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Executive summary 

As a software system evolves, security concerns need to be analyzed to re-
evaluate the impact of changes on the system and the assumptions on environmental 
properties. 

Traditionally, the security requirements were handled in an ad-hoc way, while 
requirement models are often embedded in natural language descriptions which lead to 
inconsistent interpretations with respect to the meaning of the requirements. These 
made it difficult to analyze for requirements changes. By adopting a model-based 
engineering methodology, we propose to investigate such changes using a consistent 
conceptual model of evolving security requirements which incorporates the state-of-art 
requirement modeling languages such as Tropos and Problem Frames. As a unified 
extension to existing Security Requirements frameworks (e.g., Secure Tropos and 
Abuse Frames), our new meta-model is explicit in representing target specifications 
where vulnerability can be revealed. Essential elements  such as threats are also made 
explicit in order to analyze attacks that are assumed to be present in a hostile 
operating environment. The overall goal of the model is to provide mechanisms for 
protecting valuable assets from damage. Using our conceptual model for security 
requirements, we observe how it is possible to construct arguments to examine the 
security of systems as they change.  

To address the challenge of evolutionary security requirements, we lay out the 
conceptual meta-models, and the general methodology to handle changes on security 
requirements, including how to represent security requirements, how to model the 
changes of them, how to manage the changes and how to argue that the changes are 
fit for the purposes. As a result, we obtained a consistent meta-model representing the 
key concepts related to security requirements, which not only improves the elicitation of 
security requirements, but also enables further analysis at the design and validation 
stages. 
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1 Introduction 

Long-lived software systems often undergo evolution over an extended period of time. 
Evolution of these systems is inevitable as they need to continue to satisfy changing 
business needs, new regulations/standards and the introduction of novel technologies. 
Such evolution may involve changes that add, remove, or modify features; or that 
migrate the system from one operating platform to another.  These changes may result 
in requirements that were satisfied in a previous release of a system not being satisfied 
in its updated version. When evolutionary changes violate security requirements, a 
system may be left vulnerable to attacks [14]. 

Dealing with changes to security requirements poses several challenges, including: 

• Ad hoc elicitation of security requirements. Most security requirements are 
implicit or are added after security violations have happened, which makes it 
difficult to prevent the problems and address the vulnerability in a proactive 
way; 

• Imprecise modeling of requirements. Security requirements, by their very 
nature, demand a precise description that can be used to analyze, argue and 
evaluate. Vaguely expressed informal natural language descriptions, such as 
the requirement  traceability matrix in DOORS, are difficult for analysts to give 
an assessment of the problem and to provide useful mitigation advices; 

• Change management of security requirements are not integrated with the 
requirements modeling tools. It requires an explicit mapping between the 
changes of security requirements and the system vulnerability to be able to 
assess their impact on the system-to-be. Due to the large gap between the 
requirements and the design and implementation, mitigation is often a late 
response to continuous evolution of life-long software systems. 

• Even when changes have happened as systematically, there is a lack of 
mechanism to formally argue about these changes with respect to the domain 
knowledge of the system. Will the system collapse due to a subtle change of a 
trust assumption, for example about the system boundary? Can the system 
respond to the introduction of a new fact or domain knowledge that often 
invalidate the existing justification of security? As the security requirements are 
often proposed by stakeholders, it is important to reach an agreement between 
them on the level of security of the system-to-be. 

The above difficulties are intertwined in the process of requirements engineering for 
secure software systems. When addressing these challenges, we propose to start with 
a well-known engineering principle that is simple enough to deal with different 
requirement modeling approaches, while at the same time it allows for the high-level 
analysis of the changes. 

According to Zave and Jackson [22], a problem-oriented system requirements analysis 
involves the understanding of the indicative domain properties in the physical world W 
and the specifications of the machine S, in relation to requirements R that are the 
optative domain properties.  Descriptions of phenomena of given (existing) domains 
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are indicative; the phenomena and resulting behaviour can be observed. Descriptions 
of phenomena of designed domains (domains to be built as part of the solution) are 
optative; one hopes to observe the phenomena in the future.  

These relationships between the properties establish a structure in order to facilitate 
the analysis of the entailment relation W, S ├ R.   

In addition, to extend Jackson's framework to consider security, security-related 
concepts such as assets, threats, vulnerabilities, attackers, trust assumptions, risks 
and satisfaction argumentation [11] must be added. When a system changes, the 
entailment relation W, S├R may no longer hold. To be able to re-analyze the security 
of the system, the processes and rules of changes on the security requirements 
models need to be represented in order to re-establish the satisfaction of W’, S’ ├ R’ 
where W', S', R' are respectively the changed domain properties in the description of 
the problem. Since security requirements tend to be hard to guarantee, effective 
argumentations on the satisfaction of the entailment relation needs to include both 
positive and negative evidence to establish to what extent the trust assumptions hold 
and the system boundaries encompasses.  

In this document, we take the position that changes of security requirements can be 
modeled from three viewpoints, namely,  

• A problem-oriented analysis that relates the changes of security requirements 
to both the changes in the specifications and the changes in the environment 
contexts; 

• A sequence of transactions that views changes as transitions of one valid state 
of the model to another one, given that guard conditions, triggering events and 
the actions can be specified. In particular, these transactions are applied to the 
change management processes for security risk analysis to include the status 
indicating at which stage the security problems manifest; and  

• An argumentation structure for the claimed satisfaction of security requirements 
by nesting both the positive and the negative evidence in terms of facts, 
domain-specific knowledge, rebuttals.  

Since these viewpoints are related, we identify several possible connections of them. 
These connections, we hope, will help one obtain a meta-meta-model that permits 
description of all changes. Throughout the document, we illustrate the models using 
some examples in the Arrival Management (AMAN) system from the air traffic 
management domain. 
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2 Methodology for Evolutionary Security 
Requirements 

As mentioned earlier, the challenges  of evolving security requirements engineering 
arise from multiple facets of engineering problems. Existing methodologies deal with 
the changes in security requirements with different focuses. For example, Secure 
Tropos have been used to model both functional and non-functional requirements of 
stakeholders as security goals. By modeling the delegation and trust relationship 
among these stakeholders, security problems of a social-technical system are elicited 
and reasoned about at a high level. On the other hand, Problem Frames approaches 
for security (e.g., abuse frames), focus primarily on modeling the relationship among 
the specifications of a software system, the indicative domain properties and optative 
requirements. As a result, patterns relating problems with solutions become reusable 
for such problem-oriented analysis. Both requirements engineering approaches handle 
risk assessment  by extending the basic concepts with relatively new concepts to be 
able to handle the risk factors of likelihood and impact, and to be able to provide 
guidance for the mitigation of security problems in terms of threats, assets and 
damages, etc. 

Although individually these approaches are powerful in modeling and analysis of 
different perspectives of the security problems, it is easy to see that none of these 
approaches alone could provide a comprehensive basis to reason about the changes 
of security requirements. Such a combination could benefit  from the strengths of 
individual methodology, making clearer about the  situation  of the subject system in 
terms of security requirements. Additional benefits include enabling  a rule-based 
evolution support for transforming and maintaining the unified situations, extending  a 
process-oriented change management support for documenting the problems in terms 
of security, and forming  a basis  for arguing the security of the life-long system for 
these documented problems. 

In fact, such a comprehensive framework requires fewer  rather than more concepts. It 
would be considered a failure for us by simply adding up the existing concepts from 
different methodologies. Otherwise, it is still hard to combine the different modeling 
approaches to provide a consistent picture of the situations before or after the 
changes. Applying such a naïve approach invites inconsistency between these 
concepts, for the sake of security analyses, the situation could get worse than limiting 
oneself to applying each methodology separately. Therefore the first step in our 
methodology involves identifying equivalent or similar concepts among di fferent 
conceptual frameworks . As a result, the combined situation framework has fewer 
concepts than the simple addition, and they are amenable to advanced analysis of the 
evolution of the life-long software systems.  

After the first step, our methodology demonstrates the usefulness of the combined 
framework that can take advantage of continuous transformation-based evolution 
rules  that govern the adaptation of evolving security requirements. These evolution 
rules will be developed into model-based transformation rules to automate the change 
process. The contribution of such transformation rules will help maintain the security of 
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life-long evolving system through a continuous control loop  that is composed of 
triggering events, conditions of situations  and transforming or adaptation actions.  

In parallel to the management of changes of requirements situations, security 
argumentation framework will help to provide detailed justifications  for the 
documentation. The truth maintenance combines the change management systems 
and the argumentation framework through the control loops, implementing a full 
support at the requirements level for the continuous evolution of life-long software 
system. 

Putting these individual control loops of evolution rules together, our methodology will 
be applied and supported by adapting the existing change management approaches 
such as DOORS. The introduction of new requirement attributes  will help the 
documentation of security requirements, paving a way for the expression of the formal 
requirements models.  

In summary, our methodology for addressing evolutionary security requirements is 
based on three interleaving steps: modeling, analysis and design.  

• During the modeling step, models of evolutionary security requirements are 
elicited and generalized according to three meta-models that capture 
respectively any representation of security requirements, any changes of 
security requirements, any managing processes of a security requirement and 
any argumentation about security requirements.  

• During the analysis step, the models of security requirements will be used to 
serve the reasoning process, to discover any vulnerability early on, in order to 
fix them before it is too late in the design/implementation phases in software 
development. 

• During the design step, the screened security requirement model will be used to 
construct a traceability mapping into security constraints on the design artifacts 
for the implementation purposes. 

At this stage of the project, our focus is put on the modeling step, which will be detailed 
in the following sections including the following sub-steps: 

1. Model the problem-oriented concepts W, S ├ R with richer concepts from 
Tropos requirements engineering methodologies (and their refinement to 
security) 

2. Validate your design models against security requirements through 
argumentation 

3. Define the changes you accept, and what is the action to take to create a 
consistent new state 

4. Define how to control the changes (when you monitor the events and conditions 
and resolve them through actions, etc) 

It is our aim to be able to define the extra attributes needed for the Thales’s 
DSML+DOORS tool to elicit security requirements from the customers, and our 
objective to apply the methodology to the ATM and SmartHome case studies to cross 
validate the following research questions: Are all these concepts needed and useful in 
practice? Is there is anything missing in practice? Does the tool support improve the 
productivity in eliciting and analysis of the changes of security requirements? It is our 
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hope that a series of detailed case studies will gain clear answers to these questions 
and ultimately justify the research results. 

The meta-models for the above four steps are detailed in Sections 3-6 respectively. 
Section 7 illustrates the use of these steps in a change management process. Section 
8 concludes the document with lessons learnt. 
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3 Modeling Security Requirements  

In this section we present, first, the meta-model to represent requirements, and then 
we show how one can represent the evolution of requirements using the notions of 
situations and evolution rules. 

3.1 Meta-model for requirements representation 
In this section we introduce a new meta-model for requirements elicitation that 
supports the representation of dependencies between requirements, the system-to-be, 
and the context in which the system is going to operate, and of security related 
concepts necessary to reason on security requirements satisfaction. In fact, our meta-
model inherits concepts from problem-frames and goal-oriented requirements 
elicitation approaches, and risk analysis approaches. From problem-frames we borrow 
the dependency between requirements, the system-to-be, and the context in which the 
system is going to operate. In fact, according to Zave and Jackson [22], a problem-
oriented system requirements analysis involves the understanding of the indicative 
domain properties in the physical world W and the specifications of the machine S, in 
relation to requirements R, where S and R are the optative domain properties.  From 
the Secure Tropos methodology, we borrow the representation of the requirements of 
the system-to-be using the notion of goals, softgoals and quality constraints; and of 
how the system-to-be satisfies the requirements concerning the objects such as actors, 
processes and resources. From the security analysis methodology, we borrow the 
concepts of vulnerabilities, attackers and attacks. Asset in this meta-model is similar to 
target in the risk meta-model of WP5, where it is related to risk through threat and 
vulnerability.    

Figure 1 represents the entities characterizing our meta-model to represent 
requirements and the relations between them.  

 

Figure 1. The meta-model for requirements elicitati on 
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We have outlined in green the concepts inherited from the goal-oriented approaches, in 
magenta the concepts taken from Problem Frames approaches, and in red the 
concepts borrowed from risk analysis approaches.  

A situation of our requirements model is expressed in terms of propositions and 
objects. Propositions are the sharable objects of attitudes and the primary bearers of 
truth and falsity. A proposition can be an optative or an indicative property concerning 
objects. An object is an actor, a process or a resource. When a stakeholder (actor) 
wants a desired or optative property, it is modeled as initial requirements, which can be 
refined into derived requirements. Therefore, requirements are desired or optative 
properties that the system-to-be ought to have, as wanted explicitly by stakeholders. 
Initial requirements and derived requirements can be captured by goals, the objectives 
that the system-to-be should achieve. A derived requirement can also be a soft goal, 
which does not have a clear-cut evaluation of the truth value. . A security goal 
expresses that an asset needs to be protected from harms. An anti-goal is a goal of an 
attacker which may obstruct the achievement of a security goal. Both security and anti-
goals are soft goals.  

Unlike requirements, a specification fulfils certain requirements under given indicative 
domain properties.. It usually captures certain dynamic behavior in order to satisfy 
software requirements; therefore specifications are modeled as processes.  

Objects are entities used to describe a state of the world. An object can be dynamic or 
static. A static object can be an actor or a resource. An actor is an intentional entity 
such as a human, a device, a legacy software or software-to-be component that 
performs actions to achieve its own goals. We consider an attacker as a particular 
actor who wants an anti-goal to be satisfied. A resource is a physical or an 
informational entity which has no intention by itself. An asset is a resource which has a 
value and needs to be protected. Vulnerability is a weakness, a flaw or a deficiency 
that is exploited to carry out an attack which causes harm to or damages an asset. A 
dynamic object can be a process that consists of activities. An activity is a sequence of 
actions that can be performed by an actor to fulfill a goal.  

A situation is a partial state of the world where some propositions are true and some 
other propositions are nor true nor false. Thus, a situation consists of objects and 
propositions concern these objects. Particular types of situations are context, the 
domain, and an attack. The context is a situation within which the system-to-be will 
operate. A context consists of several domains which interface with each other. An 
attack allows an attacker to fulfill an anti-goal. In particular, an attack is a situation in 
which vulnerability is exploited to cause damage on an asset.  

For requirements analysis, these entities are related in the following seven basic types: 

• Trusts is a relationship from one actor to another, which indicates the belief of 
one actor that the other will provide a resource or will perform a certain activity ; 

• Delegates is a relationship from one actor to another which specifies that the 
fulfillment of a goal or the provisioning of an activity/resource; 

Both trusts and delegates relationship are associated with a dependum, which 
specifies which object (resource/process) or which requirement (goals, softgoals) 
are trusted or delegated from one actor to another.   
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• Provides is a relationship either from an actor to a resource, which specifies 
that an actor provides a certain resource; or from an activity to resources; Uses 
is the relationship opposite to Provides.  

• Carries Out is a relationship either from an actor to a process, which specifies 
that an actor carries out a certain activity; Carries Out is a relationship either 
from an actor to a process, which specifies that an actor carries out a certain 
activity. 

• Fulfills is a relationship from resources and activities to a goal, which specifies a 
goals is fulfilled by a combination of the resources and the activities; 

• Wants is a relationship from actors to goals which associates an actor with its 
goals, including security and anti-goals. 

• Contributions is a relationship among goals/security goals which indicates that a 
goal contribute to the satisfaction of another goal.   

• Decomposes is a relationship from a goal to its subgoals, which indicates that a 
goal can be refined: AND-decomposition lists subgoals that must all be satisfied 
in order to satisfy the goal, whereas OR-decomposition suggests alternative 
ways to satisfy the goal. 

For security requirement analysis, the following seven specific relationships are 
considered on an attack situation and a security goal: 

• Attacks is a relationship from one situation to a vulnerable actor; 

• Damages is a relation from an attack to the assets; 

• Exploits is a relationship from an attack to a vulnerability, which is a (part of) 
specification that can be vulnerable to expose security problems; 

• Protects is a relationship from a security goal to a set of valuable assets; 

• Obstructs is a relation from an anti-goal to the corresponding security goal. 

Such problem analysis for goal satisfaction can be done using proposition logic 
qualitatively, or using risk analysis quantitatively. In either way, arguments on the 
fulfillment of security requirements need to be acceptable after a negotiation process 
during which the trusted domain assumptions may not always hold. Therefore, the 
framework as such can support extensively evolving security requirements. 

3.2 Meta-model of Security Requirements Evolution 
After specifying the static view of situations about the security requirements, the next 
step in our methodology is to deal with the dynamic view. In a reactive view of the 
classification, situations are observed to change over time. Discrete changes have a 
sequence of change descriptions associated with timestamps, while continuous 
changes happen continuously in that the intervals can be arbitrarily further refined and 
the length can be arbitrarily prolonged for the security requirements in long-lived 
software systems. 

In a nutshell, the situations that can change in the model for requirements include 
generally entities and the relationships between them. In particular we consider 
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elementary types of changes, including the modification, the addition and the removal 
of an element (such as an entity or of a relationship). An example of possible change is 
the addition of a new actor (as the event that matches with the condition) that results in 
the addition to the model of a new entity representing the actor and new relationships 
such as the “wants” relationship to specify the goals the new actor wants to achieve or 
a “provides” relationship from the actor to the resources and activities that it offers.  

 

 

Figure 2. A meta-model for evolution of security re quirements 

A more complex kind of situation change can be described by a composite change, 
which is a transaction of elementary changes (or nested composites) that must happen 
together or not at all. For example, the deletion of an actor A may require the deletion 
of all the delegation relationships from A to another actor B, while finding for B 
alternative actors A’ that can provide the same activities and resources delegated to A, 
otherwise the incomplete change may violate the intention of B. Therefore we record 
such complicated changes as a transformation that preserve the satisfaction of certain 
high-level requirements.  

A natural way is to represent the change as a transition rule between two situations, 
denoted respectively as before and after situations (see Figure 2). Intuitively, the 
before/after situation represents the elements in the model the change has occurred at 
a given time before/after an adaptation has been applied. The outcome of changes is 
monitored by evolution rules to decide whether an adaptation action needs to be taken. 
If yes, the change will trigger the application of a general evolution rule in a concrete 
place in the model, possibly causing additional changes.  
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Figure 3. A continuous process to maintain the requ irements 

The envisioned workflow of maintaining design and requirement models through 
evolution requires the continuous adaptation of the models to react to changes. 
Changes in external factors – changed requirements, new threats, and revised design 
decisions – can be introduced into the model by engineers (or automatic monitoring in 
some cases); this model change, however, may violate constraints and requirements, 
cause inconsistencies. Therefore reactions are required to handle the effects of 
change. While most reactions will remain responsibilities of engineers, evolution rules 
can be defined to automatically adapt and transform the model in some cases. Failing 
that, rule-based automatic mechanisms are expected to be able to initiate the process 
of adaptation in many cases, or at least indicate the problem to the engineers.  

The applicability of automatic evolution rules is greatly enhanced by machine-
understandable, domain-specific refinement of the general requirement modeling 
concepts appearing in this deliverable. Therefore SecureChange provides a general 
meta-model for security-related concepts, and suggests domain-specific specialisation 
where applicable to facilitate tool support and automated reaction mechanisms.   

Figure 3 shows how the evolution rules are used in a feedback loop to deal with the 
evolution of security requirements. Changes of situation are initially caused by external 
factors (environment context) of the system. These changes can trigger evolution rules 
that perform automatic adaptation, or otherwise result in a manual change process. As 
a result of such an adaptation action, a new situation arises that one must iteratively 
reevaluate for automatic rule execution or manual intervention. Or else, if the new 
change does not trigger any further actions, or there is no further change, the control 
feedback loop can exit.  
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4 Argumentation of security requirements 

As we discussed in the introduction, the satisfaction of security requirements in the 
general form of the entailment W, S ├ R needs to be argued, as security requirements 
are often a collection of claims whose satisfaction depends on the trust assumptions 
(facts and domain knowledge), as well as any rebuttals and mitigations. 

Our argumentation is based on the informal Toulmin structures in the 1950’s [2]. 
However, to consider it in the formal settings, we have simplified the conceptual 
models (see Figure 4). The most important concepts in arguments are defined as 
follows: A claim is a (probably grounded) predicate whose truth value will be 
established by an argument. An argument contains one and only one claim. It also 
contains facts and rules in domain knowledge. Facts are grounded predicates -- 
something that are either true or false where terms in these predicate must be 
constant. Domain Knowledge is a set of ungrounded predicates that can be evaluated 
to true or false once the values of all terms in the predicates are known.  

The predicates referred by the domain knowledge do not have to be known facts. 
However, the predicates that appear in the domain knowledge are all relevant 
(necessary) to the argument for the truth value of the claim to remove any redundancy. 

 
Figure 4. Meta-model for arguing the satisfaction o f security requirements 

Every argument also has a timestamp, which indicates the iteration during the 
argumentation process. For a given argument, an initial iteration is to establish the truth 
of its associated claim. The argument may require sub-arguments to establish the truth 
of certain facts or intermediate predicates. These sub-arguments are also arguments, 
but they are meant to provide supporting evidence (as sub-claims). On the other hand, 
rebuttals are a special kind of arguments whose purposes are to establish the falsity of 
their associate claims or make them indeterminable. Similarly, mitigations are another 
special kind of arguments following the iteration of rebuttals in order to reestablish the 
truth value of the associated claims. Both rebuttal and mitigation arguments do not 
need to contain all the facts and rules. Only incremented facts or rules need to be kept 
in such follow-on arguments because they are always applied after previous 
arguments. Of course, the same reasoning mechanism should be used consistently for 
all arguments. 

Eliminato: Error! Reference 
source not found. )
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Claims can be very general. For example, “The Arrival Management (AMAN) system 
from the air traffic management domain is safe and secure” can easily invite different 
opinions. To support such claims, one need to use the facts or domain knowledge in 
the field; to refute the supportive evidence for the claims, one can draw on additional 
(often non-monotonic or negative) facts and domain knowledge to form claim rebuttals. 

Here is one example of iterative development of an argument for the security in the 
AMAN case study. Typically such development is in the form of a dialogue. The first 
round of an informal argument might be: 

Initial claim:   

• The AMAN system is secure (C1). 

Initial facts:   

• The AMAN system is controlled by trustable experts (F1).  

• The experts can manage the separation of distance in the runways by 
monitoring and active communication of the flight trajectories (F2). 

Initial domain knowledge :  
• When two flights close within a dangerous distance, the AMAN system will 

present a warning to highlight the flights on the trajectories. (DK1) 
Initial Rebuttals:   

• The experts can have malicious intent due to social and psychological reasons 
(R1 on F1).  

• The ADS-B system [2] may report a wrong distance due to mechanical failures 
or extreme weather conditions (R2 on DK1). 

 
Second round, one checks the R1 as a claim. Here is the supporting evidence for R1:  

• All experts have been through clearance to minimise the risk of being malicious 
F3=R1.1). 

• The controlled trajectories are viewed by a group of experts who can all see 
what’s displayed on the screens to prevent a single person from providing 
wrong instructions (F4=R1.2). 

 
Such argumentation can go on and on until all the facts and domain knowledge are 
refined so that all rebuttals of the root claim are not satisfiable. In other words, a 
satisfaction claim is justified as long as all the facts and domain knowledge are true 
(e.g., trust assumptions in arguing security requirements) and all the rebuttals are 
false. A formal treatment of argumentation using non-monotonic proposition logic can 
be found in [11]. As one can see, the result of such argumentations would inevitably 
contribute to changes in the situations of security requirements. 
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5 An example of requirements evolution 
modeling  

In this section we show how we can represent the evolution of requirements that 
characterize the ATM case study by instantiating the meta-model presented in 
Sections 3 and 4. Some of these arise from the change of domain properties which are 
not controlled by the system designers, while others arise from the change of optative 
properties or functional and security requirements.  

In this example, we show how functional and security requirements of the actual ATM 
systems change due to the introduction of the AMAN  queue management tool that 
supports ATCOs. 

 

 

Figure 5. The “before” situation 

Figure 5 represents the requirement model before the introduction of the AMAN. The 
main actors are the Sector Team at the destination airport composed by the Planning 
and the Tactical Controller, the CWP, and the dedicated communication lines 
(telephone, radio communications).  The flight arrival management operations are 
performed by the Sector Team (Tactical and Planning Controllers) that has to compute 
the arrival sequence for the flights and give clearances for landing to the pilots flying in 
their sector on the basis of the information displayed by the CWP such air traffic, radar 
data, monitor displaying inbound/outbound traffic planned for the sector, telephone 
switchboards, airlines and airport operators preferences or priorities about arrival 
runways. The communication between the different ATM actors takes place over 
dedicated and secure communications lines. For example, for communication between 
the Sector Team and the pilots specific radio frequencies are used.   
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In this scenario, the security requirements are associated with the CWP and the 
Communication Lines :  

• The CWP shall provide an authentication mechanism to verify users identity 

• The Communication Lines shall provide secure and reliable communication 
among ATM actors 

As affect of the introduction of AMAN, ATM systems go under architectural, 
organizational, and operational changes. At architectural level, the AMAN supports the 
Sector Team by providing sequencing and metering capabilities for a runway, airport or 
constraint point, the creation of an arrival sequence using ‘ad hoc’ criteria, the 
management and modification of the proposed sequence, the support of runway 
allocation at airports with multiple runway configurations, and the generation of 
advisories for example on the time to lose or gain, or on the aircraft speed. At the 
organizational level, the introduction of the AMAN requires the introduction of a new 
type of ATCO, called Sequence Manager, who will monitor and modify the sequences 
generated by the AMAN and will provide information and updates to the Sector Team. 
At the operational level, on one side the AMAN interacts with the FDP, CNS, and 
Meteo services to collect the Airport Operators priorities for runaways usage the 
Airlines priorities in terms of flight arrivals, the Meteo condition, and the aircraft position 
that it uses to compute an ad hoc arrival sequence or to generate advisories. On the 
other side, the AMAN interacts with the Sequence Manager and the Sector Team 
through their CWPs monitor. The Sequence Manager can check the arrival sequence 
and the advisories generated by the AMAN, and if necessary can modify them, while 
the Sector Team ATCOs can only view them. Based on the information provided by the 
AMAN, the Sector Team gives clearances to the pilots flying in its sector. The 
communication between the different ATM actors does not take place over secure and 
dedicates lines: the actors are interconnected by the SWIM, an IP based data transport 
network that will replace the current point to point data systems.  

In this scenario we have new security requirements that need to be satisfied (see 
Figure 6):   

• The CNS systems shall check the authenticity of aircraft tracks  

• The AMAN shall provide selective access control for the different ATM actors 
(Sequence Manager, ATCOs,..) 

• The AMAN shall disclose to another actor only the aircraft information 
necessary for the actor to perform its task (need to know principle)  

• The AMAN shall check that the information coming from Meteo Services, 
Radars, Airlines and Airport Operators has not been altered  

• The SWIM shall require authentication sessions for users based on digitally 
signed certificates 

• The SWIM shall be able to detect fake stakeholders and trace them in a  
blacklist 

• The SWIM shall ensure data integrity and confidentiality. 
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Figure 6. The “after” situation  
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6 Specifying rules for evolutionary changes  

Having the capability to express the Before/After situations in security requirements as 
models, in this section we discuss the role of automated evolution rules in a workflow 
supporting model transformation.  

6.1 Goals for the evolution rules 
The framework for specifying evolutions rules for the security-related aspects of the 
engineering model should: 

• support complex structural requirements that are difficult and error-prone to 
oversee manually; 

• allow the capturing of change events in terms of similarly complex structural 
relations; 

• provide automated alerting of criteria that cease to be satisfied; 

• allow flexible adaptation to security requirements of domains, e.g. ATM; 

• once adapted to a domain, allow flexible refinement for a concrete application in 
context of actual system design artifacts;  

• enable the flexible, scenario-specific definition of the aforementioned complex 
criteria;  

• enable the engineer to define automated reactions to change events where 
applicable; 

• enable the reactions for automatic reconfiguration of the design model; 
automatic application of security-related design decisions; and automatic 
reusing of design artifacts (e.g. argumentations), to be filled later by the 
engineers, that are required for a system evolution to be admissible from a 
security viewpoint. 

6.2 Using model transformations for evolution 
Automated model transformations play an important role in modern model-driven 
system engineering in order to query, derive and manipulate large, industrial models. . 

For instance, meta-modeling-based development architectures, including OMG’s 
Model Driven Architecture (MDA), highly rely on transformations within and between 
different models and languages. The important role of model transformation (MT) 
languages and tools for the overall success of model-driven system development has 
been revealed in many surveys and papers during the recent years [5][6][10]. 
Approaches to model transformation and various solutions addressing the encountered 
challenges are continuously being explored. 
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6.2.1 Incremental transformations 
Transformation of evolving models is a challenging task with high practical relevance, 
arising in a wide range of circumstances. As a typical example, tool integration requires 
that a complex relationship be established and maintained between models conforming 
to different domains and tools. In the context of SecureChange, synchronization 
involving requirement and design models poses a transformation problem.  

Model synchronization tasks can be formulated as the obligation to keep a model of a 
source language and a model of a target language consistently synchronized while the 
underlying source model (and sometimes the target also) is evolving. Model 
synchronization is frequently captured by transformation rules [2]. When the 
transformation is executed, trace signatures are also generated to establish logical 
correspondence between source and target models.  

Traditionally, model transformation tools support the batch execution of transformation 
rules, which means that input is always processed “as a whole”, and output is always 
regenerated completely. However, in case of large, complex, and continuously evolving 
models, batch transformations may not be feasible. To address the issue of model 
evolution, incremental model transformations (i) update existing target models based 
on changes in the source models [16], and (ii) minimize the parts of the source model 
that need to be reexamined by a transformation when the source model is changed [3]. 
In the terminology of [6], these aspects are called target and source incrementality. 
These aspects are called target and source incrementality.“ , respectively. It would also 
be beneficial if the transformation system could autonomously react to the evolution of 
the source model; this requires a notion of events and reactions. 

The benefits of source and target incrementality can be harnessed in various 
transformation scenarios, most importantly tool integration. Further applications are 
found in the context of domain-specific modeling such as (i) model execution 
(simulation), where incremental transformation rules may be used to execute the 
dynamics semantics of a domain-specific language; (ii) constraint management, where 
incremental transformations are used to check and enforce the validity of a complex 
constraint; (iii) event-driven code generation, where the textual representation of 
abstract models may be incrementally maintained as the source model changes. 

6.2.1.1 Source incrementality 

The aim to execute transformations without re-evaluating unchanged parts of the 
evolving source model is called source incrementality. 

Since rules are defined in terms of patterns and actions, pattern matching plays a key 
role in the execution of model transformations. The goal of pattern matching is to find 
the occurrences of a pattern, which imposes structural as well as type constraints on 
model elements. Source incrementality can be achieved by employing incremental 
pattern matching techniques; for example, the RETE [9] incremental algorithm was 
used in [3].  

The central idea of incremental pattern matching is that occurrences of a pattern are 
readily available at any time, and they are incrementally updated whenever changes 
are made. As pattern occurrences are stored, they can be retrieved in constant time – 
excluding the linear cost induced by the size of the result set itself –, making pattern 
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matching a very efficient process. There are two important drawbacks; one of them is 
the increased memory consumption due to the stored occurrence sets. Additionally, 
these stored result sets have to be continuously maintained whenever the model is 
changed, causing an overhead on model manipulation. Nevertheless, benchmarks [4] 
and practice have shown that incremental pattern matching can improve performance 
or scalability by up to several orders of magnitude in certain scenarios. This is the 
benefit of source incrementality: eliminating the need to continuously re-evaluate the 
source model.  

6.2.1.2 Live transformations 

To achieve target incrementality, an incremental transformation approach creates 
“change sets” which are merged with the existing target model instance. In order to 
efficiently calculate which source element may trigger changes (source incrementality), 
the transformation context has to be maintained which describes the execution state of 
the model transformation system (e.g. variable values, partial matches). Depending on 
whether this is possible or not, there are two main approaches to incremental 
transformations: re-transformation and live transformation. 

Systems employing re-transformations lack the capability to maintain the 
transformation context over multiple execution runs, thus the entire transformation has 
to be re-run on the modified source models. This involves the computation of which 
model elements are involved in the change, and which elements should be left 
untouched by the transformation. Thus, the feasibility of this approach depends heavily 
on the trace information.  

In contrast, live transformations maintain the transformation context continuously so 
that the changes to source models can be instantly mapped to changes in target 
models. Live transformations are persistent and go through phases of execution 
whenever a model change occurs. Similarly to re-transformations, the information 
contained in trace signatures is used in calculating the source elements that require re-
transformation. However, as the execution state is available in the transformation 
context, this recomputation can be far more efficient.  

Ráth et al [16] introduced an approach where a model change is captured by a change 
in the match set of a graph pattern. The match set is defined by the subset of model 
elements satisfying structural and type constraints described by the pattern. Changes 
in the match set can be tracked using incremental pattern matching. A model change is 
detected if the match set is expanded by a new match or a previously existing match is 
lost. Since a graph pattern may contain multiple elements, a change affecting any one 
of them may result in a change in the match set. Thus complex changes beyond simple 
atomic operations can be easily detected. The execution context of the live 
transformation, as required by target incrementality, is represented in the form of 
pattern variables, and continuously maintained by the incremental pattern matching 
engine after each atomic model manipulation operation. As a result, the computation 
required to initialize and execute the incremental transformation sequence after a 
change is very efficient, since pattern matching, the most cost-intensive phase of the 
transformation, is executed instantly.  

With the help of incremental transformation rules, also called triggers, a broad range of 
transformations can be specified in a live way. A trigger is defined in the form of a 
graph transformation rule: the precondition of its activation is defined in the form of a 
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graph pattern, while the reaction is formulated by arbitrary (declarative or imperative) 
transformation steps. 

6.2.1.3 Target incrementality 

Traceability is a property of transformations, stating that some kind of mapping is 
available between the source and target models. Traceable transformations has 
various advantages: for example, target elements can be traced back to the reason of 
their existence (e.g. source elements) to justify or explain them; additionally, the 
transformation of some individual elements can depend on already established source-
target mappings, which is useful for e.g. transforming containment hierarchies. 
Traceability is also required to achieve target incrementality: if local changes of the 
source model only affect corresponding parts of the target model, the transformation 
execution can focus on the affected part and leave other parts of the target intact, with 
the help of a correspondence relationship.  

A straightforward way to preserve trace information is internal traceability, when target 
elements have a direct reference to source elements. This is prevalent in simpler 
frameworks that are only capable of one-to-one correspondence between source and 
target elements, where each target element is traced back to exactly one source 
element. In more complex transformation tasks, however, each rule application may 
have to be traced back to potentially several source and target elements, and may 
justify potentially several target elements simultaneously. Therefore more recent 
approaches have opted for external traceability, when the elements of the source and 
target models are interrelated via a separate mapping model. This mapping model 
(also known as trace model, reference model or correspondence model) conforms to a 
separate trace meta-model, that references the source and target meta-models.  

In incremental transformations, separate trace models have an additional benefit: they 
preserve the now-obsolete mapping even after the source or target has been changed, 
which can serve as an important input for transformation rules. For example, a trigger 
can be defined to detect the deletion of a source element that has been mapped to a 
target element, by discovering that there is a trace element connected to a target 
element, but not a source element; the appropriate action would be to delete the target 
element and the trace relationship as well. As an illustration, Figure 7 depicts a 
reference element connecting a source and a target element, as well as two rules: the 
first one creates the reference and target elements if they do not exist; the second one 
deletes them if the source does not exist. See [17] for a detailed case study of 
traceability in incremental transformation in a DSM context. 
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Figure 7. Example rules for target incrementality t hrough traceability 

6.2.2 Event – Condition – Action semantics 
Live transformation and change-driven rules can be described using the mathematical 
formalism of Event-Condition-Action. The literature mentions various definitions for this 
concept; a relatively rich one is found in [1]. Basically, an Event captures an 
elementary transition of the system to a different (not necessarily internally consistent) 
state, identifying the change that happened between the two states. An Action is a list 
of operations that constitute the reaction to that event.  

The strength of the formalism is that the reaction can depend on the context where the 
event happened, as defined by the Condition part. A Condition commonly involves the 
assertion of relationships between the elements affected by the change and unaffected 
contextual elements, to identify the position where the change occurred in the model. 
The Condition may also assert entities and relationships in the unaffected part of the 
model so as to provide a filter for certain overall conditions of the model. Least 
commonly, the Condition can also include assertion of relationships between affected 
elements to restrict the shape of the change. 

Condition, contrary to its name, does not have to be a simple decision whether the 
actions can be applied in reaction to the change. In a more powerful formalism, the 
Condition may select various sets of parameters to execute the Action with. This can 
be achieved e.g. if the Condition is a logic formula with free variables, the Event 
provides the value of some of these variables, and the Action is executed once for 
every possible substitution of the rest of the free variables, using the substitution 
values as parameters.  

Event and Condition both serve as a way of monitoring the evolution of a system. The 
key difference is that Event captures a dynamic change in the system, while Condition 
identifies the static context where this change happened.  
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6.2.3 Change-driven transformations 
A separate approach to specify model transformations has been introduced in [18]. 
Depending on the setup, change-driven transformations can fulfill a number of goals. 
The approach can be viewed as a generalization of live transformation, a formalism to 
bridge the conceptual gap between batch and incremental transformation, or simply a 
new and intuitive way to describe reactions to changes. It is also suitable for 
transformation scenarios where the target model is not directly accessed or not 
completely materialized, but accessible only through element identifiers and a 
query/manipulation interface. This allows the transformation to manipulate remotely 
stored target models, large models that do not fit in memory, or an internal runtime 
representation of an application. 

A key concept of the approach is capturing and explicitly representing change 
operations, for example as model elements. The elements that correspond to future 
changes are change commands, while the ones that record already executed changes 
constitute a change history model. The latter kind can be automatically generated on-
the-fly during the execution of model manipulation. Apart from basic change operations 
(creation, deletion, moving, value setting, etc.), user-defined domain-specific macro 
change types are also allowed.  

Change driven transformations are specified by a set of transformation rules that react 
to changes of the model by matching a single change operation and additional model 
elements, and create change commands to manipulate the target model. The created 
change command may be executed at a later time, even at a remote location. Thus 
rules are incremental and evaluated asynchronously to the update of the target model, 
and optionally asynchronously to the change of the source model that caused the 
change propagation. 

[18] also presents an example workflow. Change history is derived on-the-fly and 
automatically after the source model is updated, regardless whether the model 
manipulation was initiated by another (not necessarily change-driven) transformation, 
or by user interaction. Change history is asynchronously processed by transformation 
rules that should depend on the change history element, and potentially an extended 
condition involving the source model, but not the target. Instead of directly manipulating 
the target model, the transformation rules only create change commands to express 
the required modifications, thus allowing for deferred execution, remote processing, or 
piping through the runtime manipulation API of an application. 

The workflow is depicted on Figure 8. MA and MA’ are the previous and the current state 
of the source model A, and MB, MB’ are the two states of the target model B before and 
after the application of the change commands. CHMA is the change history model 
derived by observing the change of A, and CCB represents the change commands that 
affect the target model. Transformation and processing is indicated by circles.  



 

 D.3.2 Methodology for Evolutionary Requirements | version 1.33 
| page 30/56 

 

 

Figure 8. Change-driven workflow 

6.3 Meta-model for evolution rules 
Evolution rules control how one model or an interconnected set of models follow the 
evolution of a source model in order to maintain security and other objectives (Figure 
9). Evolution rules are defined in conformance with the Event – Condition – Action 
semantics to specify the desired reaction to changes performed on the model. The 
Event part of the evolution rule is matched against every change executed on the 
model. The Condition may restrict the cases where the rule is applicable, and may 
select multiple ways to apply it. The Action part manipulates the model by issuing 
change commands itself; these changes will eventually be processed like any other 
change operation, and reacted upon by evolution rules. 

Various kinds of change commands can be issued. The most basic change kinds are 
the creation of entities and relationships of a specific type, deleting them and modifying 
their values. This list of change kinds is extensible to incorporate a more refined notion 
of changes, or domain specific change macros.  

An actual change command has a change kind and refers to actual entities or 
relationships as affected elements. The definition of an evolution rule, however, refers 
to rule variables as affected elements instead. The Event part match changes against 
one or more change queries. Each of them captures the change in terms of the 
appearance or disappearance of element configurations (patterns). An attribute 
contains the sign of the change query. The appearing/disappearing element 
configuration of the change query is described by a set of predicates formed on rule 
variables. The Condition part describes the context of the event, likewise with 
predicates on variables. Some of these variables are typically used by the change 
queries as well. The two most common predicate types are entity predicates 
(constraining a variable to a given entity type) and relation predicates (constraining a 
variable to a given relation type, connecting a source variable and a target variable). 
The Action part contains a sequence of reaction templates that are parametrized by 
rule variables appearing in the Event, Condition or even preceding reaction templates, 
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and can be instantiated into applicable commands by substituting the parameter 
variables. The most important type of reaction template is the change template which  
can be instantiated into a change command of a certain change kind. The evolution 
rule contains all variables mentioned by the Event or the Condition, a subset of which 
is accessed by the Action. 

Change queries are intended to match actual change events that cause the 
appearance or disappearance of the appropriate patterns, and substitute the variables 
to the affected elements. After that, the Condition is evaluated to decide whether the 
rule can be applied for this particular change, and to substitute remaining free 
variables. The Action is applied for each possible substitution; this means instantiating 
all reaction templates with the substituted values of variables. In case of change 
templates, the resulting change commands can be submitted for execution and 
evolution rule application. 

  
Figure 9. Meta-model for evolution rules 
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6.4 Examples for evolution rules 

6.4.1 Problem description 
In an evolving requirements model, new actors may be introduced, delegation and trust 
relationships may be changed, all raising security concerns. An example rule is 
designed to intervene in situations when an actor delegates some responsibility to 
another actor, but does not trust the other one with the same object. See Figure 10 for 
an illustration of this undesired pattern. The appropriate reaction can range from 
logging the event, raising a warning or initiating an argumentation that will be finished 
by security engineers, to automatic intervention like creating the missing trust 
relationship, depending on policy. To illustrate the capabilities of the evolution rule 
formalism, we present three solutions to this problem. 

 
Figure 10. The undesired pattern: untrusted delegat ion 

6.4.2 Solution 1: one rule per elementary change 
The first solution would be to create several evolution rules, one for each possible 
elementary change that can complete the pattern and make an intervention necessary. 
In this case, two kinds of elementary changes can trigger the rule: the detection of a 
newly added “delegation” relationship between two actors (and the dependum), or the 
deletion of an actor-actor trust (over a dependum).  

Both changes can be captured by the Event part of a separate evolution rule 
(appearance event in the former case, disappearance in the latter). The condition part 
is required to determine whether the change actually completes the pattern: when a 
delegation appears, the non-existence of a trust with the same dependum will have to 
be checked; when a trust disappears, the existence of the delegation with the same 
dependum will have to be checked. The Action creates an argument prototype, 
connected to the violated security goal, to discuss the problem. Engineers will have to 
manually finish the argument with domain-specific knowledge, or fix the problem. 
Additionally, the Action contains a simple logging statement; observe how the two 
different cases can be handled differently. The following pseudocode listing describes 
these two evolution rules; syntax is not final. 
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation1 { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent = = = = appearappearappearappear { 
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  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.delegates(Act1-Del�Act2); 

  entityentityentityentity Actor(Act2); 

        Actor.delegates.dependum(Del—DD->Obj); 

  entityentityentityentity Object(Obj); 

 } 

 conditionconditionconditioncondition { 

  nononono    (Tru, TD)    such that {such that {such that {such that {    

            relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

   relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 } 

 actionactionactionaction { 

  loglogloglog “Delegation created without supporting trust: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del); 

 } 

} 

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation2 { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent = = = = disappeardisappeardisappeardisappear { 

  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

  entityentityentityentity Actor(Act2); 

        relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj); 

  entityentityentityentity Object(Obj); 

 } 

 conditionconditionconditioncondition {        

     relationrelationrelationrelation Actor.delegates(Act1-Del�Act2);  

  relationrelationrelationrelation Actor.delegates.dependum(Del—DD->Obj); 

 } 

 actionactionactionaction { 

  loglogloglog “Removal of trust threatens delegation: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del); 

 } 

} 

6.4.3 Solution 2: single coarse-grained rule 
The change query formalism introduced in this chapter allows the detection of changes 
that are defined by multiple predicates. This results in the capability of change queries 
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to observe the appearance (or disappearance) of a complex pattern, regardless what 
the last elementary change was that completed the pattern. 

In this case, the entire undesirable pattern (see Figure 10) can be captured in an 
appearance event of a single evolution rule; whenever the undesired pattern appears, 
the evolution rule will fire, independently of the order of operations that eventually 
resulted in the appearance of the pattern. This enables us to formulate the solution 
much more concisely; in this simple example, even the Condition part could be 
discarded. 
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj, Arg, AP); 

 eventeventeventevent = = = = appearappearappearappear { 

  entityentityentityentity Actor(Act1); 

  relationrelationrelationrelation Actor.delegates(Act1-Del�Act2); 

  entityentityentityentity Actor(Act2); 

        Actor.delegates.dependum(Del—DD->Obj); 

  entityentityentityentity Object(Obj); 

  nononono    (Tru, TD)    such that such that such that such that {{{{    

            relationrelationrelationrelation Actor.trusts(Act1-Tru�Act2); 

   relationrelationrelationrelation Actor.trusts.dependum(Tru—TD->Obj);  

  } 

 }  

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Untrusted delegation: $Act1-$Obj-$Act2”; 

        create ecreate ecreate ecreate entityntityntityntity Argumentation(Arg); 

  create rcreate rcreate rcreate relationelationelationelation Argumentation.problem(Arg—AP->Del); 

 } 

}  

This kind of concise solution is much quicker to develop and understand. Development 
also becomes less error-prone, as the rule designer does not have to manually take 
care of all possible elementary changes that can result in the appearance of the 
complex pattern; the previous solution would have been insufficient if the rule 
UntrustedDelegation2 had been accidentally omitted. The disadvantage is that the 
same Action part is executed regardless of the last elementary change that triggered 
the rule; if some cases do require special action, than more evolution rules should be 
used with an event granularity that is just enough to distinguish the relevant cases. 

6.4.4 Solution 3: automatic problem correction  
Apart from logging the detection of the pattern and reusing an argumentation, evolution 
rules can also correct problems present in the model. The difficulty of this approach is 
that often there is more than one way to remedy an issue, and the decision is hard to 
automate. For instance, the problem in this example can be solved by adding a missing 
trust relationship; or by removing the delegation (and probably implementing something 
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else in its place). Both are valid ways to handle the issue, but engineers should select 
manually which one should be applied in each concrete case. To achieve this, we 
introduce two alternate evolution rules that implement these two reactions. Together 
with the rule UntrustedDelegation introduced in Section 6.4.2 they provide three 
options that are automatically offered to the engineers to choose from.  

Note that the three rules can reuse each other’s Event parts for more concise 
specification; once again, syntax is not final. 
evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_AddTrust { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event =event =event =event = UntrustedDelegation.event 

 

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Resolving untrusted delegation ($Act1-$Obj-$Act2) by adding 
missing trust link”; 

  create relationcreate relationcreate relationcreate relation Actor.trusts(Act1—Tru->Act2); 

        create relationcreate relationcreate relationcreate relation Actor.trusts.dependum(Tru—TD->Obj); 

 } 

} 

evolution ruleevolution ruleevolution ruleevolution rule UntrustedDelegation_RemoveDelegation { 

 variablesvariablesvariablesvariables = (Act1, Act2, Del, DD, Tru, TD, Obj); 

 event =event =event =event = UntrustedDelegation.event 

 conditionconditionconditioncondition {} 

 actionactionactionaction { 

  loglogloglog “Removing untrusted delegation: ($Act1-$Obj-$Act2)”; 

  delete relationdelete relationdelete relationdelete relation DD; 

  delete relationdelete relationdelete relationdelete relation Del; 

 } 

} 

Where applicable, evolution rules can directly manipulate the model to automate the 
solution of common problems. Some of the change patterns introduced in D2.1 can be 
considered as possible candidates for being automated with evolution rules.  

6.4.5 Example rule application 
The given solutions can be demonstrated by applying them on the example models 
from Section 4 which represent the before/after situations in the ATM domain.  
Observing the After situation (see Figure 6) more closely, one can notice that contrary 
to the old communication system, the new SWIM system is not yet trusted by actors 
such as CWP and CNS. This may be a security issue, as Secure Data Exchange is 
now delegated to SWIM, which obviously requires trust. Fortunately, the example 
evolution rule presented in Section 6.4 can be used to automatically detect untrusted 
delegations. For example, if we use the three rules introduced as Solution 2 (see 
Section 6.4.3) and Solution 3 (see Section 6.4.4), they will be triggered for several 
individual matches by this example evolution. The rule matches will map the rule 

Eliminato: Error! Reference 
source not found.
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variables to actual substitutions that experienced the Event and satisfy the Condition. 
Act2 will be mapped to SWIM, Obj to Secure Data Exchange, and Act1 will be mapped 
to CNS, AMAN, CWP, Sector Team or Sequence Manager in the various concrete 
matches. Engineers will be able to choose from three options for each individual 
match: to fill in the missing trust link (this is the likely solution in our case), to abolish 
the delegation, or to build an argumentation explaining why there is no real problem.  

6.4.6 Further discussions 

None of the above rules deal with the disappearance of the undesired pattern. 
Depending on policy, additional rules may have to be defined to react to security 
problems being solved, as the actions of the other evolution rule (e.g. placing a 
warning marker or creating an argumentation) may have to be undone or 
compensated.  

The example presented in this section shows how the goals in Section 6.1 can be 
satisfied using the proposed formalism for evolution rules: 

• the untrusted delegation was captured as a complex structural property 

• a change event detecting the change of this complex property was defined 

• the formalism is general enough to be refinable for domains or scenarios 

• the rules can take appropriate domain-specific actions 

• these reactions include user interaction (logging in this example) and the 
modification of a model (creating the argumentation or trust, removing the 
delegation)  
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7 Security Requirement Analysis in Practice 

In this section we present the Thales industrial method for security risk analysis, and 
we show the analogies with our methodology for security requirements elicitation and 
analysis. Thales method aims at supporting the analysis and assessment of security 
risks for a system, and the specification of requirements for security measures to 
address those risks.  

7.1 The security risk analysis method: Principles  
Our prospective security risk analysis method builds upon model-based engineering 
methods and techniques. All activities of our method are organised around the building 
and usage of models, that is formalised, precisely defined, interconnected and 
integrated representations of the objects under study.  

As represented in Figure 11 our proposed method relies on the development of a 
modelling framework that combines in a synchronised way a set of models that 
constitute separate viewpoints [15] over the engineering problem: 

 

Figure 11. The security analysis method in Thales c ontext – big picture 

• The System architecture model contains the architectural design of the system; 
this model is developed within the mainstream engineering processes, along at 
least two dimensions: the functional/logical architecture of the system 
(functional capacities and data to be realised by the system) and the physical 
/implementation architecture of the system (actual hardware and software 
components that realise the functional capacities). 
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• The Business need model captures a representation of the business context for 
the system: business process that is supported, underlying business 
organisation, business objects, key performance indicators, strategic drivers, 
etc. 

• The Risk analysis model and security objectives model capture the results of 
the security risk analysis method that is proposed in dedicated DSML 
(presented in next section). These models include a representation of the 
system architecture that is relevant to the needs of the security analyst, this 
model is called context model. This model is traced back and maintained in 
synchronisation with the system architecture model (see [12]). The security risk 
analysis information is defined as annotations or related new concepts added 
over the system architecture elements. The risk analysis model and security 
objectives model may also be traced to elements of information defined in the 
Business need model. 

• The Requirement Database captures all kinds of systems requirements 
(Security, Safety, Maintainability, Cost ...). Security requirements are derived 
from security objectives model of dedicated DSML (see [13]). This mapping 
enables to add security requirements with other kind of requirement addressed 
for a complex system. Requirement Database is traced back and maintained in 
synchronisation with the system architecture model and Business need model.  

The System architecture model and the Business need model are part of architecture 
modeling framework that we are developing to address service-oriented types of large-
scale enterprise integration systems or systems of systems. In the Thales context, the 
official database of Requirement Management is Rational DOORS with the T-REK 
add-ons  [19]. 

7.2 DOORS T-REK 
Rational DOORS [19] (Dynamic Object Oriented Requirements System) provides: 

• A requirements Database that allows all stakeholders to participate in the 
requirements process 

• The ability to manage changing requirements with RCM Tools (Requirement 
Change Management) 

• Powerful life cycle traceability to help teams align their efforts with the business 
needs and measure the impact that changes will have on everything from 
business goals to development 

• Links requirements to design items, test plans, test cases and other 
requirements for easy and powerful traceability 

• Automatic generation of traceability matrix. 

• Automatic document generation of DOORS module into MS WORD format 
(.doc). 

As suggested by Figure 12, a DOORS project is composed by two kinds of modules:  
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• Formal Modules gather requirements information and is used for Requirement 
Specification. One Requirement is considered as one object which contains a 
set of attributes (standard attributes are Object Identifier, Object Heading and 
Object Text). It’s possible to filter some attributes in views.  

• Link Modules gather links information. Links module contains a set of Linksets 
which represent link information between two Formal Modules. 

 
Figure 12. DOORS project structure 

 

T-REK (Thales Requirement Engineering Kit) is an over-layer of DOORS which 
enables to distinguish different kinds of Formal Modules and Link Modules. T-REK 
offers a Relationship Manager to represent a project structure and relations between 
different formal modules: we call it a Datamodel. In a simplified Datamodel as shown 
by Figure 13, we distinguish: 

• Requirement Module, which represents Requirement Specification Document 
(it’s possible to distinguish User Requirement Specification and System 
Requirement Specification). The link between this kind of module corresponds 
to “satisfies” link. 

• Integration, Validation, Verification (IVV) Module, which gathers integration and 
tests campaign information (e.g. Test Result, Expected Test Method ...). IVV 
modules are linked with Requirement module by a “verifies” link. 

• Product Breakdown Structure (PBS) Module, which contains all subsystems or 
components (depending on project granularity) and all related information (e.g 
kind of component software, hardware ...). Components/Subsystems are 
represented by a DOORS object. Requirements modules are linked with PBS 
modules by a “is allocated to” link. 
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Figure 13. Simplified Datamodel in T-REK 

 

Risk are not represented in Standard T-REK Datamodel, this is why we plan to connect 
our DSML based on Risk analysis with DOORS T-REK. 

7.3 Application in Thales Requirement Workbench 

7.3.1 Thales Security DSML 

This deliverable cannot be the place for a detailed presentation of the conceptual 
model and syntax of DSML. We are providing below representative extracts. More 
details are provided in [15]. The core part of the conceptual model1 is represented in 
Figure 14.  

The system under analysis is considered to hold targets and essential elements. 
Targets are physical elements subject to risk. 

Essential elements are usually more logical, functional elements: data and functions (or 
services, or capabilities depending on context) that are essential to the business stakes 
of the company, and therefore subject to security needs. Essential elements depend on 
targets for their implementation.  

Requirements and Objectives are allocated to Essential Element and/or Target. To 
ensure risk traceability, Objectives and Requirements must cover Risk(s). Objective 
must be more general than Requirement, and to preserve traceability between those 
concepts, we consider a bidirectional association named “satisfies” between them. 

                                                        
1 For readability sake, it is represented in the form of a conceptual model rather than a formal meta-model. 
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Figure 14. Conceptual model of Security Objectives and Requirements in 

Security DSML 

 

In current Security DSML, we distinguish three kinds of static models2 as shown by 
Figure 15: 

• The Requirement Model describes the specialization of Objectives into several 
Requirements and links between those and the other elements of DSML (Risk, 
Context). 

• The Context Model describes System Architecture (Essential Elements and/or 
Target), related constraints and links between those and the other elements of 
DSML (Risk, Requirement). 

• The Risk Model describes the risk characterization into threats, damages and 
vulnerabilities and links between those and the other elements (Risk, Context). 

 

                                                        
2 The connectors between entities are not represented here for readability sake 
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Figure 15. Security DSML Static Model description 

 

7.3.2 Mapping between DSML conceptual models and 
the security requirements meta-model 

Although slightly different terminology was used in Security DSML, we can find a clear 
mapping between our more generic security requirements meta-models in the previous 
sections. Using CamelCase for the DSML concepts, and lower case words for 
concepts in our security requirements meta-model, the mapping can be set up as 
follows:  

• A Requirement is a requirement, 

• An Objective is a security goal, 

• An Essential Element is a specification in logical layer as Platform Independent 
Model (messages, logical component) 

• A Target is a specification in physical layer as Platform Specific Model 
(communication channel, physical component). Target has vulnerability and is 
threatened that may expose a Risk to the satisfaction of a security goal. 

• The StaticModel is equivalent to a situation, which contains the 
RequirementsModel corresponding to our security requirements in terms of 
security goals; the ContextModel) corresponds to our domain properties which 
further contain Constraints (domain assumptions) and System (logical and 
physical specifications).  
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• The RiskModel corresponds to our validation model in the quantitative 
perspective. 

• Concepts such as Damage, Vulnerability, and Threat are the same, whereas 
the Boolean in predicate logic may no longer be sufficient for the quantitative 
risk analysis. Yet one can still reason about the security goal satisfaction using 
thresholds. 

7.3.3 From DSML to DOORS T-REK 
Figure 16 shows how to realize the mapping between Thales Security DSML (or Other 
DSML for Need Analysis) and DOORS T-REK, to do this we must consider a 
Traceability relation  between Security Requirement of Security DSML and DOORS 
Requirements.  

This relation enables to connect other kind of requirement (Safety, Maintainability, Cost 
…) with Security Requirements expressed in DSML. Requirements are stored in a 
common requirement Database (DOORS Database). This communication is realized 
via a Model Bus (Bidirectional interface XML to DXL3) for Traceability needs between 
DOORS and Security DSML. 

 

Figure 16. Mapping between DSML and DOORS 

This connection enables to represent risk defined in DSML into a requirement attribute 
(Related Risk) and connect Related Threat and Vulnerability into a component 
attribute. It’s so possible to represent risk into DOORS objects. 

Figure 17 presents the extended conceptual meta-model including DOORS 
connections. Two kinds of entities are mapped with DOORS: Requirements and Target 
which are respectively represented by Requirement and Product Breakdown Structure 
object in DOORS. To ensure traceability between DSML and DOORS, we add an 
PUID (Product Unique IDentifier) attribute, PUID is the reference name of a DOORS 
object. 

                                                        
3 DXL (DOORS Extended Language) is the native language of DOORS 
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Figure 17. Extended Conceptual model including DOOR S connections 

Figure 18 depicts the properties view on Security Objective O6 (Identifiers should be 
chosen so that they do not compromise user‘s privacy). Figure 19 presents the 
requirement derived from security objective in DOORS. 

 
Figure 18. Close view on the Security Objectives  
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Figure 19. Derived Requirements expressed in DOORS 

The information of target can be consulted in the Properties View (Description, 
constraints applied on it), as can be seen in Figure 20. This properties view of Target 
is also defined in DOORS as shown by Figure 21. 

 

Figure 20. Properties of the Database Server in DSM L 

 

Figure 21. Database Server description in DOORS 
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7.4 Evolution Management 
Changes are typically managed by a process, which is typically assisted by a change 
management system. When security-related changes are considered, the process 
must include the state of models with respect to validation and assessment of security 
requirements. An orthogonal dimension is how to help human to manage the 
dashboard status of the security of the overall achievement, during which errors are 
allowed to be fixed and issues are allowed to be addressed. Resolution of such issues 
may lead to addressing the target of a security risk at the design level, in other words, 
the vulnerability of the specification can be associated with a particular risk factor in 
satisfying certain security requirement. 

7.4.1 ChangeLine Meta model 
To represent traceability between changes and versioning of change, we add a further 
Model: Change Model which is composed by several Change Lines. As shown by 
Figure 22, a Change Line is considered as set of Changes and Change Transitions 
to preserve links and grant consistency between successive changes which compose a 
Change Line. These transitions enable to represent Before-after Perspective of 
change. 

Change is described by a Change Trigger (e.g. discover a fault or a new threat) which 
activates a Change Request. It’s also possible to activate a Change Trigger by a 
threshold defined in an Evolution Function which monitors the static model of the 
system. Evolution functions enable to represent Continuous Perspective of change. 

The maintenance perspective could be represented in this model by a particular 
combination of continuous and before after perspective. 

 

Figure 22. DSML Change Model conceptual model 
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7.4.2 ChangeRequest Meta-model 
As shown by Figure 23, a Change Request contains a PUID to identify it and a status 
which represent the state of Change request. After the activation of Change Request 
by the Change Trigger, Change Request status is first defined in CCB (Configuration 
Control Board). The configuration (or change) control board (CCB) is a meeting 
between all actors of a development team (client, manager, quality, design, integration 
…) to define the change request status (e.g. accepted, refused or postponed in the 
next version of system). The detailed behavior of Requirement Change Request is 
described in next section. 

To instantiate a Change Request inside different models, we have specialized it in 
three kinds: 

• A Requirement Change Request modifies the Requirement Model 
(Requirement, Objectives). It’s possible to map this kind of Change Request 
with DOORS Change Request. 

• A Context Change Request modifies the Context Model (e.g. system 
architecture). 

• A Risk Change Request modifies the Risk Model (Risk, Threat, Damage, 
Vulnerability). 

These three kinds of Change Request are dependants; a Requirement Change 
Request could impact on Risk Change Request and Context Change Request and vice 
versa. This is why we consider a traceability relation between those Change Requests. 
This relation is described by an association called “impacts_on” (see Figure 23). 

 
Figure 23. DSML Change Request Meta-model 
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7.4.2.1 Behavior of Change Request 

For readability sake, Change Request Behavior is described by UML Statechart 
Diagram. We present on the one hand the generic behavior of Change Request 
including CCB status relations. On the second hand we describe the specific behavior 
of Requirement Change Request. 

7.4.2.2 General Behavior of Change Request 

As suggested by Figure 23 and Figure 24, a Change Request (CR) starts after 
Change Trigger activation (e.g. discover a fault, a new requirement …). Redactor of 
Change Request must define the change and trace it with the impacted elements. 
Change Request is as default in Pending State.  

A CCB must be planned; it monitors the Change Request Status which could be in the 
following states: 

• Refused, CR is not relevant; it is not integrated in system. Change Request is 
ended in this state. 

• Postponed, CR is relevant but it’s not possible to integrate it in the current 
version of the system. This CR is planned for the next version. CR returns in 
Pending State during this system version. 

• Accepted, CR is integrated in current version of system. 

If CR is accepted, it will be In_process macro state. This macro state is specialized for 
several DSML Models (Risk, Requirement or Context).. 

CR is finish if and only if it’s closed in CCB with client agreement. 

 
Figure 24. Generic Change Request Status Behavior 
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7.4.2.3 Specific Behavior of Requirement Change Req uest 

Specific Requirement Change Request (RCR) Behavior starts after Accepted state 
in generic behavior. As shown by Figure 25, Requirement Change Request Status is 
represented by the sequence of following states: 

• To_be_Managed, redactor of Requirement Change Request must take into 
account impact of this change request with the other elements (Risk and 
Context) and change them if necessary with new CR(s). 

• In_progress, redactor must define changed requirement, designer must 
models them, and developer must implement them. 

• To_be_verified, integrator must take into account these changes in test 
campaign (and change test scenario if necessary). 

• Resolved, RCR Status will reach this state if and only if changed requirement 
are verified in test campaign. 

 

Figure 25. Requirement Change Request Status Behavi or 
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8 Conclusions 

In summary, this report describes a methodology for addressing evolutionary security 
requirements is based on three interleaving steps: modeling, analysis and design. 
Models of evolutionary security requirements are elicited and generalized according to 
three meta-models, in the modeling step. In the analysis step, the models of security 
requirements are used to discover vulnerabilities. In the design step, requirement 
model are used to construct a traceability mapping into security constraints of design 
artifacts.  

These meta-models are by no means an ultimate answer to the conceptual modeling 
framework for evolution of security requirements. A better bet is to consider them as an 
extensible framework in which new concepts and practices in the field of evolving 
security requirements engineering can be represented. 

We envisage that observations from our discussion may have important implications 
for research in secure software evolution. The main implication concerns approaches 
to secure change impact analysis. For example the observation that changing 
requirements may lead to changing specifications could lead to a framework for 
understanding the impact of changes and traceability of the changes through artifacts 
in both requirements and specifications. 

Similarly, such a change impact analysis framework could also be useful for analyzing 
the impact that changes in context may have on requirements and specifications. The 
change impact framework can be validated by doing more research on what the 
interaction is between the changes in W, S ├ R. Related to this, is the issue of scoping 
the impact of change on the system, when the system is large. 

As a result, the meta-models presented will be considered together to shed some lights 
on what is the more general representation of the meta-meta-model in order to 
facilitate the classification of changes, the change impact analysis, the transformations 
of the  models, and the argumentation of satisfaction. Ultimately, security requirements 
change patterns may be discovered, be documented and be reused from one case 
study to another. 
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Glossary 

A claim is a (probably grounded) 

predicate whose truth value will be 

established by an argument., 19 

A condition of situation is evaluated 

to be true for situations that 

require a change to maintain the 

security requirements. It may 

evaluate to false if the triggering 

events do not lead to any change. 

The condition must be monitored 

whenever a triggering event 

happens., 12 

A context consists of several domains 

which interface with each other., 

15 

A dependum is associated with a 

dependency relationship between 

two actors, which specifies which 

object (resource/process) or which 

requirement (goals, softgoals) are 

depended. Specifically, it can be 

defined similarly for the 

relationships Trusts/Delegates., 15 

A derived requirements refines the 

initial requirements., 15 

A dynamic object can be a process that 

consists of activities, 15 

A goal is an objective that the system-

to-be should achieve., 15 

A proposition is the sharable objects 

of attitudes and the primary 

bearers of truth and falsity, which 

can be either an optative or an 

indicative property., 15 

A requirement is a desired or an 

optative property wanted by a 

stakeholder., 15 

A resource is a physical or an 

informational entity which has no 

intention by itself., 15 

A security goal is a soft goal that an 

asset needs to be protected from 

harms., 15 

A situation is a partial state of the 

world where some propositions 

are true and some other 

propositions are nor true nor false. 

Thus, a situation consists of objects 

and propositions concern these 

objects, 15 

A situation of our requirements 

model is expressed in terms of 

propositions and objects., 15 

A soft goal is an objective that does 

not have a clearcut evaluation of 

the truth value., 15 

A specification is a process that fulfils 

certain requirements under given 

indicative domain properties., 15 

A triggering event is a dynamic 

difference between two 

consecutive versions of a model 

that results in the activation of an 

evolution rule., 12 

A vulnerability is a weakness, a flaw 

or a deficiency that is exploited to 

carry out a threat to cause harm to 

an asset., 15 
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An activity is a sequence of actions 

that can be performed by an actor 

to fulfill a goal, 15 

An actor is an intentional entity such 

as a human, a device, a legacy 

software or software-to-be 

component that performs actions 

to achieve its own goals, 15 

An adaptation action is the change 

introduced to achieve or restore 

the maintenance conditions, which 

are, in the SecureChange context, 

the satisfaction of security 

requirements., 12 

An anti-goal is a soft goal of an 

attacker which may obstruct the 

achievement of a security goal., 15 

An argument contains one and only 

one claim. It also contains facts and 

rules in domain knowledge, 19 

An asset is a resource which has a 

value and needs to be protected, 15 

An attack allows an attacker to fulfill 

an anti-goal. In particular, an attack 

is a situation in which vulnerability 

is exploited to cause damage on an 

asset., 15 

An attacker is an actor who wants an 

anti-goal to be satisfied., 15 

An evolution rule is a formal 

specification of automatic behavior 

in reaction to changes in the model, 

11 

An initial requirement is an optative 

property wanted by a stakeholder., 

15 

An object is an actor, a process or a 

resource., 15 

Attacks is a relationship from one 

situation to a vulnerable actor, 16 

Carries Out is a relationship either 

from an actor to a process, which 

specifies that an actor carries out a 

certain activity., 16 

Contributions is a relationship among 

goals/security goals which 

indicates that a goal contribute to 

the satisfaction of another goal., 16 

Damages is a relation from an attack 

to the assets, 16 

Decomposes is a relationship from a 

goal to its subgoals, which indicates 

that a goal can be refined 

AND-decomposition lists subgoals 

that must all be satisfied in order 

to satisfy the goal, whereas OR-

decomposition suggests 

alternative ways to satisfy the 

goal, 16 

Delegates is a relationship from one 

actor to another which specifies 

that the fulfillment of a goal or the 

provisioning of an 

activity/resource, 15 

Domain Knowledge is a set of 

ungrounded predicates that can be 

evaluated to true or false once the 

values of all terms in the predicates 

are known., 19 

DSML stands for Domain Specific 

Modeling Language., 2 

Dynamic Oriented Object Requirement 

System tools dedicated on 

Requirement Management. For 

further details see [19]., 40 
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Essential elements are elements of 

logical layer specification (services, 

data)., 6 

Exploits is a relationship from an 

attack to a vulnerability, which is a 

(part of) specification that can be 

vulnerable to expose security 

problems, 16 

Facts are grounded predicates -- 

something that are either true or 

false where terms in these 

predicate must be constant, 19 

Fulfills is a relationship from 

resources and activities to a goal, 

which specifies a goals is fulfilled 

by a combination of the resources 

and the activities, 16 

Transformation is the process of 

deriving models from each other, 

24 

Incremental model transformations 

update existing target models 

based on changes in the source 

models, and minimize the parts of 

the source model that need to be 

reexamined by a transformation 

when the source model is changed. 

These aspects are called target and 

source incrementality., 25 

Mitigations are another special kind 

of arguments following the 

iteration of rebuttals in order to 

reestablish the truth value of the 

associated claims, 19 

Obstructs is a relation from an anti-

goal to the corresponding security 

goal, 16 

Provides is a relationship either from 

an actor to resources, which 

specifies that an actor provides a 

certain resource and/or activity, 16 

Protects is a relationship from a 

security goal to a set of valuable 

assets, 16 

Rebuttals are a special kind of 

arguments whose purposes are to 

establish the falsity of their 

associate claims or make them 

indeterminable, 19 

situation, 11, 16, 17, 18, 44 

Targets are elements of physical layer 

specification (physical component, 

communication channel)., 42 

The argument may require sub-

arguments to establish the truth of 

certain facts or intermediate 

predicates, 19 

The context is a situation within 

which the system-to-be will 

operate, 15 

Trusts is a relationship from one actor 

to another, which indicates the 

belief of one actor that the other 

will provide a resource or will 

perform a certain activity., 15 

Uses is the opposite relationship to 

Provides from an actor to 

resources., 16 

Wants is a relationship from actors to 

goals which associates an actor 

with its goals, including security 

and anti-goals, 16 

 

 


