenario, one or more solutions
and a mapping between the elements from the change scenario and the
architectural elements in the solution.

 ChangeEvent: is a general trigger of change which is derived from a set of
change scenarios.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 41 / 132

 ChangeRequest: is a general description of some change in the system.

 ChangeTransition: is a description of all the differences from one change to
another.

Additional concepts which are candidates for the inclusion in the Change Model is the
concept of perspectives which is used in Work Package 5, the concepts of Change
Line, Version, Change Propagation and others.

Future tasks related to the refinement and further development of the integrated
SecureChange process meta model include the collection of additional change related
concepts throughout the other Work Packages. All these change concepts will be
consolidated as an integration for all the Work Packages. In addition changes need to
be classified to provide different basic categories of changes which might require a
different handling. Activities in other Work Packages provide a sound basis for the
development of such a Change Model, such as the Deliverable D3.2 of Work Package
3 and the Deliverable D5.2 of Work Package 5.

3.3 The security analysis method by Thales

An example for a concrete instantiation of the SecureChange process is the security
analysis method by Thales. The method incorporates different concepts of changes in
a separate Change Model and different artefacts and their dependencies in a Static
Model. In particular the approach supports the concept of change propagation of the
SecureChange process by building on the concept of using states of different model
elements to track and trigger changes. In this Section the security analysis method by
Thales is described providing an overview of the principles, a DSML and how change
is handled.

As a long-term industrial initiative, Thales develops a new method to support security
risk analysis, closely integrated with the overall engineering process of our critical
information systems. This method is building upon model-based engineering
techniques [30], it presents a prototype domain-specific modelling language (DSML)
that was developed in this context; this DSML aims at supporting the analysis and
assessment of security risks for a system, and the specification of requirements for
security measures to address those risks. Our objective is to provide adequate and
efficient tooling to security engineers for an effective integration of security engineering
in the process of critical system design, so as to enable a better targeting of security
specifications.

3.3.1 The security risk analysis method: Principles

Our prospective security risk analysis method builds upon model-based engineering
methods and techniques. All activities of our method are organised around the building
and usage of models, that is formalised, precisely defined, interconnected and
integrated representations of the objects under study.

As represented in Figure 15, our proposed method relies on the development of a
modelling framework that combines in a synchronised way a set of models that
constitute separate viewpoints [29] over the engineering problem:

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 42 / 132

Figure 15 The security analysis method in Thales context – big picture

 The System architecture model contains the architectural design of the system;
this model is developed within the mainstream engineering processes, along at
least two dimensions: the functional / logical architecture of the system
(functional capacities and data to be realised by the system) and the physical
/implementation architecture of the system (actual hardware and software
components that realise the functional capacities).

 The Business need model captures a representation of the business context for
the system: business process that is supported, underlying business
organisation, business objects, key performance indicators, strategic drivers,
etc.

 The Risk analysis model and security objectives model capture the results of
the security risk analysis method that is proposed in dedicated DSML
(presented in next section). These models include a representation of the
system architecture that is relevant to the needs of the security analyst, this
model is called context model. This model is traced back and maintained in
synchronisation with the system architecture model (see [31]). The security risk
analysis information is defined as annotations or related new concepts added
over the system architecture elements. The risk analysis model and security
objectives model may also be traced to elements of information defined in the
Business need model.

 The Requirement Database captures all kinds of systems requirements
(Security, Safety, Maintainability, Cost ...). Security requirements are derived
from the security objectives model of the dedicated DSML (see [32]). This
mapping enables to merge security requirements with all kind of requirement
addressed for a complex system. The Requirement Database is traced back
and maintained in synchronisation with the system architecture model and
Business need model.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 43 / 132

The System architecture model and the Business need model are part of the
architecture modeling framework that we are developing to address service-oriented
types of large-scale enterprise integration systems or systems of systems. In the
Thales context, the official database of Requirement Management is Rational DOORS
with the T-REK add-ons [33] (Dynamic Object Oriented Requirements System).

3.3.2 Security DSML: Overview

The Risk analysis model, security requirements model and context model are
expressed in a dedicated DSML1. These kinds of models are parts of the static model
(corresponding to SecureChangeArtefact in Figure 14 The integrated SecureChange
process metamodel):

 The Requirement Model describes the specialization of Objectives into several
Requirements and links between those and the other elements of the DSML
(Risk, Context).

 The Context Model describes the System Architecture (Essential Elements
and/or Target), related constraints which describes how services (described by
essential element) are provided by the system and links between those and the
other elements of the DSML (Risk, Requirement).

 The Risk Model describes the risk characterization into threats, damages and
vulnerabilities and links between those and the other elements (Requirement,
Context).

Figure 16 Relationship between Static Models and Change Model

1
 This deliverable cannot be the place for a detailed presentation of the metamodel and syntax of our DSML, more

details are provided in [26] [30] [32].

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 44 / 132

To address change inside this DSML according to Section 3.2.2, we consider a change
model which is mapped with all models included in the static model. Figure 16 depicts
the relation between different models defined in the DSML and the relation with the
change model presented in the next section.

Inside the Change Model, we distinguish two kinds of Models:

 The Change Line Model represents relationships between several Changes
included in one Change Line and Transitions (i.e Change Transition in
Section 3.2.2) which describes a set of transformation rules between several
changes

 The Change Request Model which traces changes inside the Static Model.
The Change Line Model activates the Change Request Model.

Inside the Static Model, the Requirement Model must cover risks expressed in the
Risk Model and requirements are allocated to system elements (e.g. services,
components) defined in the Context Model. The Context Model is the representation
of the system; this model is threatened by risks expressed in the Risk Model.

The Change Request Model modifies all models of the Static Model (represented by
the <<modifies>> dependency relation). The Change Line Model is described by a
set of evolution functions which monitors the Static Model: context elements are
described by several evolution functions, requirements and risk includes evolution
functions (e.g. time). The dependency relation <<stores_constraints>> presents the
relationship between constraints and change transitions. Constraints (i.e. contract)
describe how services (described by essential element) are provided by the system.
These constraints must be stored in change transition in order to respect these
constraints inside the Change Request Model. This is why the Change Request
Model modifies the Context Model with respect to constraints defined in this Model
(denoted by <<modifies_wrt>> relation).

3.3.3 Change Model

To represent traceability between changes and the static model, we add a further
Model into the DSML: Change Model is composed by several Change Lines. As
shown by Figure 17, a Change Line is considered as set of Changes and Change
Transitions to preserve links and grant consistency between successive changes
which compose a Change Line.

Change is described by a Change Trigger (e.g. discovery of fault or new threat which
correspond to Change Event in Section 3.2.2), Change Trigger expresses the rationale
of Change and activates a Change Request. It is also possible to activate a Change
Trigger by a threshold defined in an Evolution Function which monitors the static
model of the system.

As shown by Figure 17, a Change Request contains a PUID2 to identify it, a
description a status which represents the state of the Change request (for further detail
see next section). After the activation of Change Request by the Change Trigger,
Change Request status is first defined in CCB (Configuration Control Board
represented by THA_Configuration_Control_Board package3). The configuration (or

2
 PUID = Product Unique Identifier

3
 The description of this package is out of scope in this Deliverable

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 45 / 132

change) control board (CCB) is a periodic meeting between several actors of a
development team (client, manager, quality, design, integration …) to define change
requests which are accepted, refused or postponed in the next version of the system.
The detailed behavior of a Change Request is described in the next section.

Figure 17 Change Model Conceptual Model

To cover all kinds of static model, Change Request is specialized into the following
kinds:

 A Requirement Change Request modifies the Requirement Model
(Requirement, Objectives). It is possible to map this kind of Change Request
with a DOORS Change Request (for further details see [32]).

 A Context Change Request modifies the Context Model (e.g. system
architecture).

 A Risk Change Request modifies the Risk Model (Risk, Threat, Damage, and
Vulnerability).

These three kinds of Change Request are dependant; a Requirement Change Request
can impact on a Risk Change Request and a Context Change Request and vice versa.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 46 / 132

This is why we consider a traceability relation between those Change Requests. This
relation is described by an ―impacts_on‖ association (see Figure 17).

3.3.4 Change Request: Behaviour

For readability sake, Change Request Behavior is described by a UML Statechart
Diagram. In first, we present the generic behavior of a Change Request including CCB
status relations. In second, we describe the specific behavior of Risk, Requirement and
Context Change Request.

3.3.4.1 General Behaviour of Change Request

As suggested by Figure 18, Change Request (CR) starts after Change Trigger
activation (e.g. discover a fault, a new requirement …). The Redactor of a Change
Request must define the change and trace it with the impacted elements. Change
Request is per default in Pending State.

A CCB must be planned; it monitors the Change Request Status which can be in the
following states:

 Refused, the CR is not relevant; it is not integrated in the system. The Change
Request is ended in this state.

 Postponed, the CR is relevant but it is not possible to integrate it in the current
version of the system. This CR is planned for the next version.

 Accepted, the CR is integrated in the current version of the system.

If the CR is accepted, it will be in the In_process macro state. This macro state is
specialized for several models of Static Model (Risk, Requirement or Context). Specific
Change Request Processes are described in the next section.

A CR is finished if and only if it is closed in CCB with client agreement.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 47 / 132

Figure 18 Change Request Behaviour

3.3.4.2 Specific Behavior of a Risk Change Request

A specific Risk Change Request Behavior starts after the Accepted state in the
generic behavior. As shown by Figure 19, Risk Change Request Status is represented
by the following sequence of states:

 In_progress, the redactor must define the changed risk.

 To_be_Evaluated, the redactor must re-qualify new or changed risk by setting
Risk Opportunity and Severity attributes [26] [30].

 To_be_Managed, the redactor of the Risk Change Request must take into
account the impact of this change request with the other elements
(Requirement and Context) and change them if necessary with new CR(s).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 48 / 132

Figure 19 Risk Change Request Behaviour

3.3.4.3 Specific Behavior of a Requirement Change Request

A specific Requirement Change Request (RCR) Behavior starts after the Accepted
state in the generic behavior. As shown by Figure 20, the Requirement Change
Request Status is represented by the following sequence of states:

 To_be_Managed, the redactor of Requirement Change Request must take into
account the impact of this change request with the other elements (Risk and
Context) and change them if necessary with new CR(s).

 In_progress, the redactor must define changed requirement, the designer must
model them, and the developer must implement them.

 To_be_verified, the integrator must take into account these changes in the test
campaign (and change the test scenario if necessary).

 Resolved, the RCR Status will reach this state if and only if changed
requirement is verified in the test campaign.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 49 / 132

Figure 20 Requirement Change Request Behaviour

3.3.4.4 Specific Behavior of a Context Change Request

A specific Context Change Request (CCR) Behavior starts after the Accepted state
in the generic behavior. As shown by Figure 21, the Context Change Request Status is
represented by the following sequence of states:

 To_be_Managed, the redactor of the Context Change Request must take into
account impact of this change request with the other elements (Risk and
Requirement) and change them if necessary with new CR(s).

 In_progress, the redactor must define changed components, the designer
must integrate it into models, and the developer must implement or use it.

 To_be_qualified, the integrator must take into account these changes in the
qualification process.

 Resolved, RCR Status will reach this state if and only if the changed
component is qualified.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 50 / 132

Figure 21 Context Change Request Behaviour

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 51 / 132

4 Change patterns

The previous section described an overarching security process. In this process, when
a change occurs, it propagates throughout the whole model of the system. Each
stakeholder is triggered to perform appropriate actions if that change affects the
stakeholder‘s view on the system. In this process, the actions that the stakeholder
needs to execute are not specified, however. In the remainder of the deliverable, we
focus on what one specific stakeholder, namely the architect, can do to deal with
evolution.

In the current section, we propose one specific technique for the architect to deal with
change. A process is outlined to create architectures that are resistant against
foreseen security-related changes. To achieve this, we identify the need for a
catalogue of the architectural solutions that deal with specific kinds of change: change
patterns. The architect can then select the appropriate solutions from this catalogue
and apply them to the architecture. After a motivating example, the structure of a
change pattern is described. Then, the process of using the patterns is outlined in more
detail, and the process is connected to the overarching security process from the
previous section. Finally, a catalogue of change patterns for dealing with evolving trust
relationships is presented, and its use is illustrated.

In Section 5, a generic architectural blueprint is outlined that is designed to
accommodate a broad set of changes. The architect can design the architecture using
this blueprint, and can use it as a starting point for applying change patterns.

4.1 Motivating example

Consider an online shop scenario, where clients can order goods from a shop on the
Internet, and pay using their credit card. For sake of simplicity, assume the payment
data are forwarded by the shop to the credit card company, which will execute the
transfer. We will model all samples using a component-based style, using UML 2
structure diagrams. The expected behaviour of the components is self-evident or
explained in text; we will not separately depict it in a figure.

For illustration purposes, we will focus on a non-repudiation requirement for the
system. By non-repudiation, we mean the inability of a party to deny having performed
a particular action. In this scenario, the non-repudiation requirement states that the
clients will acknowledge their orders afterwards (i.e., they cannot plausibly deny having
placed them), and the shop will execute the orders correctly (i.e., the shop cannot
plausibly deny having received an order, and cannot plausibly charge the wrong
amount to the client‘s credit card).

Initially, assume all clients trust the shop to correctly process the orders, and not to
abuse their credit card information. The shop, in its turn, is convinced that the clients
will acknowledge their orders afterwards. In this situation, the non-repudiation
requirement is resolved entirely by trust. The architecture for this system could look like
Figure 22.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 52 / 132

Figure 22 Mutual trust

Clients place their orders, and the shop processes them. No additional security
measures need to be taken, given the trust assumptions. Although the non-repudiation
requirement is fulfilled, resolving the requirement by placing trust upon the appropriate
parties may be naive in most real-life cases. Nevertheless, a risk analysis could turn
this into an adequate solution.

The trust assumptions turned out not to hold for the shop, though, and after a while the
shop gets wound up in its first lawsuit filed by an unhappy customer. There, it becomes
painfully clear that the shop cannot present any credible evidence that the client has
indeed placed the disputed order. To avoid this from happening again, the shop wants
to make sure that suitable evidence exists for all future orders. Therefore, the
architecture is modified to resemble Figure 23.

Figure 23 Client digitally signs orders

Clients now have to digitally sign their orders before the shop will process them.
Therefore, they make use of a cryptography module offering digital signatures. Before

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 53 / 132

processing an order, the shop first deals with the added signature. The signature is
validated by the shop, using a certification authority (CA) to check the revocation
status. If correct, the signed order is time stamped by a third party (the time stamping
authority, TSA) to ensure its validity at the time or purchase, even if the client‘s
signature key gets compromised afterwards. Finally, the signed order and timestamp
are stored as evidence on a secure medium connected to the shop‘s systems. Note
that the shop service component changed significantly. It will now also have to
collaborate with the CA, TSA and the secure storage.

After some negative experiences with the shop, its clients become more wary of the
shop‘s interactions with the credit card company. The shop, however, does not provide
the client with any useful information regarding its actions. Only the order history is
available. Luckily, the credit card company offers the clients a notification system
triggered by any activity on their account. The clients will thus monitor the shop‘s
activities indirectly, by comparing the order history provided by the shop with the
notifications provided by the credit card company. An architecture for this purpose is
displayed in Figure 24.

Figure 24 Client monitors activities

To counter the negative reactions, the shop eventually decides to provide clients with a
digitally signed proof of the purchase, including details on all products and prices. The
client will need to store this evidence to be able to use it in case of a dispute.
Moreover, the shop wants the exchange to be fair, i.e., it should not be possible, nor for
the shop, nor for the client, to cheat and receive their evidence without providing the
other party with the necessary evidence. A possible architecture for this case is shown
in Figure 25.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 54 / 132

Figure 25 Non-repudiation

The shop now makes use of a fair non-repudiation protocol between the client and the
shop. The protocol is implemented in a non-repudiation component (NR Service), and
needs access to a trusted third party (TTP) to always complete successfully. To store
the resulting evidence, both client and shop need to use the time stamping services
from a TSA and have access to a secure storage medium. Since both parties have to
verify the signatures on the evidence, they need access to the CA as well. The client
now does not need the notifications from the credit card company anymore.

The evolution of the non-repudiation requirements in this scenario can be captured by
an evolution of trust. A summary of the trust situations and chosen solutions is
presented in Table 3. It is apparent that the shop‘s main component, ShopService, had
to be modified multiple times to accommodate this changing trust. We can conclude
that it was not designed for this kind of evolution.

Trust situation Chosen solution

Mutual trust between client and shop. No additional actions necessary.

Distrust from shop to client in
acknowledgement of purchase.

Client still trusts shop.

Client provides digitally signed purchase
evidence to shop.

Distrust from shop to client in
acknowledgement of purchase.

Distrust from client to shop in correct
payment handling.

Client provides digitally signed purchase
evidence to shop.

Client monitors shop‘s payment handling
actions through credit card company.

Mutual distrust between client and
shop.

Client and shop use fair non-repudiation
protocol.

Table 3 Evolution of trust

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 55 / 132

4.2 Change pattern structure

To enable the architect to design the architecture such that it can cope with possible
evolution scenarios, we propose the usage of change patterns. A change pattern
consists of the following parts:

1. A change scenario, expressed at the requirements level, which describes
the change in the requirements or environmental assumptions, and for
which the change pattern provides a solution. This change scenario will
consist of a before and after requirements4 model.

2. One or more solutions. Each solution consists of

 An (optional) set of architectural support patterns that describe the
infrastructure that needs to be integrated within the architecture in
order to use the change pattern.

 Change guidance, that describes how the change scenario can be
implemented, based on the infrastructure introduced in the
architectural support pattern.

3. A mapping between the elements from the change scenario (at the
requirements level) and the architectural elements in the solution. A
mapping can be applicable to a set of change patterns, to a single change
pattern or even to only one solution of a change pattern.

Each change pattern thus explicitly describes the evolution scenario it supports. This
description is abstract, i.e., situated at the requirements level (including the
environmental assumptions), and is expressed as a (situation before change, situation
after change) pair. The evolution scenario is described independently of any
application context, so interpreting the evolution scenario for a specific application
requires performing a translation from the general scenario elements to the specific
elements in the application. Besides the change scenario, the pattern provides the
description of an architectural solution. Following the change guidance from the
solution should enable the evolution scenario to be incorporated without significant
impact on the architecture, given that the necessary architectural support patterns are
already in place in the architecture. Finally, the mapping clarifies how the entities in the
scenario description map to the entities of the solutions at the architectural level.

4.3 Process description

The process in this section describes how the change patterns can be used when
designing an evolvable system. The process is to be executed by the architect of the
system. Within the overall process presented in Section 3, it reflects one possible
strategy that an architect can follow within his domain and responsibility. The process
is triggered by changes occurring outside this domain, for instance in the requirements
domain. In its turn, following the process will eventually trigger changes in the
implementation or deployment domain.

4
 For brevity, we will from this point onwards refer to both requirements and environmental

assumptions simply as ‗requirements‘.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 56 / 132

The first input necessary for the process is a model representing the set of security
requirements of the system that is being designed. These requirements do not yet
need to be complete. Any part of the system that is sufficiently explored can be used
as an input to the process. Of course, the results will then only be limited to this part of
the system. Additionally, the process requires a model representing an initial
architecture that already supports the security requirements. This architecture is not
expected to support evolution of these requirements; supporting this is the outcome of
the process. Finally, a catalogue with suitable change patterns is needed.

Given these inputs, the architect can start. First, matches are sought between the
security requirements descriptions and the evolution scenarios from the change pattern
catalogue. An evolution scenario matches with the requirements if the requirements
describe the ‗before‘ part of the scenario, and a meaningful transition to the ‗after‘
situation can be identified. This transition may occasionally be straightforward to
identify, but often it will require some creative thinking and brainstorming by the
architect and stakeholders.

For each matching instance, the importance and likelihood of this change scenario is
estimated, again by the architect and other stakeholders. This estimation is similar to,
and in fact closely related to, the risk analysis of the system: the stakeholders will have
to decide whether the evolution scenario currently needs to be supported by the
architecture in order to mitigate likely future costs, or whether support for the scenario
can be deferred.

The decision to support or discard an evolution scenario, and the reasons for that,
should be explicitly documented in the architecture‘s rationale. If it is decided that the
scenario has to be supported, the architecture is updated by instantiating the change
pattern in it: a solution is chosen, and the architect needs to ensure that the
architectural support patterns are in place. Later in the lifetime of the application, if the
evolution scenario actually manifests itself, the change guidance from the solution is
followed to update the application to this new situation. The goal of the change pattern
is to help the architect in implementing the change described by the scenario without
significant impact on the architecture of the system.

4.3.1 Place in the SecureChange Framework

A change pattern is related to the SecureChange framework from Section 3 in the
following way. The common system view from the framework consists of meta model
elements describing the entire system. Each stakeholder has a specific view on these
elements: the requirements engineer focuses on the elements related to requirements,
the software architect on the architectural and design elements, and so forth. The
change pattern approach describes a process for the architect to deal with change at
the architectural level.

In Figure 26, we schematically depict how a change pattern is related to the
occurrence of changes, i.e., a transition from one system state to another. A change
pattern consists of a before/after pair at the requirements level, that is, it describes the
change scenario which it supports at the requirements level. To enable the use of the
change pattern in the architecture, the architect needs to instantiate the architectural
support patterns that belong to the change pattern into the architecture. Note that this
needs to happen before the actual change occurs, as the architectural patterns may
have a significant impact on the architecture. Finally, the change guide from the pattern

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 57 / 132

describes how the change at the requirements level can be implemented in the
architectural domain (by the architect), and/or other domains (e.g., implementation or
deployment), using the architectural patterns that are present in the architecture.

Figure 26 Relating change patterns to changing system state

Using the change pattern approach in the SecureChange framework requires a change
pattern metamodel, depicted in Figure 27. The metamodel is largely encapsulated in
the architectural domain, with some external references. First, it references the
requirements domain, by means of the change scenarios. Additionally, the change
guide may contain references to elements from other domains like implementation or
deployment.

ArchitecturalPattern

ChangeScenario

Change pattern

Change Guide

Requirement

Architecture

Solution

1

describes

1..*

dealsWith

followedGuides

appliedPatterns

refersTo

handles

1

refers

*

Figure 27 A change pattern meta model

Some of the elements from this metamodel can have state. A change scenario can be
in two states: the ‗before‘ state, when the real-world situation corresponds with the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 58 / 132

situation described in the ‗before‘ part of the scenario, and the ‗after‘ state, in which the
real-world situation corresponds with the situation described in the ‗after‘ part.

An architectural support pattern can be in two states with respect to a particular
architecture: the ‗unapplied‘ state, i.e., it has not been applied to the architecture, and
the opposite ‗applied‘ state.

Equally, a change guide can be in two states with respect to a particular architecture:
the ‗unfollowed‘ state, meaning that the change guide has not been followed by the
architect, and the ‗followed‘ state for when the change guide has been followed.

The architecture itself (which is partially determined by the applied patterns) can be in
three states with respect to a particular scenario. First, the architectures ‗matches‘ a
scenario when the architecture in its current form provides the right guarantees to
securely fit in the current real-world situation. Conversely, the architecture is at ‗risk‘
when it does not match the state of the scenario, because it does not provide enough
guarantees; this leads to a security risk. Finally, the architecture can be ‗overprotected‘,
meaning that it does not match the state of the scenario, but it provides more
guarantees than necessary for the state of the scenario.

Changes in the scenario state (real world) are caused by events external to the
architectural domain (e.g., stakeholders changing their minds, deployment in a new
environment, etc.). Changes in the state of the support patterns, change guides and
architecture happen due to actions from the architect. In our context, the actions of an
architect are limited to applying or unapplying an architectural support pattern,
following or undoing a change guide, or doing nothing. Note that, in order to follow a
change guide, the referred architectural support patterns must always be in the
‗applied‘ state.

All possible transitions for a single combination of scenario, change guide and
architecture are summarized in Table 4. Note that, for presentation purposes, we only
consider the case where following a change guide increases the security guarantees.
Undoing the guide will thus decrease the security guarantees. It is straightforward to
extend the table in order to include the converse situation.

The term ‗change guide‘ in this table refers to a change guide described in one of the
solutions that belong to the scenario; ‗architecture‘ refers to the architecture with or
without the change guide applied to it. Actions marked with a ‗*‘ denote actions that
require the support pattern to be in the ‗applied‘ state.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 59 / 132

ORIGINAL STATE CHANGE NEXT STATE

Scenario
state

Change
guide
state

Architecture
state

World
Changes?

Action of
architect

Scenario
state

Change
guide
state

Architecture
state

Before

Unfollowed Matches

No
Nothing

Before
Unfollowed Matches

Follow* Followed Overprotected

Yes
Nothing

After
Unfollowed Risk

Follow* Followed Matches

Followed
Over-

protected

No
Nothing

Before
Followed Overprotected

Undo Unfollowed Matches

Yes
Nothing

After
Followed Matches

Undo Unfollowed Risk

After

Unfollowed Risk

No
Nothing

Before
Unfollowed Matches

Follow* Followed Overprotected

Yes
Nothing

After
Unfollowed Risk

Follow* Followed Matches

Followed Matches

No
Nothing

Before
Followed Overprotected

Undo Unfollowed Matches

Yes
Nothing

After
Followed Matches

Undo Unfollowed Risk
Table 4 Change patterns and state transitions

4.3.2 Automation

In its current form, the architect has to perform all steps outlined above manually. It is
interesting to investigate how, and to what extent, the architect can be supported in
these tasks by model-driven development and automation. This, of course, requires
that both requirements and architecture are expressed using a model.

To further support automation, the catalogue with change patterns needs to be
formalized as well. A formalized change pattern consists of the following:

- A formal description of the change scenario at the requirements level that is
supported by the pattern. This description is dependent on the formalism (meta-
model) used to express the security requirements.

- A formal description of the architectural support pattern that needs to be
instantiated in the architecture to support the evolution. This description is
dependent on the formalism (meta-model) used to express the architecture.
Note that the pattern description may introduce new structural elements,
describe behaviour, and/or can identify roles that later have to be mapped to
actual elements from the architecture into which the pattern is instantiated.

- A formal description of the change guidance. The change guidance should
relate the necessary changes at the architectural level to the changes at the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 60 / 132

requirements level. In the description, constructs (e.g., structural elements,
behavioural elements, roles) introduced by the architectural support pattern
may also be referred to. Therefore, this description is description is dependent
on the formalism used to express the change scenario, the formalism used to
express the architecture, and the architectural support pattern.

Furthermore, the change pattern can describe additional characteristics, like qualities,
advantages, disadvantages, consequences, etc. that it exhibits. These descriptions are
helpful for the architect when choosing a particular pattern and making trade-offs, but
play no major role in the automation.

Based on this change pattern catalogue, and the current requirements and architecture
models, the architect can be supported in multiple ways. For instance, matches
between the evolution scenarios and the requirements model can be automatically
sought. For each matching scenario, the architect can be prompted whether or not to
deal with this scenario. If he chooses not to deal with the scenario, this decision (and
its motivation) can be explicitly recorded in the architecture‘s rationale. If, however, the
scenario is chosen, then additional help for the architect can be given, by presenting
the set of applicable solutions. The architect can then choose a solution to instantiate.
Mappings for the roles of the solution can be determined automatically if possible, or
be provided by the architect. Once the mappings are known, an automated
transformation can be executed that instantiates the architectural support patterns into
the architecture. Also, support can be given in following the change guidance when
that becomes necessary.

In what follows, we will attempt to document change patterns in a formal way. We will
not, however, elaborate on the automation part any further.

4.4 Trust evolution

The approach outlined above is generic. It can be used for any recurring kind of
change, for which a generic solution can be described. To limit the scope of the
discussion, this part of the deliverable will illustrate the process using one specific kind
of change: evolving trust relationships between the entities in the architecture. The
choice for trust is motivated by the following three reasons.

1. Trust is a general but important notion when dealing with security, because the
need for security in a system originates from the presence of untrusted entities.
Therefore, to be able to effectively secure a system, it is important to know (and
explicitly state) which entities are trusted for certain tasks, and which are not.
This establishes a strong connection between trust and security.

2. While research has been done on the influence on a software architecture of
‗classical‘ security concepts such as confidentiality, integrity and availability, the
impact on an architecture of the presence (or absence) of trust relationships
between two entities is an underexplored area. This makes trust the most
interesting choice from a research point of view.

3. There is a large likelihood of experiencing change in the area of trust over the
lifetime of a system. For instance, systems can be moved from a trusted
environment to a more hostile world. Additionally, trust relationships between
humans (and, by extension, between the companies they work for) are volatile
in nature. Such a change will most likely be reflected in the architecture of the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 61 / 132

software systems5. Thus, it is expected that trust evolution will occur, and that it
may have a significant impact on the architecture.

The change scenarios provided in the next part originally emerged from analyzing the
case studies of the SecureChange project. After this initial analysis, the findings were
grouped and abstracted. Finally, the set of scenarios was completed by expressing the
scenarios in SI* and eliciting missing variants.

4.4.1 Evolving trust scenarios

In the remainder of this section of the deliverable, the effect of the evolution of trust on
a component-oriented architecture is studied. A catalogue of change patterns for this
kind of evolution is presented, and applied to some examples.

To reason about the evolution in trust at the requirements level, we need to explicitly
represent the trust relationships. We use the SI* modelling language [34], adopted by
the Secure Tropos methodology [35]. SI* offers the best support for representing trust,
by extending the Tropos language with explicit trust and distrust relationships. We will
assume the reader is familiar with the notation; otherwise, we refer to [35] for an
overview of the concepts.

To elicit architectural solutions that can cope with changing trust at the requirements
level, we distinguish among various scenarios in which trust changes. We assume that
we start from a late requirements model, i.e., there already exists an actor that
represents the system. In SI*, the dependencies between that system actor and the
other actors define the functional and non-functional requirements of the system [35].

For each distinct trust evolution scenario, a change pattern is defined. This pattern will
detail how the architecture of the system should be designed, such that it can deal with
the trust evolution scenario. Also, the pattern describes the necessary changes that
have to be applied whenever the evolution scenario occurs.

We will focus only on scenarios in which trust decreases. In these scenarios, additional
measures will have to be introduced to compensate for the lack of trust. Of course, the
inverse evolution is also possible. The proposed change patterns should, therefore,
also be capable of handling an increase in trust. This means that every mechanism,
proposed by the pattern to remedy the decreasing trust, should subsequently be easy
to undo.

Finally, recall that both the concept of change patterns and the accompanying process
are independent of the used requirements elicitation technique or model. Therefore,
the elicitation technique that was simultaneously developed in Work Package 3 could
be plugged in as well.

4.4.2 Mapping trust requirements to architecture

As discussed before, the catalogue needs to provide a mapping between SI*
requirement models and component-oriented architectural models, which we will

5
 This is an illustration of Conway‘s Law: ―organizations which design systems [...] are

constrained to produce designs which are copies of the communication structures of these
organizations‖. (http://www.melconway.com/research/committees.html)

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 62 / 132

express in UML (version 2.0). This mapping is the same for all change patterns in the
catalogue, and is depicted in Figure 28.

SI* UML 2.0

Agent A

Component A

<<component>>

A

Agent A, providing service

Component A with operation and port

+service()

<<component>>

A

Delegation of execution from B to A

If the service is a goal or task: operation of A,
used by B

If the service is a resource: information flow
from A to B.

Delegation of permission from B to A

Not modelled explicitly

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 63 / 132

Trust of execution from B to A

Not modelled explicitly

Distrust of execution from B to A

Not modelled explicitly

Trust of permission from B to A

Not modelled explicitly

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 64 / 132

Distrust of permission from B to A

Not modelled explicitly

Actor part of other actor

Composite structure

 : B

 : A

Figure 28 Mapping between SI* and UML

Note that, contrary to the delegation of execution relationships, delegation of
permission relationships are not reflected explicitly in the architectural model. The
relationships are reflected only by notes, which can be interpreted as architectural
assumptions in this case. At the architectural level, it is assumed that components that
fulfil services already have permission to execute the service, or that they acquire the
necessary permissions implicitly by means of the received invocations. Mechanisms
such as access control may restrict the permissions of a component in the system. In
that sense, an architecture is more likely to reflect the absence of a delegation of
permission —by the presence of access control mechanisms— rather than the
delegation itself.

Remarkably, trust relationships also do not have a companion on the architectural
level. It will, again, chiefly be a lack of trust that will influence the architecture: when
trust is missing, mechanisms must be put into place to overcome this situation. Trust
and distrust relationships are thus mapped to architectural assumptions (for trust
relationships) or constraints (for distrust relationships).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 65 / 132

4.5 Change pattern catalogue for trust

The catalogue that follows presents change patterns in which a trust relationship (trust
of execution or permission) changes, insofar that the relationship crosses the system
actor‘s boundary. This means that the changing relationship represents a change in
requirements or assumptions.

We assume that, for each trust (or distrust) relationship between two actors, there is
also a corresponding delegation relationship. Strictly speaking, this is not necessary,
but trust relationships without a delegation between the actors have little value for our
purposes: the presence or absence of the trust relationship without a delegation
relationship has no influence the behaviour of the actors, and as such requires no
special attention at the architectural level.

In the catalogue, each change pattern entry shows the situation before and after the
changing trust relationship using the SI* notation. Also, an example gives a concrete
illustration of the case. Subsequently, one or more solutions are described. The
solutions are also applied to the example given before. It is important to keep in mind
that only architectural solutions are considered. For instance, restoring trust by signing
an agreement on paper may also be possible, but does not have an architectural
impact. Also, multiple solutions to the same problem may sometimes be combined.

It is not claimed that the patterns are the only or best solutions, or that the set of
patterns or their solutions is complete. They only offer choice, and provide guidance, to
the architect. When choosing and implementing them, other architectural constraints
have to be taken into account as well.

Also keep in mind that we will only focus on the architecture of the system that is being
developed, and not the architecture of external, connected systems. This means that,
for some solutions, the external systems may need to be adapted to work with the
chosen solution. These adaptations are not described in detail, but it is clear that
change patterns could be used in the design of these external systems as well.

Finally, we stress that requirements and architecture are not two separate phases. This
implies that the architectural solutions that are proposed in the next section can usually
be expressed by a more abstract requirements model as well. We will do so where
applicable.

For easy browsing, an overview of the change patterns in the catalogue, with
references to the corresponding section and page number, is given in Table 5.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 66 / 132

Change scenario and solutions Section Page

Evolving trust of execution upon external actor

 Solution 1: Require commitment

 Solution 2: Use monitoring

4.5.1 66

Evolving trust of execution from external actor

 Solution 1: Provide commitment

 Solution 2: Enable monitoring

4.5.2 75

Evolving trust of permission upon external actor

 Solution 1: Apply least-privilege principle

 Solution 2: Attribute-based access control

 Solution 3: Use monitoring

4.5.3 82

Evolving trust of permission from external actor

 Solution 1: Request confirmation

 Solution 2: Enable monitoring

4.5.4 87

Delegate execution of a service to a trusted actor

 Solution: Encapsulate service
4.5.5 89

Delegate permission to a service to a trusted actor

 Solution: Flexible access control
4.5.6 92

Providing additional service with delegated execution

 Solution: Introduce bridge component
4.5.7 94

Providing additional service with delegated permission 4.5.8 96

Table 5 Change pattern catalogue overview

4.5.1 Evolving trust of execution upon external actor

For the first change pattern, suppose that the system actor relies on an external actor
A to execute a certain task (i.e., it delegates execution of the service to A). Originally,
the system trusts A to (at least) execute the delegated task. Over the course of time,
this trust relationship may change, and the trust relationship can disappear6. This is
shown in Figure 29.

6
 As a reminder: SI* represents trust using ‗Te‘ and ‗Tp‘ relations, for trust of execution and

permission, respectively. Distrust is represented by ‗Se‘ and ‗Sp‘.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 67 / 132

Before After

Figure 29 Evolving trust of execution upon external actor

This causes a problem: the system expects A to achieve the delegated goal, but at the
same time, does not trust A to do so. To resolve this problem, additional mechanisms
will have to reinstate the trust of the system in A.

Example The system to be built is a travel agency system. The system needs to make
reservations on flights from an airline. It relies on an external actor, the airline
reservation system, to make the reservation when requested. Initially, the travel agency
assumes all reservations will be made correctly. After some clients complained
because their reservation was incorrect, the travel agency no longer trusts (but still
needs) the airline system for making the reservations.

Applying the mapping from requirements to architecture, as given in Figure 28, to this
example, we obtain the architectures in Figure 30 (before and after the trust
relationship changes).

Before After

Figure 30 Requirements mapped to architecture

Achieving this result by applying the mapping is straightforward, and we will therefore
omit the architectures derived from the requirements using the mapping in the other
change pattern examples.

4.5.1.1 Solution 1: Require commitment

A first solution for the case above is presented as the ‗non-repudiation pattern‘ in [36].
To re-gain the trust in A, the system will require assurance from A that it will do what is
expected. Therefore, before A can fulfil the service, the system requires A to provide a

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 68 / 132

commitment (a piece of evidence) that it will do so. The service is thus split in two: first,
checking that a correct commitment from A has been received, and second, fulfilling
the actual service.

Note that the system trusts A to deliver the commitment; if no commitment is provided,
the system should choose not to rely on A for fulfilling the service. Alternatively, a (fair)
non-repudiation protocol could be used between the parties. The protocol then ensures
that no party can obtain a benefit over the other.

This solution strategy, expressed in SI* and mapped to the architecture, is shown in
Figure 31.

Strategy

Strategy mapped to architecture

Structure

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 69 / 132

Behavior

Figure 31 Require commitment

Example The travel agency can require a confirmation from the airline system, before
the reservation is made. This confirmation should include all data that will be used to
make the reservation. The travel agency should check the information in this
confirmation, and the reservation should only be made if the travel agency correctly
verified the information. In case of later dispute, the confirmation can be used as
evidence by the travel agency. This assurance suffices for the travel agency to restore
its trust in the airline.

Architectural support pattern

At the architectural level, it is clear that this solution requires the system to carry out
additional actions and checks before and/or after one of its services is invoked. At a
later point in time, these actions and checks might be removed or replaced. The
architecture of the application therefore should allow flexible addition and removal of
these actions and checks, preferably by reconfiguration.

The architectural support pattern for supporting the above scenario is shown in Figure
32, and described as follows. The system component can be associated with a number
of registered handler components. The handlers will perform the additional checks and
actions that need to be performed. For instance, they could read, modify or delete the
request parameters, or append additional information. Moreover, they can block the
request altogether, e.g., when a necessary condition is not fulfilled.

All information that the handlers need to do their work is encapsulated in a context
class. An instance of the context class exists for both the delegation request and the
response. The class should, at least, encapsulate all parameters of the request. The
exact definition of the class depends on the operation, and is not elaborated here. The
registration of the handlers with the system could, for example, occur in the
implementation, or could be handled via configuration options. The exact details are
not important, and are therefore not elaborated upon.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 70 / 132

Architectural support pattern

Structure

+handleBefore(context : Context)

+handleAfter(context : Context)

<<component>>

Handler

...

+service(params)

<<component>>

System

+getParams()

ContextregisteredHandlers

0..*

Behavior

Figure 32 Handler architectural support pattern

Whenever the execution request for the operation is about to be issued, instances of
the context class need to be created and populated with the relevant information. Then,
the registered handlers are called sequentially. If none of the handlers prohibited the
execution of the operation, because of a failed check for instance, then the actual
operation runs. After the operation has been executed, but before the result is returned

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 71 / 132

to the system, a context instance is created for the result and the handlers are called
again.

Without support from the underlying platform, the implementation has to be done
manually for each operation. In this case, it is clear that aspect-oriented technologies
can provide a significant benefit. They enable the modular interception technique that
is needed for this pattern.

When a middleware platform is used, this functionality is often available by default. For
example, in the Java Enterprise Edition, web service clients written using JAX-WS can
specify client handlers in a handler chain. These handlers will be called before any
operation of the web service is called, and/or before any result is returned to the caller.
The handlers have the possibility to, among others, inspect the entire SOAP body and
add header fields.

Change guidance

To implement the solution when the trust relationship change occurs, a commitment
handler needs to be developed (see Figure 33). This handler must request a
commitment from the other party (called the commitment provider). This commitment
must include the values of the (relevant subset of the) parameters that will be used in
the actual fulfilment of the service. The commitment handler must resolve a reference
to the commitment provider, request a commitment and verify the validity of the
returned commitment (both its contents and the digital signatures). If the commitment is
valid, it needs to be stored, and the fulfilment of the request can continue. If the
commitment is invalid, or has been forged, the request must be aborted.

Structure

<<component>>

CommitmentHandler

SecureStorage CryptoModule CommitmentProvider

<<component>>

Handler

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 72 / 132

Behaviour

Figure 33 Applying the handler architectural support pattern

The component that corresponds to the system must have the architectural support
pattern applied. The commitment handler can then be added to the set of registered
handlers (in the implementation, or by means of configuration), as shown in Figure 34.

 : CommitmentHandler

CommitmentProvider CryptoModule SecureStorage

 : SecureStorage : CryptoModule

 : System

 : A

 : registeredHandlers

Figure 34 Adding a commitment handler

The commitment handler should also be configured such that it applies only to the
operation that needs protection, i.e., the operation that corresponds with the delegated
service as described in the change scenario.

The addition of this handler ensures that the negative effects of the change in trust
relationships are mitigated.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 73 / 132

4.5.1.2 Solution 2: Use monitoring

A second solution in this case is the use of monitoring (Figure 35). The system
delegates the task of monitoring the execution of the service to a monitor agent. The
monitoring gives the system enough assurance to trust upon the execution of the
service by A. Note that the monitoring does not prevent A from executing the service
incorrectly. However, because of the high chance of failure being detected, A now has
more incentive to execute the service correctly.

Monitoring can be performed using communicating software components, but could
also be handled by intervening humans (e.g., using e-mails, telephone, letters, etc.).
Therefore, the exact monitoring mechanism is not part of the solution. In general,
however, monitoring an agent requires that some information from that agent is
provided to the agent that performs the monitoring, either spontaneously or upon
request.

Strategy

Strategy mapped to architecture

Structure

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 74 / 132

Behaviour

Figure 35 Use monitoring

Example The travel agency system can send an e-mail to inform one of the employees
that a reservation with an airline has been made. The employee should then confirm
with the airline that the reservation has been made correctly, and if not, contact the
airline and make sure the problem gets resolved. From the viewpoint of the system, the
reservation will certainly be handled once it has been sent to the airline system and the
e-mail to the employee has been sent. Therefore, its trust in the airline system is
restored.

Architectural support pattern

This solution also requires interception of the service execution, and will require the
architectural support pattern introducing configurable handlers as described in Section
4.5.1.1.

Change guidance

To implement this solution when the trust relationship changes, a monitor handler
needs to be developed (see Figure 36). This handler gets invoked before the service
from the external component is requested.

The exact implementation of the monitor depends on the type of monitoring chosen,
and has to be defined on a case-by-case basis. For instance, the monitor could
periodically retrieve information from the external component, or it could send an e-mail
to a person responsible for monitoring the service fulfilment.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 75 / 132

Structure

<<component>>

MonitorHandler

<<component>>

Handler

Behaviour

Figure 36 Developing a monitor handler

The monitor handler can then be added to the set of registered handlers (in the
implementation, or by means of configuration), as shown in Figure 37.

 : MonitorHandler

 : System

 : registeredHandlers

Figure 37 Register the monitor handler

The monitor handler should also be configured such that it applies only to the operation
that needs protection, i.e., the operation that corresponds with the delegated service as
described in the change scenario.

The addition of this handler ensures that the negative effects of the change in trust
relationships are mitigated.

4.5.2 Evolving trust of execution from external actor

In this change pattern, the system provides certain services that are relied upon by an
external party. Initially, the external party trusts the system to fulfil the service correctly,
but this trust may disappear later during the lifetime of the system. This scenario is
depicted in Figure 38.

This case is the complement of the previous case. Here, the system actor is the actor
that is no longer trusted. As expected, the solutions to this case are related to the
previous case. Instead of requiring a commitment, the system will now have to provide
one. Similarly, instead of monitoring the external agent, the system will now have to
enable monitoring by another agent.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 76 / 132

Before After

Figure 38 Evolving trust of execution from external actor

Example The system we are building is an airline reservation system. The system is
relied upon by an external actor, the travel agency. Initially, the airline believes all
travel agencies trust their reservation system. After some disputes about reservations,
though, the travel agency no longer trusts (but still needs) the airline reservation
system for making the reservations. The airline reservation system now needs to be
changed, such that the trust from the travel agency is restored.

4.5.2.1 Solution 1: Provide commitment

The system can offer commitments for the services requested by other parties, as
illustrated in Figure 39. The commitment is provided before the actual service is
fulfilled. Note that, similar to the converse situation, the external actor trusts the system
to deliver the commitment. If this is unacceptable, a (fair) non-repudiation protocol can
be used between the parties. The protocol then ensures that no party can obtain a
benefit over the other.

Strategy

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 77 / 132

Strategy mapped to architecture

Structure

Behavior

Figure 39 Providing a commitment

Example The airline reservation system can provide a confirmation to the travel
agency. This confirmation contains all information that will be used to make the
reservation. The travel agency then verifies the confirmation. Only if the verification is
successful, the reservation is made. Because the commitment assures the travel
agency of the correctness of the reservation, its trust is restored.

Architectural support pattern

The system should be designed such that it is easy to validate the parameters used for
providing the commitment, i.e., it should be ensured that no commitment is generated
for a request that cannot be fulfilled. A possible solution for this is the introduction of a
validator component as part of the system, which is responsible for validating a set of
parameters for a service. This support pattern is shown in Figure 40.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 78 / 132

Architectural support pattern

Structure

 : Validator

 : System

Behaviour

Figure 40 Validator architectural support pattern

Moreover, to digitally sign the commitment, the system should have access to a
component offering cryptographic operations (Figure 41).

Structure

Figure 41 System accesses a cryptographic module

Change guidance

To implement this solution when the trust relationship changes, the system needs to be
extended with a service to provide a commitment. This service will contact a validator
to ensure the validity of the parameters, before constructing the commitment. If the
parameters are valid, the commitment is digitally signed and returned. From this point
on, the system has committed to fulfil the service with the given parameters. This is
shown in Figure 42.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 79 / 132

Structure

<<new>>+provideCommitment()

+fulfillService()

...

<<component>>

System

 : Validator

 : System

 : CryptographicModule

Behaviour

Figure 42 Applying the change guidance

4.5.2.2 Solution 2: Enable monitoring

A second solution to restore the trust from the external party is to enable monitoring of
the service execution (Figure 43). The external party delegates the task of monitoring
the system to a monitor actor, which is then responsible for checking the fulfilment of
the service by the system. Although this does not ensure the correct fulfilment of the
service, but will most likely lead to a bigger incentive for the system actor to ensure a
correct execution. Note that monitoring can happen continuously and automatically by
using a software monitor, or can be performed occasionally and manually (by an
auditing company, for instance).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 80 / 132

Strategy

Strategy mapped to architecture

Structure

Behaviour

Figure 43 Enable monitoring

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 81 / 132

Example The airline reservation system can enable external actors (i.e., airline
employees, or travel agency employees) to observe its actions. For example, a travel
agency employee could be able to request information about a reservation, to ensure
its correctness. In this way, additional assurance is given to the travel agencies about
the reservations, and the trust relationship is restored. Alternatively, an external audit
company could be responsible for discovering misbehaviour of the airline reservation
system.

Architectural support pattern

The system should be extended with a status collector component (Figure 44), which
gets informed about the status of each service execution, and stores this information.
This status collector can be a separate component dedicated to this purpose, or can,
for instance, be part of the auditing and logging infrastructure.

Architectural support pattern

Structure

 : StatusCollector

 : System

Behaviour

Figure 44 Status collector architectural support pattern

Change guidance

To implement this solution when the trust relationship changes, the status information
obtained by the status collector must be made available to the monitor component
(Figure 45). This could be achieved entirely using software, or the information could be
made available to humans (e.g., displaying on a screen). Whatever the used
mechanism, the information needs to be accessible to the outside of the system.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 82 / 132

Figure 45 Enable monitoring using a status collector

4.5.3 Evolving trust of permission upon external actor

This change pattern does not deal with trust of execution, but rather with trust of
permission. Suppose a system allows an external actor to fulfil a service, and trusts
this actor not to abuse this permission. Over time, this trust relationship can disappear,
so that the actor still receives the permission (as it may need it to perform its work), but
is no longer trusted with it. This scenario is shown in Figure 46.

Before After

Figure 46 Evolving trust of permission upon external actor

Example The system we are building is a hospital information system. The system
gives permission to another actor, a nurse of the hospital, to access all information
about the patients. Initially, the hospital trusts the nurse not to abuse this permission.
After the nurse was caught using this permission to gain illegitimate access to a
celebrity‘s medical records, the hospital system does not trust the nurses anymore.

4.5.3.1 Solution 1: Apply least-privilege principle

Instead of giving the external actor permission to the complete service, the permission
can be made more fine-grained. If the service consists of (or can be split into) multiple
sub-services, giving permission to execute a small subset of these may suffice; access
to all other sub-services can be denied. This corresponds to applying the well-known
principle of least privilege, and is shown in Figure 47.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 83 / 132

Strategy

Strategy mapped to architecture

Structure

Behaviour

Figure 47 Apply least-privilege principle

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 84 / 132

Example Instead of having access to all known information about a patient, the nurse
in the hospital may now only access the information which she needs for her job. All
other information is not accessible to her anymore.

Applying least privilege may have a significant impact on the architecture, however.
Therefore, it is hard to create an architecture that can, in the future, be modified to
comply with the least privilege principle without requiring significant alterations to the
architecture. This means that picking this solution would require the architect to design
the architecture from the beginning according to the least privilege principle. If this is
impossible, one of the other solutions needs to be chosen.

4.5.3.2 Solution 2: Attribute-based access control

Instead of giving the external party permission to the complete service, an access
control policy can be put in place (Figure 48). The policy will define permissions based
on the identity of the external party. The permissions can be further refined by
attaching conditions that depend on the context (e.g., parameters for the service,
attributes of the subject or a resource, the current time, etc.).

Strategy

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 85 / 132

Strategy mapped to architecture

Structure

Figure 48 Attribute-based access control

Example The nurse can only access the patient information of patients for who she is
a designated nurse, and only within the nurse‘s working hours. A nurse has to identify
herself before gaining access to patient information. The context information can be
obtained from multiple systems: the designated nurses for a patient are provided by the
patient administration system, while the working hours of the nurse are provided by the
scheduling system. This restricted access control limits the possible scope of malicious
actions of the nurse, so that the trust is restored.

Architectural support pattern

This solution requires the presence of an access control infrastructure. This can be
done, for instance, by using an authorization enforcer (Figure 49). The authorization
enforcer will, before an operation is executed, check whether the subject that invoked
the operation has permission to do this.

Architectural support pattern

Structure

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 86 / 132

Behaviour

Figure 49 Authorization enforcer architectural support pattern

Almost every framework or middleware has built-in support for access control. For
instance, in the Java Enterprise Edition framework, role-based access control can be
easily enabled for every remotely accessible operation, without writing any custom
code.

If access control needs to be implemented by hand, the access control functionality
can be developed using the handler pattern as described in Section 4.5.2.1. The
authorization enforcer is then implemented as a handler for each operation in the
system that needs access control.

Additionally, all information that is needed to make access control decisions need to be
available to the authorization enforcer. This means that each component that can
provide necessary information needs to act as a context provider (Figure 50).

Change guidance

To implement this solution when the trust relationship changes, the authorization
enforcer in the architecture needs to be updated with the new, attribute-based policy. It
also needs to be configured such that it can access all context providers that are
necessary to evaluate the new policy.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 87 / 132

provider1 : ContextProvider

provider2 : ContextProvider

 : AuthorizationEnforcer

 : System

Figure 50 Applying the authorization enforcer support pattern

4.5.3.3 Solution 3: Use monitoring

Alternatively, all service executions can be monitored. The monitor is responsible for
verifying that permissions are not abused.

Example A nurse can still access the information from all patients in the hospital, but
every access attempt is logged and periodically reviewed by the responsible doctor.
Because of the increased risk in being detected when illegally accessing patient files,
the trust in the nurses is restored. Note that, in this case, the doctor acts as the
monitor.

The technical solution is the same solution as Solution 2: Use monitoring as described
in Section 4.5.1.2.

4.5.4 Evolving trust of permission from external actor

In this change pattern, the system obtained permission from an external actor to fulfil
some service. The external party also trusts the system not to abuse this permission.
Later, however, this trust disappears. This is shown in Figure 51.

Before After

Figure 51 Evolving trust of permission from external actor

Example The system we are building is a hotel booking website. The site obtains
permission from its customers to process the credit card information of the user. The
users trust the hotel site not to abuse this information. When illegitimate use of the
information is detected (e.g., the credit card is used for additional purchases), the users
no longer trusts the hotel with their credit card information.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 88 / 132

4.5.4.1 Solution 1: Request confirmation

Each time the system performs a service, it needs to request a confirmation from the
external party that the service may be fulfilled, as illustrated in Figure 52. This
conformation can take various forms. For instance, it could be digitally signed evidence
created by the external party whenever necessary. The system could store the
obtained permission, in case of later disputes. Alternatively, if some piece of
information that is required to fulfil the service is never stored by the system, and must
always be provided by the external system, the submission of this information by the
external party can be seen as a confirmation as well. The latter case is what happens
with the CVV2 number on credit cards.

Strategy

Strategy mapped to architecture

Structure

Behaviour

Figure 52 Request confirmation

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 89 / 132

Example The hotel booking website needs the CVV2 number to initiate a transaction
with the payment gateway. Since the credit card security standards require the system
never to store this number, the hotel booking website will need to obtain the CCV2
number from the client for each transaction. By entering this number, the client thus
gives a confirmation of the transaction to the hotel booking website.

Architectural support pattern

Obtaining and verifying the confirmation needs to be done before the service
execution. This can be achieved using the handler architectural pattern from Section
4.5.1.1.

Change guidance

When the system is no longer trusted with the permission for a service by the external
party, a confirmation handler is developed and configured for the service (Figure 53).
This confirmation handler will take care of obtaining and verifying the confirmation,
before allowing the service to be fulfilled.

 : ConfirmationHandler

 : System

 : registeredHandlers

Figure 53 Adding a confirmation handler

4.5.4.2 Solution 2: Enable monitoring

Alternatively, the system can allow the monitoring of its service fulfilment.

Example The credit card company can monitor the transactions of the hotel booking
system. With this information, the credit card company can offer a service to notify the
customer of all initiated transactions concerning his credit card.

The technical solution is the same as ‗Solution 2: Enable monitoring‘ described in
Section 4.5.2.2.

4.5.5 Delegate execution of a service to a trusted actor

For this change scenario, assume the system uses a certain service that it provides
itself. Over time, the provisioning of the system may move to an external actor (e.g.,

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 90 / 132

outsourcing), as shown in Figure 54. We assume that the external party is trusted by
the system for executing this service. If this is not the case, the change pattern from
Section 4.5.1 needs to be considered together with this pattern.

Before After

Figure 54 Delegate execution of a service to a trusted actor

Example Consider a route planning system. Originally, the system was designed for a
single country, and used its custom written software for geo-coding (converting street
names to geographic coordinates). When the system is extended to work
internationally, an external geo-coding service is used. The system needs to be
modified so that this external service is used.

4.5.5.1 Solution: Encapsulate service

To easily enable the transition from the internal to the external service implementation,
the service should be encapsulated from the rest of the application, as illustrated in
Figure 55. This is a well-known design solution for creating maintainable software
solutions.

Strategy

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 91 / 132

Strategy mapped to architecture

Structure

 : ServiceProvider

 : System

 : A

Behaviour

Figure 55 Encapsulate service

The service can now be changed from the internal to the external implementation,
without modifications to the rest of the system. As an additional advantage, if the
external actor decides to change the functionality of the service, the service provider
can be modified such that the functionality exposed to the system does not change.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 92 / 132

Example The route planner system contains a geo-code component. Originally, the
geo-code component contains the custom implementation. When the decision is made
to use an external service, the implementation is changed to access that service.

Architectural support pattern

A service provider component should be introduced in the architecture, as shown in the
strategy mapped to the architecture above.

Change guidance

When the change scenario occurs, the implementation of the service provider needs to
be modified such that it uses the external service instead of the internal
implementation. The rest of the system remains unchanged.

4.5.6 Delegate permission to a service to a trusted
actor

In this change scenario, assume the system owns a certain service. Over time, the
system may be opened for external actors. This means that external actors gain
permission to fulfil the service. Or, the service may already be available for some
external parties, but needs to be available to an additional one. This scenario is shown
in Figure 56. We assume that the external party is trusted by the system for not
abusing this permission. If this is not the case, the change pattern from Section 4.5.3
needs to be considered together with this pattern.

Before After

Figure 56 Delegate permission to a service to a trusted actor

Example Suppose the system we are developing is a social network site. The system
owns information about its users. Over time, the social network site wants to allow an
advertising company to access this information, in order to deliver personalized
advertisements. Of course, other external parties should not be allowed access to this
data.

Note that this scenario will often happen together with the scenario in Section 4.5.7.

4.5.6.1 Solution: Flexible access control

A solution for this evolution scenario is putting flexible access control in place (Figure
57). Before the service is fulfilled, the request is evaluated by an access control

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 93 / 132

monitor. The policy that is enforced by this actor should be easy to modify, preferable
through updating the configuration.

Strategy

Strategy mapped to architecture

 : AccessMonitor

 : System

Figure 57 Flexible access control

Example The social network site creates an API for obtaining user data, but restricts
access to this API to the advertising company.

Architectural support pattern

This solution requires the presence of an access control infrastructure, as described in
Section 4.5.3.2.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 94 / 132

Change guidance

To implement this solution when the new trust relationship appears, the policy of the
authorization enforcer in the architecture needs to be updated to grant permission to
the new external party.

4.5.7 Providing additional service with delegated
execution

In this scenario, consider a service of the system originally only used by the system
itself. Over time, an external party may decide to rely on the system for this service.
This means that the system exposes new (but already implemented) services to its
environment. Since external parties do now rely on this service, the service cannot be
modified without breaking the external actors. This scenario is shown in Figure 58.

Note that we assume that the external party trusts the system for executing this
service. If this is not the case, the change pattern from Section 4.5.2 needs to be
considered together with this pattern.

Before After

Figure 58 Providing additional service with delegated execution

Example The system under development is a system for a car rental company. An
important service offered by the system is creating a reservation for a car. Originally,
the reservation service is only used within the car rental company, but over time the car
rental company wants to give travel agencies the opportunity to create car reservations
as well. Once the first travel agency is connected to their system, changing the
reservation service becomes difficult because the travel agency depends on it.

4.5.7.1 Solution: Introduce bridge component

Introduce a bridge component for the service, which remains stable over time. External
systems connect with this bridge component. When the internal implementation of the
service changes, the bridge is modified such that it provides the same functionality, but
uses the new implementation. It achieves this by converting the input given to the
internal service, and result that is returned. In this way, the changed implementation
has no observable effects. The solution is illustrated in Figure 59.

This solution is a widely-known and common technique to create evolvable systems.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 95 / 132

Strategy

Strategy mapped to architecture

Structure

 : ServiceBridge

 : System

 : A

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 96 / 132

Behaviour

Figure 59 Introduce bridge component

Example The car rental company implements a service bridge, which is used by the
external systems. When the internal implementation of the service needs to change,
the bridge is modified as well so that nothing has changed from the viewpoint of the
external systems.

Architectural support pattern

A service bridge component should be introduced in the architecture, as shown in the
strategy mapped to the architecture above.

Change guidance

When the change scenario occurs, the external system is connected to the service
bridge instead of to the internal implementation of the service.

4.5.8 Providing additional service with delegated
permission

In this final scenario, consider a system that owns and provide a certain service. Over
time, the ownership of the service may be transferred to another actor, while the
system keeps providing the service, as shown in Figure 60.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 97 / 132

Before After

Figure 60 Providing additional service with delegated permission

Since this evolution has no influence on the behaviour of the system (because the
system will still provide the service, just as before), no architectural solutions are
necessary for this evolution scenario. The transfer of ownership will manifest itself as
an action outside the system (e.g., the signing of a contract).

This scenario may need to be considered together with the scenario described in
Section 4.5.4, when the trust of permission from the external party may disappear over
time.

4.6 Illustrations

4.6.1 Online shop

In this section, we will revisit the motivating example about the shop from the
introduction. We will model the evolving trust of the scenario in SI* and show how an
architecture can be designed so that it supports this evolution. The architecture is
designed by applying the change patterns from the previous section. Then, it is shown
how the architecture can deal with the evolution described in the example at the
beginning of this section.

4.6.1.1 Initial situation

The initial situation is a situation in which all parties trust each other. More specifically,
the client trusts the shop to a) correctly sell goods (e.g., ship the ordered goods when
paid), and b) not to abuse submitted credit card information (e.g., charge more than
agreed). The shop (maybe naively) trusts the client to provide a purchase acknowledge
in case of a dispute, i.e., the shop trusts its clients never to repudiate a placed order.
This situation is depicted in the SI* diagram in Figure 61.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 98 / 132

Figure 61 Simplified SI* diagram for online shop

We can create a corresponding architecture by applying the mappings from Section
4.4.2. The result is depicted in Figure 62.

Figure 62 Corresponding architecture

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 99 / 132

4.6.1.2 Applying change patterns

To design the architecture for the shop we start from the initial SI* diagram in Figure
61. We will go through each change scenario from the catalogue and search for
possible matches. Finding a match means that we have identified a possible future
change in a trust relationship in the system. The stakeholders need to identify and
select the likely and important matches, which the architect then needs to incorporate
in the architecture, by using one of the solutions provided by the pattern catalogue.

The iteration over the cases and possible matches are presented in Table 6. The first
row in the table is obtained as follows. The change pattern in Section 4.5.1 describes a
situation in which trust upon an external actor disappears. In the shop system, there
are two trust relationships from the shop upon external actors.

First, the shop system trusts the client to provide acknowledgements of their purchase.
While the initial shop system may be designed to cooperate with a limited number of
trusted customers, it is easy to imagine a situation in which this trust relationship is
unjustified. Therefore, the likelihood of clients not providing this acknowledgement is
very high, and the stakeholders will require that the architecture is prepared for this
situation.

The second matching trust relationship is that upon the credit card company for correct
payment processing. While it can be imagined that the credit card company will not be
trusted anymore, the stakeholders have determined that this is unlikely to happen in
the foreseeable future, and as such support for this evolution scenario is not included
in the current architecture.

The other rows in the table are obtained in a similar way, by matching with the other
patterns from the catalogue. Eventually, the rows with a ‗×‘ were selected as likely and
important scenarios by the stakeholders, and will need to be resolved in the
architecture.

4.5.1 - Evolving trust of execution upon external actor

×

Current situation Shop trusts client to provide purchase order acknowledgement

Possible change Client is no longer trusted to do this

Likelihood Very high

 Current situation Shop trusts credit card company to correctly process payment

Possible change Credit card company is no longer trusted

Likelihood Very low

4.5.2 - Evolving trust of execution from external actor

×

Current situation Client trusts shop to correctly handle orders and sell goods

Possible change Shop is no longer trusted to handle orders and sell goods

Likelihood Medium

4.5.3 - Evolving trust of permission upon external actor

 No matched identified

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 100 / 132

4.5.4 - Evolving trust of permission from external actor

×

Current situation Client trusts shop not to abuse credit card information

Possible change Shop is no longer trusted with credit card information

Likelihood High

4.5.5 - Delegate execution of a service to a trusted actor

Current situation Shop takes care of order shipment itself

Possible change Shipping of orders is outsourced to dedicated shipping
company

Likelihood Low

4.5.6 - Delegate permission to a service to a trusted actor

 Current situation Shop does not share customer preferences

Possible change A marketing company is given access to customer preferences

Likelihood Low

4.5.7 - Providing additional service with delegated execution

 Current situation The shop only ships its own orders

Possible change An external company uses the shipping services from the shop

Likelihood Low

4.5.8 - Providing additional service with delegated permission

 No match identified

Table 6 Result of following the change pattern process

The architect now chooses solutions for each of the chosen evolution scenarios. This
choice is based on architectural trade-offs, and relies on the knowledge and
experience of the architect. Suppose the architect prefers the following solutions:

 For the first evolution scenario (where the client is no longer trusted to
acknowledge its purchases), the architect chooses the solution based on
requiring a commitment of the client (Section 4.5.1.1).

 The second evolution scenario (where the shop is no longer trusted to correctly
handle orders), the solution in Section 4.5.2.1 is chosen (providing a
commitment).

 For the third evolution scenario, the solution based on monitoring (Section
4.5.4.2) is picked.

The architect now has to integrate all architectural support patterns of these solutions
into the architecture of the shop. This is a manual effort, and the result is depicted in
Figure 63 (only the structural part has been shown). Recall that this is the result before
any of the aforementioned evolutions occurred; only the necessary support
infrastructure has been put in place. It is apparent that the introduction of the
architectural support patterns has significantly influenced the architecture. Since no
evolution has occurred, however, all the trust assumptions of before (represented using
notes) are still in place.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 101 / 132

Figure 63 Resulting architecture

The introduction of the handler pattern enables the registration of handler components
with the shop, which will be invoked before (and after) every order made by a client.
The newly added status collector keeps track of the order history, and the status of
each order. The validator component validates the parameters of a purchase order,
before the order can be fulfilled. Finally, one of the change patterns prescribes that the
system needs to have access to a cryptographic module, capable of placing digital
signatures.

We stress that the system, using this architecture, does not yet comply with any of the
evolution scenarios. The architecture of the system has merely been prepared to
handle the evolution scenarios, should they occur in the future. However, remark how,
for example, the need for keeping an order history has emerged from analyzing
possible trust evolutions using change patterns. Of course, this feature would most
likely be present in any commerce system, but our analysis has highlighted its
relevance with regard to evolving trust.

4.6.1.3 Handling evolution

In this section, we will replay the evolution from the motivating example at start of the
chapter, but now with the architecture created in the previous subsection.

In the first part of the story, the trust between the shop and the client disappears. Since
this trust evolution matches with the change pattern in Section 4.5.1 (Evolving trust of
execution upon external actor), for which the first solution was chosen, the change
guidance from Section 4.5.1.1 needs to be followed. This guidance prescribes the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 102 / 132

development of a commitment handler, and deploy it as a registered handler for the
shop system. This means that a new handler component needs to be developed, which
extracts the digitally signed commitment from the order request created by the client,
validates the commitment and stores it. This handler then needs to be registered with
the shop component. These actions happen in the implementation and deployment
domain, and can be performed without modifications to software architecture of the
system. Indeed, the introduction of the handler pattern, as prescribed by the change
pattern, enables easy addition of this functionality.

For the second evolution, the trust from the client upon the shop for correctly using
their credit card information disappears. This evolution also corresponds with a change
pattern applied to the architecture, namely ―Evolving trust of permission from external
actor‖ (Section 4.5.4). Here, the architect has chosen the solution of enabling
monitoring (Section 4.5.4.2). That solution‘s change guidance describes that the status
information, obtained by the status collector component, must be made available to the
monitor. In this example, the monitor is the client component itself, and the status
information is the order history. To overcome the decreasing trust, the order history
should thus be made available to the clients of the shop, if this was not already the
case before. The clients need this order history to align the order history with the
notifications from the credit card company.

In the third (and final) part of the scenario, the clients lose their trust in the shop system
entirely, and the change guidance from the chosen solution (providing a commitment,
Section 4.5.2.1) must be followed. A new service needs to be provided by the shop,
which provides a commitment to the clients who request one. Note that this is an
architectural change, because a new service is introduced at the side of the shop.
However, the newly introduced service is not essential, and clients who do not require
the commitment can still place their orders. Old clients do not have to be changed
immediately, and therefore the change only has a small impact on the overall software
architecture.

The illustration above demonstrates how the use of change patterns for designing an
architecture enables evolution with little to no impact on the architecture. Of course, the
example consists of a simplified scenario. Additional validation, on a more realistic
case, is necessary.

4.6.2 HOMES

In the second year of the project, the HOMES case study will be used to validate the
process of using change patterns to design an evolvable architecture. In particular, we
will focus on the part of the HOMES case study that is concerned with the access
control and policy enforcement for devices on the network. Especially the Home
Gateway component will play an important role in this validation.

4.6.2.1 Challenges

When performing the validation on the HOMES case study, the following challenges
are expected to be encountered.

1. The change pattern process assumes a trust model of the application under
development is available. In the current case study, however, no explicit and
complete list of trust assumptions is available. The validation exercise will thus
need to provide a list of these trust assumptions, and can be used to assess the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 103 / 132

feasibility of one of the requirement of the process (i.e., working with an explicit
trust model) in an industrial context.

2. The outlined process requires the stakeholders of the system to decide on the
likelihood, and eventually the inclusion of a solution in the architecture, of an
evolution scenario. It is currently unclear in the case study in which evolution
scenarios (related to trust assumptions) are likely to happen and should be
foreseen in the architecture. The validation will assess how the outlined process
performs with respect to identifying and classifying these evolution scenarios.

3. The presented catalogue of trust change patterns is not complete. Change
scenarios may be missing, or solutions may not yet be described. Performing
the validation on the case study will give an indication about the usability of the
current catalogue, and may identify missing patterns and solutions.

4.6.2.2 Approach

For the validation, we plan to perform the following steps in close cooperation with the
industry partner.

First, we model the situation of the case study as it is envisaged to be built, with no
specific attention for evolving trust requirements. This model comprises both an
architectural model in UML, and a corresponding trust model in SI*.

Then, the process as outlined in Section 4.3 needs to be executed. This activity will
identify various possible change scenarios related to trust, which have to be assessed
with respect to their likelihood and importance by the stakeholders from the case study.

Finally, the relevant change patterns need to be applied to the architecture. Also, we
will need to verify with the industrial partner whether the resulting architecture is
realistic and useful.

4.7 Conclusion

Change patterns are proposed as a helpful concept for designing secure, evolvable
systems. A change pattern is attached to a change scenario, which represents a high-
level evolution of the security requirements of the system. The change pattern also
contains one or more solutions. Each solution may refer to some architectural support
patterns, which prepares the architecture for an upcoming evolution scenario.
Additionally, the solution contains change guidance, which describes the necessary
steps to update the architecture such that it reflects the new security requirements,
once these have changed.

Dealing with evolution of security at the architectural level consists of three steps. First,
likely evolution scenarios need to be identified, for instance by questioning whether
each of the change patterns is applicable and likely to happen. If so, the second step
needs to be executed: picking a solution to handle this case needs and incorporate it in
the architecture. This step prepares the architecture for the expected evolution. The
third step consists of updating the system once the identified evolution actually
happens. The main goal of the change patterns is dramatically decreasing the possible
impact on the architecture during this last step.

We presented a catalogue of change patterns that deal with changing trust
relationships in a component-oriented architecture. The techniques to deal with these

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 104 / 132

changing trust relationships can be divided in two broad categories. One category are
the typical, general principles to achieve maintainability in a software architecture:
decoupling the points of variation from the rest of the system, so that they can evolve
independently. The second category is more specific for trust relationships, and
involves the introduction of a monitoring infrastructure.

The proposed approach requires an explicit representation of all the trust relationships
involving the system. Moreover, when following the approach, each trust relationship
will be questioned and assessed. This systematic approach helps the architect in
achieving a more complete solution when compared to identifying and resolving the
likely change scenarios in a more ad-hoc manner.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 105 / 132

5 Security as a service

In this Section we define an architectural blueprint that transposes the model of
Software as a Service to the security domain and thereby realizes Security as a
Service (SeAAS). The proposed architecture is robust in the sense that it is flexible
enough to cope with a broad variety of changes and thus supports long-lived, evolving
systems. Based on the architectural blueprint we define a reference architecture
leveraging the principles of Service Oriented Architectures (SOA) and Web Services
technologies.

In the context of the overall deliverable D 2.1, the proposed reference architecture
represents a possible target infrastructure for the change-driven security engineering
process as defined in Section 3.1, where architectural components and services map
to the System Operator‘s view. The architecture can also serve as a target
infrastructure accommodating architectural solutions as proposed by the Catalogue of
Change Patterns presented in Section 4.

We structured this section as follows. Section 5.1 opens with a brief problem statement
linked to the current practice of enforcing security in service oriented systems
exclusively at the service endpoint. Section 5.2 introduces a motivating use case from
healthcare that will serve as a first running example for illustration purposes. The
example will be replaced by a scenario from the HOMES case study in years two and
three. In Section 5.3 we analyze the limitations of endpoint security and make the case
for an architectural blueprint leveraging the paradigm of Security as a Service to
support long-lived, evolving systems. We present the architectural blueprint for Security
as a Service in Section 5.4 and elaborate a specific reference architecture based on
the principles of SOA and Web services technologies in Section 5.5 followed by a brief
discussion in Section 5.6. Section 5.7 introduces the HOMES case study. The case
study will be used to validate the general idea of Security as a Service in context of the
change-driven security engineering process as defined in Section 3.1 in the years two
and three.

5.1 Introduction

Inter-organizational workflows spanning multiple domains of business partners involve
the sharing of sensitive resources. The examples are numerous and ever-growing. In
healthcare, a patient‘s electronic health-record stored with a hospital may be updated
with a radiography produced by an external specialist, complemented with a diagnosis
together with a regular update of the medication prescribed by the patient‘s
practitioner. Or a company‘s financial statement may be forwarded to its auditors
before being turned in as an electronic tax declaration with financial authorities (e.g.,
[53, 54]). Those large-scale software systems can be characterized as heterogeneous,
distributed systems spanning across many enterprises under the control of as many
―ownership domains‖. Often, they are realized based on the blueprint of Service
Oriented Architecture (SOA). However, the decentralized security models and
distributed infrastructures of SOA turn the enforcement of security requirements into a
major challenge.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 106 / 132

Technical interoperability was addressed first and with some success. To make sure
companies were using ―compatible‖ technology for cooperation with their peers,
software engineers and architects could turn to the paradigm of SOA with its
standardized technical underpinning, the stack of Web services standards and
technologies. However, up until now, the standards only address basic security
requirements (the triad of traditional information security, namely confidentiality,
integrity and availability) and resolve issues at a low, technical level. This makes
security engineering incredibly complex and – as a consequence – implementations
error-prone.

According to current practice, security infrastructures enforce security exclusively at the
service endpoint. They ignore the peculiarities of SOA‘s decentralized peer-to-peer
architecture which outmodes traditional security solutions and mechanisms, among
them the concept of perimeter security and the centralized security models (cf to [69,
70] for interesting discussions). Besides placing a significant processing burden on
service nodes, endpoint security renders maintenance and management of the
distributed security infrastructures cumbersome, and impedes interoperability with
external service providers and requesters. To meet these challenges, we propose a
reference security architecture that transposes the model of Software as a Service to
the security domain and thereby realizes Security as a Service (SeAAS). The proposed
architecture goes beyond the mere bundling of security functionality within one security
domain as it realizes complex security requirements for processes involving two or
more domains.

The reference architecture complements the SECTET framework for model-driven
security engineering [53]. The framework will serve as starting point for the elaboration
of an approach for the high-level configuration of security-critical systems as planned in
the description of work under T2.2 as part of the second year.

5.2 Motivating example

Our scenario draws the security requirements from use cases of the healthcare
industry. They were elaborated in the context of national initiatives in Europe with the
aim to realize the Electronic Health Record (EHR) [44, 51, 53]. We begin with a
functional description in Section 5.2.1 and proceed to security requirements in Section
5.2.2.

5.2.1 The Electronic health record - a use case

Figure 64 shows the various stakeholders modeled as roles and their interactions with
an EHR system modeled as message exchanges in a typical scenario. Security-
relevant communication is indicated in red.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 107 / 132

Figure 64: Roles and Message Exchanges in a Distributed Healthcare Scenario

Markus Maier (role Patient) goes to see Dr. David Daum, his family doctor (role
General Practitioner) for his yearly medical check-up. In step 1, Dr. Daum accesses
Markus Maier‘s Electronic Health Record over the centralized EHR service (ELGA2). In
its essence, an EHR represents a consolidated virtual medical record assembled from
information distributed across various healthcare providers, which produced clinical
information during past consultations and treatments. In Markus Maier‘s case these
were the City Hospital and the City Sanatorium as Public- and Private Healthcare
Provider respectively and the City Health Insurance as a 3rd Party Institution. After a
first examination, Dr. Daum decides to refer Markus Maier to the radiologist Dr. Rudolf
(role Specialist). He does so by issuing an electronic Referral which updates the EHR
(step 3). In consultation with his patient, Dr. Rudolf accesses Markus Maier‘s EHR
(step 4), and updates his EHR with the produced Radiography (step 5). Afterwards,
Markus Maier may have to submit to a couple of further checks (not shown here), e.g.,
have blood samples checked by a medical laboratory, and submit to a stress
electrocardiogram with an internal specialist etc., before he pays his final visit to Dr.
Daum for a discussion of the medical statement. On this occasion, Dr. Daum updates
Markus Maier‘s EHR with the Medical Statement.

5.2.2 Security requirements

Based on that common scenario, we can identify a broad array of security
requirements. Sections 5.4 and 5.5 discuss in depth how our architecture realizes
these requirements. Details are illustrated by taking Non-repudiation as an example for
a complex security requirement.

Authentication (And Identity Management). The EHR infrastructure facilitates the
identification, registration and authentication of professional users – (be they humans
or services) – based on digital certificates and public key technology. Users access
medical information in the EHR based on role credentials issued by ELGA Certification
Authorities. The credentials are valid across the security domains of involved
stakeholders in the overall scenario. Nevertheless, a single health organization is very
likely to manage identities within its own security domain running a ―local‖ certification
or registration authority. The local identities of users and applications which
interoperate with the EHR system are mapped to ―global‖ identities managed by the

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 108 / 132

ELGA Certification Authorities. For example, although Dr. Daum may have
authenticated himself to his local application, he would have to authenticate himself a
second time with his global credentials to the EHR system to access his patient‘s
records via ELGA.

Authorization. Role credentials define the permissions to access health records.
Realizing the principle of Least Privilege, users are given those privileges necessary to
perform their job as specified by system roles (e.g., Specialist, Healthcare Provider
etc.). This entails the necessity for a fine grained protection of the resource. For
example, the role Pharmacist only needs access to those parts of the EHR containing
the prescription of medication. In the EHR System, there is a default Permission-Role
assignment that may be overwritten by the record owner. Although a user holding the
role General Practitioner may be given the most comprehensive access to his patient‘s
medical records (if he is the primary care physician), a Patient may confine his
privileges. Markus Maier may not want his father-in-law working as a psychiatrist in the
City Hospital to see medical records about a psychotherapeutic treatment he had to
undergo a couple of years ago due to a mental problem. So he could define a Negative
Access Permission to these records for his father-in-law. Other complex authorization
policies that come into play in standard use cases are the Delegation of Rights, Four-
Eyes-Access-Control, Break-Glass-Policy, and Dynamic Access Control. A
comprehensive treatment on the modeling and enforcement of complex access control
policies in healthcare with the SECTET framework, can be found in [51] and [53].

Non-repudiation. This requirement aims at preventing parties in a communication
from falsely denying having taken part in that communication. In our context, this is a
security requirement whose enforcement is typically transparent to users [39]. It comes
in two flavors. Non-repudiation of Reception requires the addressee to return a proof of
receipt (e.g., a signed message carrying a time-stamp) to the sender to be kept in case
dispute resolution is needed. In our scenario, Dr. Daum and Dr. Rudolf will both get a
proof of receipt from the EHR system after having updated Markus Maier‘s EHR with
the produced documents and artefacts (Referral, Radiography, and Medical
Statement). Complementarily, Non-repudiation of Origin requires the sender to produce
a proof of submission and make it accessible to the receiver. The EHR system will log
the updates to Markus Maier‘s EHR. The security infrastructure takes care of producing
and consuming the messages and initiating logging activities.

Security Compliance and Governance. Security compliance aims at the detection of
deviation from allowed behavior, specified interaction patterns, or message structures.
In the current state of the SECTET framework, we view security compliance in its
narrowest sense. It defines the adherence of messages to predefined structures or
interaction patterns based on supported security infrastructures and mechanisms (e.g.,
type of tokens, encryption, signature algorithms, request-reply, one way etc.). It is
enforced by the security infrastructure and is offered as a service to local applications
and users.

5.3 Security as a service - making the case

In this subsection, we motivate the need for Security as a Service (SeAAS) as a
paradigm for security architectures and present related work as we pursue our line of
argument.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 109 / 132

5.3.1 Limitations of endpoint security

According to current best practice, Web service security is mostly enforced at the
physical node providing the service or the component proxying the service (henceforth,
we will call the service and / or its proxy component service endpoint). In a typical Web
services based request, the service endpoint applies basic cryptographic processing to
inbound and outbound messages leveraging XML based standards [57, 42, 47]. It
extracts and validates tokens of incoming messages, decrypts encrypted parts,
validates signatures etc. Outbound messages are processed and their structure
extended so to comply with policy requirements as imposed by the service endpoint‘s
communication peer.

Traditional endpoint security falls short on two fundamental issues of large-scale
business solutions. The first issue is related to the complexity of security engineering.
Web services standards and technologies are constantly evolving. New security
standards are added to the stack of Web services standards to cover new
requirements and use cases (c.f. [58] for an overview). This fast moving target is a
challenge to security experts and software engineers alike. Traditional methods of
software engineering can hardly cope with the plethora of standards combined with the
complexity of security solutions needed for the realization of enterprise-wide and inter-
organizational business solutions. This is often considered to be a major obstacle to
the rapid adoption of Web services as a reference platform to large-scale solutions.
Another issue is related to the consistent enforcement of security policies in enterprise-
level solutions. These environments are characterized as large-scale distributed
architectures with thousands of services deployed on hundreds of endpoints and
possibly as many internal and external consumers. Nevertheless, any access decision
has to be attributable to security policies that meet the obligations imposed by laws and
regulations like the Sarbanes-Oxley Act and complying corporate governance policies.
This necessitates policy management concepts and security mechanisms that
guarantee consistent enforcement of security policies in distributed, heterogeneous
environments.

5.3.2 Declarative security

The concept of declarative security was a first step to cope with the issues exposed in
the previous section. It addresses three challenges. 1. Development. Security concerns
are separated out of actual application and service development. The burden of
security enforcement is shifted from service developers and service requesters to
security experts who codify security requirements into policies based on rules. This
simplifies the realization of security-critical use cases. XACML is an example standard
for declarative access control [75]. It proposes a declarative access control policy
language implemented in XML and an architectural blueprint for the communication
between infrastructural components. 2. Interoperability. Security requirements on
message structure and syntax are codified as rules in the machine readable XML
standard WS-Security Policy [41] and advertised to potential service requesters. This
improves interoperability of security solutions that cross organizational boundaries. 3.
Policy Management. Security policies expressed in declarative statements can be
checked for consistency and – once consolidated – distributed to the application which
is meant to enforce them. This fosters the consistent application of policies across all
solutions in an enterprise.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 110 / 132

Even with declarative security, the realization of security-critical inter-organizational
scenarios still faces two major hurdles. For one, with enforcement left to the endpoint,
security solutions are scattered over the service landscape. This means that in order to
keep up to date with evolving technologies and changing security requirements that
demand new functionality, security engineers have to propagate the changes to every
single endpoint – a very inefficient form of reusability. Secondly, the state of the art in
Web service and SOA security technology indicates that for the moment only very
basic security requirements like those based on the application of cryptographic
operations are realized. This is actually the main criticism advanced by industries that
are primarily concerned about complex security requirements in an inter-organizational
setting like in healthcare and e-government. Here, use cases have to accommodate
security requirements derived from complex industry regulations and laws (cf. Section
5.2.2).

Existing standards and specifications do not address these security requirements at all.
The reason is, that their realization would overstrain the capacities of a single endpoint,
either in terms of the complexity of the underlying security concept (e.g., the protocols
of non-repudiation), or in terms of the processing power (e.g., evaluation of log-files for
security monitoring), or in terms of functionality (e.g., basically stateless service
endpoints are not supposed to have all information necessary to infer unusual user
behavior for fraud detection). A very technical account on how to realize declarative
security that covers basic security for Web services (authentication, confidentiality,
integrity) in an SOA is given in [61].

5.3.3 The Enterprise Service Bus

These practical problems (processing burden, complexity of security) and conceptual
issues (statelessness of services) suggest the outsourcing of security tasks to an
architectural component with the needed capabilities. A very promising approach is put
forward by the paradigm of SOA: the Enterprise Service Bus is the technical backbone
of a SOA landscape. This centralized communication infrastructure is responsible to
provide interoperability between heterogeneous systems. This means connecting them
in a loosely coupled way (independent of technical protocol details), mapping data-
types, transforming formats and guaranteeing transparent routing dealing with
technical aspects, such as load balancing and failover. It is considered to be the ideal
candidate to offer value-added services such as security, monitoring and debugging
[59].

Up until now, security has only been integrated at a very basic level. For example, [61]
gives a detailed technical account on how to secure SOAs, but only covers
authentication, authorization, confidentiality and integrity. The focus is set on a
centralized setting confined to a single security domain (as opposed to the
decentralized setting of inter-organizational scenarios presented in the next section).
[54, 53] give a detailed account on issues related to the realization of security-critical
decentralized SOA.

[71] describes how to realize the concept of a centralized communication infrastructure
– the ESB – with open source software in all details. Security is only covered at a very
basic level. In [51] the authors move a step further and discuss security as an
infrastructure service in the context of an Enterprise Service Bus (ESB) and other
patterns for the deployment of an SOA-security infrastructure. Nevertheless their

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 111 / 132

solution only covers the standards basic security services (e.g., authentication, key
management etc.).

5.3.4 The SECTET framework for model driven security

Model Driven Security is an engineering paradigm that specializes Model Driven
Software Engineering towards information security. It pursues two objectives: first, the
integration of security aspects at an early stage of the engineering process and
second, to shift the burden of security implementation from the software engineer to
the security engineer. The term Model Driven Security was coined in [43]. The paper
describes a software development process that supports the integration of access
control requirements into system models. The models form the input for the generation
of .net and J2EE security infrastructures. [60] Presents a framework for the formal
verification of basic security requirements for security protocols based on UML models.
Focusing on Service Oriented Architectures, in [48] the authors propose a framework
for the platform-independent configuration of security infrastructure with authentication
information.

Pursuing a much broader goal, the SECTET [53] framework supports business
partners during the development and distributed management of decentralized peer-to-
peer scenarios. Primarily developed for the realization of decentralized, security critical
collaboration across domain boundaries – so-called inter-organizational workflows, it
realizes a domain architecture aiming at the correct technical implementation of
domain-level security requirements. It consists of three core components:

1. Security Modeling. The modeling component supports the collaborative
specification of a scenario at the abstract level in a platform independent
context. The component implements an intuitive domain specific language,
which is rendered in a visual language based on UML2 for various modeling
tools. The modeling occurs at a level of abstraction appropriate to bridge the
gap between domain experts on one side and engineers on the other side, roles
chiefly involved in two different phases of the engineering process – the
requirements engineering and the design phase respectively.

2. Code Generation & Model Transformation. Model information is translated it
into platform independent models (PIM) based on security patterns and
protocols enforcing security requirements. The PIMs are refined into platform
specific models of various granularities until they can be mapped into
configuration code for the components of the target architecture. The layered
approach is detailed in [66].

3. Web services Based Reference Architecture. The architecture specifies a
Web services based target runtime environment for local executable workflows
and back-end services at the partner node. The workflow and security
components implement a set of workflow and security technologies based on
XML- and Web services technology.

The SECTET reference architecture as presented in [53] enforces security mostly at
the service endpoint. As already exposed, the approach exhibits significant limitations,
especially when it comes to the realization of the complex security requirements. In the
present contribution we propose an alternative blueprint realizing Security as a Service.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 112 / 132

Nevertheless, the framework will serve as starting point for the elaboration of an
approach for the high-level configuration of security-critical systems as planned in the
description of work under T2.2 as part of the second year.

5.3.5 Security as a service

Security as a Service was introduced a couple of years ago in a series of publications.
[69] first advocated the transition from traditional perimeter security to the concept of
Service Oriented Security – a framework for risk analysis and management focusing on
assets of a decentralized (service based) software architecture. Security is realized
through decoupled, composeable services. The contribution focuses on identity and
risk management, omitting complex security requirements. [70] discusses how the field
information security failed to resolve key challenges of SOA security and arguments
very much in line with our strategy that workable solutions have to move beyond
traditional information security which only considers the CIA traid. Other publications
on various aspects of security services in SOA that we discuss in this deliverable are
[52, 49, 68].

We define Security as a Service (SeAAS) as the delivery of security functionality over
infrastructure components in a service-oriented manner. For SOA, this means that
security services are accessed through common Web services technologies and
standards. Our definition thus goes beyond the common understanding which confines
SeAAS to the practice of delivering traditional security application functionality (e.g.,
anti-virus software, anti-spyware, etc.) on-demand over the Internet (e.g., [63, 67, 72]).
We identified the following security services (in order of increasing complexity):

Cryptographic and message processing services ensure basic confidentiality and
integrity e.g., en-/ decryption of XML documents, signature validation etc.

1. Security inter-operability services facilitate interoperability of security
mechanisms with external partners e.g., mapping of a user credentials to a
kerberos token Services can be provisioned by an internal or an external
security token service.

2. Authentication is a basic service necessary to all other requirements. Local or
external service requesters are identified and authenticated relying on local
identity stores and / or external identity providers.

3. Authorization services provide access control to resources. Authorization
policies can be very complex. We cover static and dynamic role-based access
control, four-eyes principle, negative access permissions, delegation, and
break-glass policies.

4. Security compliance services check inbound messages in inter-domain
communication for compliance with stated security requirements, e.g., valid and
complete messages, presence of tokens, format, etc.

5. Protocol based security services are statefull services executed between two
or more partners. A very prominent example is non-repudiation of sending or
receiving in inter-domain communication.

6. Security monitoring & auditing services facilitate business- or application
level security requirements, e.g., fraud and intrusion detection.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 113 / 132

To cope with all classes, the proposed architecture goes beyond the mere bundling of
security functionality within one security domain. For example, the execution of
protocol based security (e.g., non-repudiation) realizes complex security requirements
for processes involving two or more domains.

It is noteworthy, that in some cases, especially for the sake of security interoperability
and efficient manageability, endpoints already rely on centralized services. We
identified the following cases. 1. Authentication. To authenticate a service requester,
an endpoint commonly relies on a centralized identity store for identity management in
its own security domain. In [49], the author identifies dedicated security services for
advanced authentication and authorization requirements. 2. Interoperability. In some
cases, an endpoint may issue a request for a token mapping with a trusted 3rd party
security token service. Here, interoperability seems to make the case for a ―service-
ization‖ of security. It is a way to cope with the heterogeneity of distributed, inter-
organizational processes with different infrastructure owners organized into separated
security domains. 3. Authorization. Within a security domain, authorization is enforced
at the endpoint, but relies on a central policy decision point for decisions on access
requests. The XACML dataflow model [75] defines a reference architecture for the
enforcement of access control in a service based environment within a security
domain.

5.4 Architectural blueprint for security as a service

5.4.1 Architecture

Figure 65 shows the conceptual architecture for the proposed SeAAS approach (EI
Pattern names in italics). The upper part shows the ELGA Healthcare Services
Architecture. Service Endpoints provide business functionality. ELGA offers a number
of healthcare services, such as access/update a patient‘s EHR, add Radiography to
EHR etc. The service endpoints are decoupled from the security and messaging
components. Inbound and outbound messages are delivered over the ESB. A business
message contains service requests and responses whereas a security message
contains security protocol data.

An ESB handles internal communication among the various components of a domain
and external communication with business and security components of other domains.
It intercepts inbound requests and forwards them to the SeAAS Engine for security
evaluation. The SeAAS Engine is the central part of the SeAAS Component. To
evaluate security, it retrieves the applicable security policy from Policy Repository. The
security policy defines the security requirements for a particular request. The SeAAS
Engine parses the policy, retrieves the security requirements and decides which
security services will be needed to fulfill those requirements. It composes a security
process to call those services in an appropriate order. For simplicity, our prototype
currently uses a static process with a pre-defined order of execution of security
services. For example, Authentication, Authorization and Non-repudiation Services are
executed in following order: Non-repudiation → Authentication → Authorization.

The SeAAS Component offers security functionality as a set of Security Services
implemented as Security Components. Primitive Security Services consist of
Encryption, Signature and Time-stamping services. All other services (e.g.,
Authentication, Authorization, etc.) are considered Advanced Services. They leverage

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 114 / 132

primitive security services. For example, the Non- repudiation service uses them to
encrypt, sign and timestamp evidence. Primitive security services need
keys/certificates, which are stored in the Key Repository. One key feature of the
SeAAS architecture is the realization of security through decoupled components so to
attain technology and language independence. All components can be implemented in
any language and/or technology without any inter-dependence. Communication is fully
message-oriented and is carried out over an ESB. Our prototype is based on Apache
ServiceMix [40] – an open source ESB.

5.4.2 The SeAAS component

Deployed within a security domain, the SeAAS Component consists of a number of
security services. Depending upon the requirements of the domain, new security
services can be deployed during runtime. The Policy Repository (PR) and the PKI
Repository offer supporting services. The PR holds the policies which specify security
requirements, whereas PKI Repository is a local store for keys and certificates.

1. Authentication. The authentication Service provides intra- and inter-domain
authentication. In case of an internal request, the authentication service
validates the user‘s local identity and sends the signed authentication decision
to the endpoint. For a request from an outside domain, the authentication
service first resolves the identity of the external user: it contacts the external
identity provider (e.g., a Security Token Service (STS)) using WS Interface.
After the STS validates the user, the authentication service creates a security
context. This provides the functionality for Identity Federation.

2. Authorization. The Authorization Service verifies permissions assigned to
users. They are defined in the policies stored in Policy Repository. Based on
the policy, the service takes a decision and sends the result to the service
endpoint for enforcement.

3. Non-repudiation. This service executes an out-of-band non-repudiation
protocol between requester and the endpoint and stores evidence for dispute
resolution (Section 0 is dedicated to a detailed discussion of non-repudiation).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 115 / 132

4. Security Compliance. This service verifies the compliance of an inbound
message with the security policy of the target service endpoint. The security
policy of service endpoint defines the supported security mechanisms such as
types of tokens, encryption and signature algorithms, message parts to be
protected etc. The authentication service depends upon the evaluation
performed by the compliance service. If a request is compliant, then the
authentication service proceeds with token validation.

5. Security Monitoring. This service monitors significant security events
generated by the security services of the SeAAS Component. For instance, the
compliance service reports a security event, if a message does not meet an
endpoint‘s security policy. The Non-repudiation service notifies a protocol
failure, when the external endpoint does not follow the Non-repudiation
protocol. The monitoring service of a domain‘s SeAAS component forwards
these events to a central service accessible to all domains. The purpose of
monitoring security centrally is to receive the security events from different
domains and notify responsible and affected endpoints.

6. Logging. This service logs notifications sent by endpoints related to various
business requests, responses, errors and exceptions. Externalizing security
functionality as a set of services significantly reduces endpoint complexity.
Moreover, the composition of security services as SeAAS components
facilitates the deployment and the configuration of existing and new security
components at deployment time and even during runtime.

NR Evidence

Response

SeAAS Engine

Request

Response

CorrelationID

NR Evidence

Request

ELGA Healthcare

Services

Enterprise Service Bus (ESB)

Message Endpoints

CorrelationID

Process Manager

Security Services

Service Endpoints

Policy

Repository

CorrelationID

A B

Control Bus
Channel

Message

Dispatcher

A B

B
u

s
in

e
s
s
 M

e
s
s
a

g
e

s

S
e

c
u

ri
ty

 P
ro

to
c
o

l
M

e
s
s
a

g
e

s

Message

Router

Token

Validation

Response

Token

Validation

Request

A B

Message

Store

Message

Sequence

1 2 3

SeAAS Component

Key

Repository

Primitive Security Services

Message

Store

Message

Sequence

1 2 3

Logging

Service

Non

Repudiation
Service

Encryption
Service

Authentication
Service

Security

Monitoring
Service

Authorization
Service

Compliance
Service

Time
Stamping

Service

Signature
Service

1 23

489

6

5

7

Figure 65: Conceptual SeAAS Architecture

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 116 / 132

5.4.3 Enterprise Integration Patterns

Patterns provide sound solutions to commonly known problems. In today‘s business
world application integration is more complex, as the systems are loosely-coupled and
use heterogeneous technologies. Message-oriented integration (MOI) aims at
achieving integration among heterogeneous applications based on Enterprise
Integration (EI) patterns. Figure 65 shows the EI patterns used by components instead
of language-specific modules to realize message-oriented communication. EI patterns
will help the security developer implement proposed SeAAS architecture, irrespective
of what tools, technologies and languages she is using. A full catalogue of EI patterns
is presented in [55]. As discussed below, we used some of those patterns, which are
appropriate for designing the SeAAS components (EI patterns are circle-numbered in
Figure 65 as well as in the text below).

The ESB uses Channels (1) to send/receive business and security protocol messages.
As the integration of components in SeAAS is message-oriented, there should be
certain mechanisms to relate the incoming and outgoing messages at any component.
The CorrelationID (2) is used for matching requests and responses by the business
and security components. Every message that enters and leaves the boundaries of a
domain or a component in the domain is assigned a unique CorrelationID. The global
correlationID for a domain is assigned by the ESB, whereas the local correlationIDs are
assigned by components such as SeAAS Engine and Security Services. The Message
Router (3) pattern is used for routing, so that the ESB sends the messages to
appropriate destinations. A Message Dispatcher (4) consumes messages from
Message Router and distributes them to their destinations. ESB uses this pattern to
dispatch (business/security) messages to SeAAS Engine, Security Services, Service
Endpoints and external domains. The service endpoints use Message Endpoints (5)
pattern to indicate a client of messaging system i.e. ESB to send/receive messages.
The Process Manager (6) pattern is used to model the SeAAS Engine for security
process composition. The Control Bus (7) pattern indicates that the ESB sends logging
and security events to the Logging and Security Monitoring components, which monitor
failures, exceptions and security violations. The order of the messages is important,
when the security services send and receive security protocol messages. The
Message Sequence (8) pattern is used by security services to maintain the required
order of security protocol messages. The ESB uses a separate Channel to store a
copy of the messages into Message Store (9) to analyze the message before it delivers
it to the target destination. The non-repudiation service uses this pattern to store the
signed messages in a local persistent database. Similarly, Logging and Security
Monitoring services store event notifications associated to certain message for security
analysis.

5.4.4 Realizing complex security requirements with
SeAAS

Complex security requirements are realized through advanced security services. Here,
we illustrate the working of one of those services taking Non-repudiation as an
example. There is much research related to the design of non-repudiation protocols
[50, 65, 62]. Most is focused to the achievement desired properties like Fairness and
Timeliness. Another issue extensively covered in research is concerned with the
design of protocols with or without a Trusted Third Party (TTP) [64]. The protocols

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 117 / 132

achieve non-repudiation among two or more protocol participants. A non-repudiation
protocol is a cryptographic protocol that provides irrefutable evidence to its participants.
A protocol is called Fair, if it provides the originator and the recipient of the message,
with some evidence after completion of the protocol, without giving a participant an
advantage over the other at any stage. Our design of NR protocol is based on ZG‘s
protocol to achieve non-repudiation properties of fairness and timeliness [50].

The basic assumption is that a service endpoint handles both the business messages
and protocol messages (i.e. keys, evidences etc). As already mentioned, our prime
objective is to free the service endpoints from performing security related tasks. Here,
we will apply the same principle to design and implement a fair non-repudiation
protocol.

Although in [39] a first step has been achieved by integrating non-repudiation
communication into Web service communication, there exists only a logical separation
between non-repudiation messages and business messages. In this section we explain
how these messages can be separated from business messages, by executing an out-
of-band non-repudiation protocol. The proposed protocol does not only separate the
business and security messages, but also maintains the desired properties of non-
repudiation i.e. fairness and timeliness. In the next section, we will illustrate, how we
design the non-repudiation protocol in the SeAAS architecture.

5.4.5 Enforcing a fair non-repudiation protocol in the
SeAAS architecture

There are two different approaches to execute a NR protocol. The protocol is either
enforced by the service endpoint [78] – in which case the service endpoint has to
handle the security protocol messages in addition to business messages – or the
service endpoint delegates the responsibility of executing the protocol to a dedicated
non-repudiation service. The SeAAS architecture leverages the second approach.

In this approach, the protocol executes out-of-band between two dedicated non-
repudiation services. The result is then communicated to the service endpoints, as
shown in Figure 68. The NR services in domains 1 and 2 execute the protocol on
behalf of the GP‘s Client Application (used by GP) and the ELGA service endpoint.
Both delegate the security task to NR services through their respective SeAAS
Engines. The detailed message communication to achieve fair non-repudiation in
SeAAS architecture is shown as a UML Sequence Diagram in Figure 66. It shows the
inter-domain communication between two non-repudiation services of the domains 1
and 2 and intra-domain communication among various components of each domain.
The protocol is based on the ZG‘s protocol, which ensures Fairness and Timeliness.

The request to access the medical service is sent by a GP, through a Client
Application. The ESB in domain1 intercepts the request and forwards it to the service
endpoint of domain 2. The ESB in domain2 receives the request and routes it to the
SeAAS Engine for security evaluation. The SeAAS Engine retrieves the policy that
applies to the request from the Policy Repository and assigns the task to NR Service.
Further security communication will take place among the non-repudiation services of
two domains based on the detailed non-repudiation policy (an example is given in
Section 6). Non-repudiation is achieved by exchanging the evidences of messages
sent and received: NRService@Domain2 requests NRService@Domain1 for the
evidence of the service request sent by GP (Mess. 5). NRService@Domain1 retrieves

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 118 / 132

the request details from ESB through SeAAS Engine (Mess. 6-9), signs the message
and sends the signed message NRO1 to NRService@Domain2 as evidence. This
message (Mess. 10) consists of a URI‘s of NRServices@Domain1 & 2 (represented by
letters A & B respectively), timestamp (i.e. T), Label for any other information (i.e. L)
and NRO1(i.e. evidence). Note, unlike ZG‘s fair Non-repudiation Protocol, we don‘t
send the service request in this message. Because, a service request is a business
message, which has already been sent to service endpoint before beginning the NR
protocol (Mess. 2). However, the encrypted message C requires a key i.e. K, and so
far, the NRService@Domain1 has not sent that key to NRService@Domain2 for
decrypting the request message.

To continue the protocol, NRService@Domain2 stores the evidence and sends a
signed acknowledgment to NRService@Domain1. This is shown in Message 11 as
Non- repudiation of Receipt (NRR1). At this moment, both NR services have the first
part of evidence. The second part of the evidence will be signed by the TTP. Therefore,
in Message 12, NRService@Domain1 sends the key K to TTP. TTP publishes the key
and the second piece of evidence i.e. NROR2. Both the NR services retrieve this piece
of evidence after time T. This completes the fair non-repudiation protocol between the
NR services. After successful completion, the NRService@Domain2 sends the
decrypted message and protocol completion notification to the service endpoint
through SeAAS Engine (Messages 16-18). The service endpoint then sends the
response to the client application. Thus, the protocol has executed out-of-band and the
service endpoints were never involved. With this, we have not only separated the
security from the business components in the architecture, but also the security
communication from business communication.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 119 / 132

Figure 66: Inter- and Intra- domain communication for Fair NR Protocol in SeAAS Architecture

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 120 / 132

5.5 Reference architecture

The Reference Architecture (RA) is shown in Figure 67 as an UML deployment
diagram. It shows components deployed; their relationships and Web services
standards used. A service requester uses a Client Application to access the healthcare
services offered by ELGA. The healthcare services are deployed at Healthcare
Systems Application Server. The ESB Server provides a message-oriented
middleware, which uses a Dispatcher component for inter- and intra-domain
communication. The SeAAS Server hosts a SeAAS Engine component, which
evaluates security based on the policy retrieved from the Policy Repository. The
SeAAS Engine delegates the security task to security components4, which are
deployed at the Security Server. The Security Server deploys a number of security
components i.e. Authentication, Non -Repudiation, Authorization etc. The security
components are configured at deployment time based on Service Component
Architecture (discussed below) and the configurations are stored in a SCA deployment

Figure 67: Reference Architecture

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 121 / 132

Configurations file. The security components use different Web services security
standards for performing security tasks.

Policy assertions for functional and non-functional requirements are defined with WS-
Policy [77]. For example, the Non-repudiation component specifies the specific policy
describes supported protocols, types and contents of the evidence and cryptographic
methods required for message protection.

Figure 67 shows an example non-repudiation policy. It describes policy requirements
as WS-Policy Assertions. The Evidence Type assertion defines that DigitalSignature on
the message is required as an evidence. Elements of Evidence assertion defines that
what should be the contents of a non-repudiation evidence. This implies that an
evidence should contain the Message With Token, MessageTimeStamp, URI’s of
EvidenceOriginator/EvidenceRecipient and EvidenceExpiry. The ProtocolType
assertion defines that a Fair Non-repudiation Protocol is required which involves an
Online TTP, defined in the TTPRole assertion.

Security requirements of a service endpoint are defined as security assertions
embedded into WS-Policy assertions WS-SecurityPolicy [76]. We use this standard
to write the security policy of an endpoint, which defines supported type of bindings,
tokens, encryption/signature algorithms. Two of the security components (security
compliance and authentication) deployed at the Security Server use the WS-
SecurityPolicy standard. The security compliance service checks the service request‘s
compliance with the security policy. After the check, the authentication service
proceeds for token validation for which it sends the requester‘s credentials to the
Security Token Service (STS).

Figure 68: Example Non-Repudiation Policy (WS-Policy)

The Security Assertion Markup Language (SAML) is used to exchange security
information between security domains [73]. In the RA, two components of Security
Server i.e. authentication and Authorization components, use SAML standard. The
authentication component creates authentication request/response based on SAML

<wsp:Policy wsu:id="NR_policy">

 <wsp:ExactlyOne>

 <wsp:All>

<!-- Evidence Type Assertion: -->

 <nrp:EvidenceType>

 <wsp:Policy>

 <nrp:DigitalSignature/>

 </wsp:Policy>

</nrp:EvidenceType>

<!---Elements of Evidence Assertion-->

<nrp:EvidenceElements>

 <wsp:Policy>

 <nrp:MessageWithToken/>

 <nrp:MessageTimeStamp/>

 <nrp:EvidenceOrginator/>

 <nrp:EvidenceRecipient/>

 </nrp:EvidenceExpiry>

 </wsp:Policy>

</nrp:EvidenceElements>

. . . .

<!-- NR Protocol Type Assertion-->

<nrp:NRProtocolType>

 <wsp:Policy>

 <nrp:FairNRProtocol/>

 </wsp:Policy>

</nrp:NRProtocolType>

<!-- TTP Role for NR Assertion-->

<nrp:TTPRole>

 <wsp:Policy>

 <nrp:onlineTTP>

 <nrp:TTP_uri uri="ttp01.org"/>

 </wsp:Policy>

 </nrp:TTPRole>

 </wsp:All>

 </wsp:ExactlyOne>

</wsp:Policy>

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 122 / 132

protocols. Using these protocols, the Security Token Service (STS) validates the
tokens and sends a signed authentication SAML assertion to the authentication
service, which forwards them to the service endpoint through SeAAS Engine. The
Authorization component uses SAML in a similar manner. It makes authorization
decision according to service requester‘s authorization policy and sends the decision
as SAML authorization assertions to the service endpoint for enforcement.

The Extensible Access Control Markup Language (XACML) is a standard for
authorization policies [75]. We use it to define permissions of a service requester. The
Policy Decision Point (PDP) of the authorization service, makes decisions based on the
permissions assigned to the roles (e.g. practitioner), defined as XACML rules.

WS-Trust provides interfaces for token issuance and validation [74]. A service
consumer can get security tokens from an STS. The authentication component uses
the WS-trust interface to get token validation decision by STS.

We use WS-Notification to send event notifications to Logging and Security
Monitoring components [37]. Logging notifications carry information pertaining to the
service requests and responses, whereas security alerts are notifications for security
monitoring.

The Service Component Architecture (SCA) model is used for composition of
security services performed by SeAAS Engine [38]. Security components are
integrated to a Security Composite, which realizes a set of security requirements. SCA
composite is written in the XML-based Service Composition Definition Language
(SCDL).

The component-based architecture facilitates language- and technology-
independence, reusability, and improves extensibility and maintainability. We use SCA
properties for Deployment-time Configuration of security components based on
security policy of a domain. These configurations are stored in Deployment
Specifications as an SCA Deployment Configurations file, as shown in Figure 67.

The Lightweight Directory Access Protocol (LDAP) is used for directory access to
retrieve certificates, policies and related information [56]. The policy repository is used
for storage and retrieval of security policies, Authorization policies, and component
policies like e.g. Non-repudiation used by SeAAS Engine and the Security services.
The PKI Repository holds certificates and keys of service endpoints.

5.6 Discussion

In Section 5 we presented an architecture based on the paradigm Security as a
Service. We motivated our approach with a discussion of the many limitations of
endpoint security, the current practice in SOA security to enforce security with the
endpoints. By default, the engineering intuition seems to impose a turning away from
the concept of centralization entailing the threat of a single-point-of-failure or
unbearable communication overhead.

But we showed how concepts of SOA, like declarative security, the Enterprise Service
Bus and Model Driven Security, an advanced method of software engineering can
open a new venue to the efficient realization of security critical, inter-organizational
processes. The reference architecture is able to cope with the complex security
requirements imposed by use cases from industries that have to deal with security-
critical processes spanning multiple security domains.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 123 / 132

The objection that SeAAS creates a single point of failure or a bottleneck can be
countered by balancing the workload over replicated service components – an inherent
advantage of SOA-style architectures. Taking communication overhead into account it
does not always make sense to outsource all security functionality to a SeAAS
provider. Tasks like basic XML processing can be left with the endpoint. It is up to the
architect to decide upon the degree of service centralization. A hybrid approach
distributes the tasks between endpoints and the SeAAS according to specific need. We
currently envisage the extension of our architecture to support the flexible, run-time
adjustment of the degree of centralization. Security services are registered with the
SeAAS engine and advertised to potential consumers. Authorized requesters would
access them as needed.

5.7 Case Study

The general idea of an architectural blueprint based on security services will be
validated using a scenario derived from the description of the HOMES case study as
described in Deliverable D1.1. - Description of the Scenarios and their Requirements.

The main idea of a reference architecture based on the paradigm Security as a Service
is the support of a broad variety of architectural alternatives. Each alternative enforces
one or more security requirements based on various participants, protocols and
technologies – with a constellation that may possibly even change over time. This
demands a highly flexible architecture.

The scenario should validate the claim that a security infrastructure

1. designed according to the blueprint ―Security as a Service‖,

2. complemented by a methodology supporting model driven configuration,

3. and embedded in a change driven process for security-engineering

facilitates efficient and effective security engineering as well as management of
evolving systems.

5.7.1 Scenario Description

This is a sketch of a scenario that will be elaborated in depth with the industry partner
providing the HOMES case study.

We consider a third party service provider offering information services (e.g., an airline
keeping passengers informed about flight details). An interested party (e.g., a
passenger) can subscribe to various notification services. Communication basically
runs over a subscriber‘s domotic network - called Home Network - which provides
multiple channels for message forwarding (e.g., pager, mobile, blackberry, laptop etc).
In such a scenario, connectivity to notification services is established through the
deployment of one or more software bundles on the Home Network‘s Home Gateway.
The latter identifies the subscriber, receives and forwards messages.

In case of security-critical transactions or communication additional security services
may be needed to enforce security requirements or policies. For example, to make
sure that neither the airline nor the passenger can deny having sent or received
messages, the Home Network needs to provide a non-repudiation service).

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 124 / 132

5.7.2 Challenges

5.7.2.1 Architecture

Concerning the architecture, the key challenge is linked to the many alternatives on
how a security service like non-repudiation may be realized (e.g., protocol type,
software platform, algorithms etc.). In this respect, the proposed architecture should
provide the highest degree of flexibility, thereby catering to various evolution paths.

The proposed solution consists in a robust reference architecture for an open, evolving
service-oriented system that can cope with change in its many facets. The scenario will
illustrate

1. How the architecture copes with changing security policies. To meet this
challenge we will introduce concepts that support the high-level (platform-
independent) configuration of security-critical systems.

2. How the architecture enforces a broad set of evolving security requirements.
The key to this challenge will be the architecture‘s modular (or service based)
design which will support the continuous evolution of security services.

5.7.2.2 Process

A second major challenge is related to the management of security-services in an
evolving system and/or context.

In this context, the architecture will serve as a target system infrastructure for the
change-driven process for security engineering which supports the collaboration and
cooperation among different stakeholders with their specific views on the target system
infrastructure as defined in Section 3.1.

The scenario will illustrate how the collaboration and cooperation among different
Stakeholders is supported by a tool-based framework, taking into account the different
perspectives and responsibilities of stakeholders.

5.7.3 Outlook

The following activities will be pursued in Year 2.

1. The architectural blueprint for the home network will be mapped to a suitable
reference architecture that may accommodate a variety of alternative or
complementary technical platform (e.g., OSGI, Linux services, etc.).

2. Security services will be identified and implemented at one or more appropriate
layers (e.g., OSGI, JVM, User Space, Kernel, etc.).

3. Concepts to support the high-level configuration and administration of security
services in the reference architecture will be elaborated.

4. The engineering, deployment and management of the various security services
will be analyzed in context of the change-driven security engineering process as
defined in Section 3.1.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 125 / 132

6 Conclusion

In the preceding sections we have presented the results of WP2 of the first year
focusing on the aspects of security engineering processes and security architectures
for evolving systems.

The SecureChange security engineering process is the first security engineering
process which is fully driven by change events and change propagation. This novel
process provides generic mechanisms for change propagation across stakeholders´
views.

The process is complemented by a framework and a catalogue of change patterns.
Change patterns provide guidance for architectural change within the process,
assisting the designer to develop an architecture that is resistant against certain
foreseen evolutions of the requirements and assumptions.

Finally, at the architectural level we addressed the question of how a robust security
architecture can be designed in order to support a broad range of changes. Our
Security as a Service Approach (SEASS) applies well established mechanisms of
functional architectures to the security domain, like the separation of abstraction layers,
model-based configuration and orchestration of services.

The results of our research efforts have been published in three international
publications (one further publication is submitted).

For the second year our activities will go in the following directions.

Concerning the SecureChange process we will develop a first prototype for tool
support based on the experiences of the preliminary study (Section 3.3). The
SecureChange Engine will at least support the concepts of change events, change
propagation and the management of model states and model element dependencies.
In addition we will develop an integrated view of the process as an umbrella all work
packages of the project. This will be complemented by a case study in the ATM
context.

Concerning change patterns and the SEASS approach, the activities in the second
year will have a focus on validation based on the HOMES case study.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 126 / 132

7 Glossary

An architectural support pattern is a software pattern referenced by a change
pattern that needs to be instantiated in a software architecture to prepare this
architecture for future evolution.

An artefact distinguishes on an abstract level the different models and concepts which
are used by the different Work Packages.

Change is described by a Change Trigger.

A change event is a general trigger of change which is derived from a set of change
scenarios.

A change line model represents relationships between several Changes included in
one Change Line and Transitions which describes a set of transformation rules
between several changes

The change guidance is described by a change pattern, and outlines the steps that
an architect of a system should follow to update the software system when a change
scenario manifests itself.

A change pattern is a combination of a possible change scenario, architectural
support patterns and change guidance that can be used to prepare an architecture
for future evolution.

A change request is a general description of some change in the system.

The change request model traces changes inside the Static Model.

A change scenario is the description of a change in requirements of assumptions, that
can be accommodated by using a change pattern.

A change transition is a description of all the differences from one change to another.

A change trigger expresses the rationale of Change and activates a Change Request.

The Common System View represents the conceptual underpinning for the security
management process. Its elements are the conceptual units subject to change.

Declarative security, technique of configuring security components through machine
readable policies.

Dependencies describe the associations between various model elements allowing
change to percolate through the Model Layers.

A domain is any subset of a conception (being a set of elements) of the universe that
is conceived of as being some 'part' or 'aspect' of the universe.

DSML stands for Domain Specific Modeling Language.

Electronic Health Record, European initiative aiming at realising the infrastructure for
nation-wide centralized repositories of electronic patient records.

ELGA (Elektronische Gesundheitsakte), German acronym for „electronic health
record―, stands for the consortium driving the realization of an HER in Austria.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 127 / 132

Endpoint security, method of enforcing security in Web services based environments
directly at the node hosting the service as opposed to a centralized service as in
Security as a Service.

Enterprise Service Bus, technical backbone of a SOA landscape. This centralized
communication infrastructure is responsible to provide interoperability between
heterogeneous systems.

Meta-Model Plugins extend the Functional System Meta Model with specific concepts
that cover different aspects of the System (e.g. Security Plugin, Verficiation Plugin).

Model Element States reflect the milestones in the lifecycle of the modelled artefacts
and are used to reflect relevant changes.

A Model Layer is comprised of a set of model elements types which capturing different
levels of abstraction or degrees of granularity.

The Functional System Meta Model defines functional system concepts like business
processes, information objects, roles, components and their relationships.

Model-driven security is an engineering paradigm that specializes Model Driven
Software Engineering towards information security.

Reference architecture, specific technical platform or infrastructure realised according
to an architectural paradigm (e.g., Security as a Service).

Robustness, property of a component, system or architecture referring to the ability to
easily accommodate changes. A robust architecture thus supports long-lived,
evolving systems.

SECTET, a framework for model driven security engineering in SOA.

Security as a Service (SeAAS) stands for an architectural paradigm. It defines an
architectural blueprint that transposes the model of Software as a Service to the
security domain.

The security micro process is executed by each of the stakeholders within her
specific domains and consists of a set of activities result in a set of newly created or
updated security artefacts.

Service-oriented architecture (SOA), architectural paradigm for distributed systems
relying on loosely coupled software components called services. SOA is based on a
set of flexible design principles.

The Static Model is a set of interrelated models and an instantiation of a Functional
System Model which is extended with different Meta-Model Plugins.

A View consists of a selected set of model elements (together with selected
interdependencies) and corresponds to the usual notion of a representation of a
system from the perspective of a related set of concerns.

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 128 / 132

8 Bibliography

[1] Bart De Win, Riccardo Scandariato, Koen Buyens, Johan Grégoire, Wouter Joosen, On
the secure software development process: CLASP, SDL and Touchpoints compared,
Information and software technology, volume 51, issue 7, pages 1152-1171, July 2009.

[2] OWASP, Comprehensive, lightweight application security process, http://www.owasp.org,
2006.

[3] M. Howard, S. Lipner, The Security Development Lifecycle (SDL): A Process for
Developing Demonstrably More Secure Software, Microsoft Press, 2006.

[4] G. McGraw, Software Security: Building Security, Addison Wesley, 2006.

[5] Perry, D.E. and Wolf, A.L. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes. 1992, Vol. 17, 4.

[6] Bass, L., Clements, P. and Kazman, R. Software architecture in practice. s.l. : Addison-
Wesley Professional, 2003.

[7] ISO/IEC 42010:2007 - IEEE Std 1471-2000. Systems and software engineering -
Recommended practice for architectural description of software-intensive systems. 2007.

[8] Yoshioka, N. and Washizaki, H. and Maruyama, K., A survey on security patterns. In
Progress in Informatics, Vol 5, 2008.

[9] Munawar Hafiz, Paul Adamczyk, Ralph E. Johnson, "Organizing Security Patterns," IEEE
Software, vol. 24, no. 4, pp. 52-60, July/August, 2007.

[10] Gross, D. and Yu, E., From non-functional requirements to design through patterns.
Requirements Engineering, Springer, Vol. 6, Number 1, 2001.

[11] Weiss, M., Modelling security patterns using NFR analysis. In: Integrating security and
software engineering: advances and future visions (eds: Mouratidis, H. and Giorgini, P.).
Idea Group Publishing, 2006.

[12] Axel van Lamsweerde. From System Goals to Software Architecture
In Formal Methods for Software Architectures, M. Bernardo & P. Inverardi (eds), LNCS
2804, Springer-Verlag, 2003, 25-43

[13] Manadhata, P. and Wing, J.M., An attack surface metric. 2008.

[14] Koen Buyens, Bart De Win, Wouter Joosen, Resolving least privilege violations in
software architectures, Proceedings of the 31st International Conference on Software
Engineering Workshops, Vancouver, 16-24 May

[15] Ren, J. and Taylor, R. A secure software architecture description language. Workshop on
Software Security Assurance Tools, Techniques, and Metrics, 2005.

[16] Jürjens, J., Secure systems development with UML. Springer Verlag, 2005.

[17] Lodderstedt, T. and Basin, D. and Doser, J. and others, SecureUML: A UML-based
modeling language for model-driven security. Lecture notes in computer science,
Springer, 2002.

[18] Shawn Hernan and Scott Lambert and Tomasz Ostwald and Adam Shostack, Uncover
Security Design Flaws Using The STRIDE Approach. MSDN Magazine, November 2006.
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 129 / 132

[19] L. Dai, K. Cooper. A Survey of Modelling and Analysis Approaches for Architecting
Secure Software Systems. International Journal of Network Security, 2007.

[20] C. Rahn, ―Lufthansa computer-server glitch hampers flights (update2),‖ September 2009,

accessed: 2009-10-15. [Online]. Available:

http://www.bloomberg.com/apps/news? pid=20601100∖&sid=avUsNKymzMPk

[21] B. Y. Y. Nhlabatsi, A.; Nuseibeh, ―Security requirements engineering for evolving

software systems: a survey,‖ The Open University, Department of Computing, Technical
Report 2009-05, 2009.

[22] R. Breu, ―Ten principles for living models — a manifesto of change–driven software

engineering,‖ accepted for 4th International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS-2010).

[23] F. Innerhofer-Oberperfler and R. Breu, ―Using an enterprise architecture for it risk

management,‖ in ISSA06: Proc. Information Security South Africa Conference, 2006.

[24] F. Innerhofer-Oberperfler, D. Bachlechner, R. Maier, V. Hahn, M. Weitlaner, and R. Breu,

―Information Security Management: A Collaborative Approach,‖ in In Proc. STM 2009:
5th International Workshop on Security and Trust Management (STM 2009) in
conjunction with ESORICS 2009, September 2009.

[25] M. Hafner and R. Breu, Security Engineering for Serviceoriented Architectures. Springer,

October 2008.

[26] ―Deliverable 5.2: Documentation of forecasts of future evolvement,‖ SecureChange (EU

ICT-FET-231101), Unpublished Draft Report ICT-FET- 231101 D5.2, 2009.

[27] C. J. Alberts and A. J. Dorofee, Managing information security risks: the OCTAVE

approach. Pearson Education, 2002.

[28] T. I. S. Organization, ―Introduction to iso 27005 (iso27005),‖ 2008.

[29] IEEE Architecture Working Group. IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems, IEEE Std 1471-2000, IEEE. (2000).

[30] Normand, V., Felix, E., Jitia, C. A DSML for security analysis, IST MODELPLEX project

restricted deliverable 3.3.g. (2009).

[31] ―Deliverable 4.1: Security modeling notation for evolving systems,‖ SecureChange (EU

ICT-FET-231101), Unpublished Draft Report ICT-FET- 231101 D4.1, 2009.

[32] ―Deliverable 3.2: Methodology for evolutionary Requirements,‖ SecureChange (EU ICT-

FET-231101), Unpublished Draft Report ICT-FET- 231101 D3.2, 2009.

[33] IBM Rational DOORS Homepage, http://www-01.ibm.com/software/awdtools/doors/

[34] Giorgini, P., Massacci, F. and Zannone, N. Security and trust requirements engineering.

Lecture notes in computer science. 2005, Vol. 3655.

[35] Compagna, L., et al. How to integrate legal requirements into a requirements engineering
methodology for the development of security and privacy patterns. Artificial Intelligence
and Law. 2009, Vol. 17, 1.

http://www-01.ibm.com/software/awdtools/doors/

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 130 / 132

[36] Massacci, F, Mylopoulos, J and Zannone, N. An ontology for secure socio-technical
systems. Handbook of Ontologies for Business Interaction. 2007.

[37] OASIS Web Services Notification (WSN) Specifications, 2006.

http://docs.oasisopen.org/wsn.

[38] Introducing SCA, 2007. http://www.davidchappell.com/.

[39] B. Agreiter, M. Hafner, and R. Breu. A fair Non-repudiation service in a web services

peerto-peer environment. Computer Standards & Interfaces, 30(6):372–378, 2008.

[40] Apache-ServiceMix. Open Source ESB. http://servicemix.apache.org/.

[41] S. Bajaj. Web Services Policy 1.2 - Framework (WS-Policy) W3C Member Submission 25

April 2006. Technical report, W3C, 2006.

[42] M. Bartel, J. Boyer, and B. Fox. XML-Signature Syntax and Processing, W3C

Recommendation 12 February 2002. Technical report, W3C, 2002.

[43] D. Basin, J. Doser, and L. Torsten. Model driven security: From UML models to access

control infrastructures. ACM Trans. Softw. Eng. Methodol., 15(1):39–91, 2006.

[44] M. Y. Becker and P. Sewell. Cassandra: flexible trust management, applied to electronic

health records. In Comp. Sec. Foundations Workshop, 2004. Proc. 17th IEEE, 2004.

[45] M. Donner. From the editors: Whose data are these, anyway? IEEE Security and Privacy,

2(3):5–6, 2004.

[46] Arge Elga. Arbeitsgemeinschaft elektronische gesundheitsakte. http://www.arge-elga.at/.

[47] B. Atkinson et al. Web services security (ws-security) - version 1.0. Specification, IBM

Corp., Mircosoft Corp., VeriSign, Inc., 2002.

[48] F. Satoh et al. Adding authentication to model driven security. In ICWS ’06: Proc. of the

IEEE Intern. Conf. on Web Services, Washington, DC, USA, 2006. IEEE Computer
Society.

[49] J. Lopez et. al. Specification and design of advanced authentication authorization

services. Computer Standards and Interfaces, 27(5):467–478, 2005.

[50] J. Zhou et al. Evolution of Fair Non-repudiation with TTP. In ACISP ’99: Proc. of the 4

th

Australasian Conf. on Information Security and Privacy, London, UK, 1999. Springer.

[51] M. Alam et al. Modeling and Enforcing Advanced Access Control Policies in Healthcare

Systems with SECTET. In MOTHIS ’07: MODELS 2007, Nashville, USA, 2007.

[52] M. Hondo H. Hinton and B. Hutchison. Security patterns within a service-oriented

architecture, Nov. 2005. http://www.ibm.com/websphere/developer/services/.

[53] M. Hafner and R. Breu. Security Engineering for Service-oriented Architectures. Springer,

October 2008.
[54] M. Hafner, R. Breu, B. Agreiter, and A. Nowak. Sectet: an extensible framework for the

realization of secure inter-organizational workflows. Internet Research, 16(5):491–506,
2006.

http://docs.oasisopen.org/wsn
http://www.davidchappell.com/
http://servicemix.apache.org/
http://www.arge-elga.at/
http://www.ibm.com/websphere/developer/services/

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 131 / 132

[55] Gregor Hohpe and BobbyWoolf. Enterprise Integration Patterns : Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional, 2003.

[56] IETF. The LDAP Technical Specification, 2006. http://tools.ietf.org/html/rfc4510. 21. T.

Imamura. XML Encryption Syntax and Processing, W3C Recommendation 10 December
2002. Technical report, W3C, 2002.

[57] T. Imamura. XML Encryption Syntax and Processing, W3C Recommendation,

10 December 2002. Technical report, W3C, 2002.

[58] innoQ. Web services standards overview, Nov. 2006,

http://www.innoq.com/resources/wsstandards-poster/ and http://www.innoq.com/soa/ws-
standards/.

[59] N. M. Josuttis. SOA in Practice: The Art of Distributed System Design (Theory and

Practice). O‘Reilly Media, Inc., August 2007.

[60] J. Juerjens. Secure Systems Development with UML. SpringerVerlag, 2004.

[61] R. Kanneganti and P. Chodavarapu. SOA Security in Action. Manning Publications Co.,

Greenwich, CT, USA, 2007.

[62] S. Kremer, O. Markowitch, and J. Zhou. An Intensive Survey of Fair Non-Repudiation

Protocols. Computer Communications, 25:1606–1621, 2002.

[63] MacAfee. Security as a service, 2008. http://www.mcafee.com/us/local content/solution

briefs/sb saas 0709.pdf.

[64] O. Markowitch and S. Kremer. An optimistic non-repudiation protocol with transparent

trusted third party. In ISC ’01: Proc. of the 4th Int. Conf. on Information Security, London,
UK, 2001. Springer.

[65] O. Markowitch and Y. Roggeman. Probabilistic non-repudiation without trusted third

party. In 2nd Conf. on Security in Communication Network, 1999.

[66] M. Memon, M. Hafner, and R. Breu. SECTISSIMO: A Platform-Independent Framework

for Security Services. In ModSec ’08: MODELS 2008, Toulouse, France, 2008.

[67] Microsoft. Windows live onecare, 2006.

http://onecare.live.com/standard/enus/3/default.htm.

[68] Oracle. Service-Oriented Security: An Application-Centric Look at Identity Management,

2008. http://www.oracle.com/.

[69] G. Peterson. Service oriented security architecture, 2005.

http://www.arctecgroup.net/ISB1009GP.pdf.

[70] G. Peterson. Service-oriented security indications for use. IEEE Security and Privacy,

7(2):91–93, 2009.

[71] T. Rademakers and J. Dirksen. Open-Source ESBs in Action. Manning Publications Co.,

Greenwich, CT, USA, 2008.

[72] Symantec. Symantec names genesis norton 360, 2006.

http://www.symantec.com/about/news/release/article.jsp?prid=2006053101.

http://tools.ietf.org/html/rfc4510
http://www.innoq.com/resources/wsstandards-poster/
http://www.innoq.com/soa/ws-standards/
http://www.innoq.com/soa/ws-standards/
http://www.mcafee.com/us/local%20content/solution%20briefs/sb%20saas%200709.pdf
http://www.mcafee.com/us/local%20content/solution%20briefs/sb%20saas%200709.pdf
http://onecare.live.com/standard/enus/3/default.htm
http://www.oracle.com/
http://www.arctecgroup.net/ISB1009GP.pdf
http://www.symantec.com/about/news/release/article.jsp?prid=2006053101

D2.1 - An architectural blueprint and a software
development process for security-critical lifelong systems

| version 2.2 | page 132 / 132

[73] OASIS TC. Security Assertion Markup Language (SAML), 2005.
http://www.oasisopen.org.

[74] OASIS TC. WS-Trust Specifications, 2005. http://docs.oasis-open.org/.

[75] OASIS TC. Extensible Access Control Markup Language (XACML), 2006.

http://www.oasis-open.org.

[76] OASIS TC. WS-SecurityPolicy, 2007. http://docs.oasis-open.org/.

[77] W3C. Web Services Policy 1.2 - Framework , 2006.

http://www.w3.org/Submission/WSPolicy.

[78] Reto Zimmermann. Design and Prototypical Implementation of a Non-Repudiation

System for Mobile Grid Services. http://www.ifi.uzh.ch/archive/mastertheses/.

http://www.oasisopen.org/
http://docs.oasis-open.org/
http://www.oasis-open.org/
http://docs.oasis-open.org/
http://www.w3.org/Submission/WSPolicy
http://www.ifi.uzh.ch/archive/mastertheses/

