
!
!
!

D4.1 SECURITY MODELLING NOTATION FOR
EVOLVING SYSTEMS

Siv Houmb (OU/Telenor), Shareeful Islam (TU Munich), Jan Jurjens (TUD),
Martin Ochoa (TUD), Michael Hafner (UIB), Frank Innerhofer-Oberperfler (UIB),
Manuela Weitlaner (UIB), Benjamin Fontan (THA), Edith Felix (THA), Federica
Paci (UNITN), Frédéric Dadeau (INR), Boutheina Chetali (GTO)

Document information

D4.1

Document Title Security Modelling Notation for Evolving Systems

Version 1.9

Status Draft

Work Package WP 4

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 22 January 2010

Responsible Unit TUD

Contributors UNITN, GTO, INR, SMA, OU, THA, UIB, TUD

Keyword List

Dissemination level PU










Document change record

Version Date Status Author (Unit) Description

0.1 21.09.2009 Draft Jan Jürjens (TUD) Outline of the deliverable

0.2 10.11.2009 Draft Martin Ochoa (TUD) Integration into First draft

0.3 10.11. 2009 Draft

Siv Houmb (OU/Telenor),
Shareeful Islam (TU
Munich), Jan Jurjens
(TUD), Martin Ochoa
(TUD)

Sections 2 to 4 and 6 to 9

0.4 10.11. 2009 Draft Boutheina Chetali (GTO)
Section 5: Background on
the GP

0.5 10.11.2009 Draft
Michael Hafner, Frank
Innerhofer-Oberperfler,
Manuela Weitlaner (UIB)

Section 10:
SecureChange Process

0.6 10.11.2009 Draft
Benjamin Fontan,Edith
Felix (THA),

Section 12: Thales
Security vs UMLseCh

0.7 10.11. 2009 Draft Federica Paci (UNITN)
Section 11: Security
Requirements

0.8 10.11.2009 Draft Frédéric Dadeau (INR) Section 13: Testing

0.9 3 .12.2009 Draft Martin Ochoa Minor fixes

1.0 11.12.2009 Draft Martin Ochoa Draft for internal reviewing

1.1 11.12.2009 All authors Updates on their sections

1.2 11.12.2009 Draft Martin Ochoa Minor fixes

1.3 08.01.2010 Draft Elisa Chiarani (UNITN)
Quality check completed;
minor remarks

1.4 09.01.2010 Draft Federica Paci(UNITN)

Review; comments,
Update on Security
Requirements

1.5 09.01.2010 Draft Benjamin Fontan (THA)
Review, comments,
Update on Thales
Security vs UMLseCh

1.6 09.01.2010 Draft Bruno Legeard (SMA) Review, comments










1.7 09.01.2010 Draft Fabrice Bouquet (INR) Review, comments

1.8 18.01.2010 Draft

Siv Houmb (OU/Telenor),
Shareeful Islam (TU
Munich), Jan Jurjens
(TUD), Martin Ochoa
(TUD)

Update on sections 2-4,
6-9

1.9 21.01.2010 Final Elisa Chiarini (UNITN) Final Quality Check

!
!

!

!

!

Executive summary

This document describes a Security Modelling notation for evolving systems
(UMLseCh). This notation extends the UMLsec modelling language by means of
stereotypes (a UML lightweight extension mechanism). This notation can be used to
model evolution on general distributed systems, but also extensions are proposed to
deal with evolving secure software on Smartcards (Section 6).

Connections with WP2 (SecureChange Process), WP7 (SecureChange Testing) and
WP3 (Security Engineering Requirements) are also shown, as well as links to the
Thales DSML modelling notation (Sections 10 to 13).

After introducing the Global Platform (Section 5) and its design using UMLseCh
(Section 7), an example of modelling the e-Purse application on the Global Platform for
smartcards is given, in the context of the POPS Case Study (Section 8).

Finally, an overview of the work in progress towards T4.2 which deals with the formal
foundations of security preservation under evolution is also presented (Section 9).

The design notation and verification techniques for secure evolving systems presented
in this deliverable aim to be usable in the context of the various change dimensions
and change perspectives mentioned in [HD09].

!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

!

!

!

Index

DOCUMENT INFORMATION ... 1!

DOCUMENT CHANGE RECORD .. 2!

EXECUTIVE SUMMARY .. 4!

INDEX .. 5!

1!!!!!!INTRODUCTION ... 7!

2!!!!!!BACKGROUND: UMLSEC .. 9!

3 CHANGE TAXONOMY .. 13

4 UMLSEC + CHANGE : META-MODEL ... 18

5!!!!!!BACKGROUND: GLOBAL PLATFORM ... 50!

6 SMARTCARD SPECIFIC EXTENSIONS OF UMLSEC 62

7 APPLYING UMLSECH TO THE GLOB. PLAT. SPECIFICATION 69

8 APPLYING UMLSECH TO THE E-PURSE ... 93

9 PRESERVATION OF SECURITY PROPERTIES BY SYSTEM EVOLUTION ... 102

10 SECURECHANGE PROCESS AND INTEGRATION OF DESIGN MODELS 127!

11!!!!MODELLING SECURITY REQUIREMENTS ... 139!

12!!!!FROM THALES SECURITY DSML TO UMLSECH ... 149

13 FROM UMLSECH DESIGN MODELS TO MODEL-BASED TESTING 168

CONCLUSION .. 175

GLOSSARY ... 176

REFERENCES ... 178

!
!

!

!

!

APPENDIX ... 181
!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 7/182

!

1 Introduction

As stated in the Description of Work of SecureChange, the objective of Work Package
4 is to develop a model-based design approach that is tailored to the needs of the
secure development of evolving systems. The approach will glue requirements
techniques built in WP3 with the final code and configuration and will provide tools that
allow the user to automatically analyze the models against these its a-priori
requirements, also taking into account the configuration scenarios that are likely
according to the assessment analysis. It will provide as output models that will be used
for model-based testing in WP6 and a traceable link to the implementations that are
statically analyzed in WP7.

On the one hand, the design models themselves have to be designed in a way that will
make future system evolution feasible. On the other hand, the model analysis
techniques to be developed need to be able to analyse the models not only against the
a-priori given security requirements, environment assumptions, and threat scenarios,
but it should be possible to analyse models against variations and changed in these
requirements, assumptions, and scenarios.

A first step in this direction, as described in Task 4.1 is to extend a security design
modelling notation with evolutive security properties. The goal of this document is to
present such a Security Modelling notation for evolving systems that extends an
existing modelling notation. The chosen notation is UMLsec [Jür05a], which is itself an
extension of UML. It allows modelling systems at different levels of abstraction and to
formally verify security properties on the model. The extension, called UMLseCh,
operates basically on three levels:

a) An abstract notation, used to communicate with clients and/or to annotate
changes in the system

b) A concrete notation, applicable to all diagrams in the system and all levels of
refinement, that allows to precisely state the evolution on the modelling
element(s).

c) A notation for secure evolving systems in smartcards

The usage of the notation is illustrated in various examples, ranging from basic
applications to a more comprehensive case study: the smartcard-based e-Purse
application, in the context of the POPS Case Study.

We also give an overview of the work being carried out for task T4.2 “Formal
foundations”. Although still work in progress, we present some formal results in security
preservation under evolution. In particular, the preservation of secrecy under
component composition is treated.

The document also presents various connections with security related methodologies
specific to other Secure Change Work Packages, such as security requirements
engineering and test generation from models. Links with industry specific modelling
notations such DSML (used by the Secure Change partner Thales) are also
highlighted.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 8/182

!

Sections Walk-through

Section 2 introduces the UMLsec notation for model-based security engineering,
which is the selected Security Modelling notation to be extended.

Section 3 describes the Change Taxonomy considered in this deliverable based in the
Taxonomy provided by WP 5 [HD09].

Section 4 introduces the UMLseCh notation, an extension of UMLsec to model
evolving systems, which is the main task of this deliverable.

Section 5 introduces the Global Platform for smartcards, as an introduction for the
following sections.

Section 6 presents further extensions to UMLsec specific for smartcards.

Section 7 shows the application of UMLseCh to the Global Platform Architecture.

Section 8 discusses the e-Purse application model in the context of UMLseCh.

Section 9 gives an overview of methods to ensure secrecy preservation after
composition of System Components. This is helpful to ensure secrecy preservation
after changes in components, a common form of evolution.

Sections 10 to 13 present connections with other Work Packages in SecureChange:

Section 10 shows the links between UMLseCh and the general Secure Change
process.

Section 11 describes the link between security requirements engineering in the
context of WP3 and UMLsec models.

Section 12 describes the Thales modelling environment for security and possible ways
to relate it to UMLsec.

Section 13 gives an overview of the methodology used to generate tests from models
in the context of WP7.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 9/182

!

2 Background: UMLsec

In Model-based Security Engineering [Jür05a], [Jür05b], [Jür06] universal security
requirements (such as secrecy, integrity, authenticity and others) and security
assumptions on the system environment, can be specified either within a UML
specification, or within the source code (Java or C) as annotations.

One can use MBSE within model-based development (see Figure 2.1). Here one first
constructs a model of the system. Then, the implementation is derived from the model:
either automatically using code generation, or manually, in which case one can
generate test sequences from the model to establish conformance of the code
regarding the model. The goal is to increase the quality of the software while keeping
the implementation cost and the time-to-market bounded.

Figure 2.1: Model Based Security Engineering

In UMLsec, recurring security requirements, such as secrecy, integrity, and authenticity
are offered as specification elements by the UMLsec extension. These properties and
its associated semantics are used to evaluate UML diagrams of various kinds and
indicate possible security vulnerabilities. One can thus verify that the desired security
requirements, if fulfilled, enforce a given security policy. One can also ensure that the
requirements are actually met by the given UML specification of the system. UMLsec
encapsulates knowledge on prudent security engineering and thereby makes it
available to developers who may not be experts in security. The extension is given in
form of a UML profile using the standard UML extension mechanisms. Stereotypes are
used together with tags to formulate security requirements and assumptions on the
system environment. Constraints give criteria that determine whether the requirements
are met by the system design, by referring to a precise semantics mentioned below.

The tags defined in UMLsec represent a set of desired properties. For instance,
“freshness” of a value means that an attacker cannot guess what its value was.
Moreover, to represent a profile of rules that formalise the security requirements, the
following are some of the stereotypes that are used: «critical», «high», «integrity»,
«internet», «encrypted», «LAN», «secrecy», and «secure links». If relevant, their profile

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 10/182

!

also contains the possible attackers associated to them as shown in Figure 2.2.

Stereotype Threats default() Threats insider()

Internet {delete, read, insert} {delete, read, insert}

Encrypted {delete} {delete, read, insert}

LAN Ø {delete, read, insert}

Figure 2.2: Attackers and threats per stereotype in the UMLsec

!
Figure 2.2 gives the default attacker, which represents an outsider adversary with
modest capability. This kind of attacker is able to read, delete, and insert messages on
an Internet link. On an encrypted Internet link, such as a virtual private network, the
attacker might still be able to delete messages, without knowing their encrypted
content, by bringing down a network server. However, an average adversary would not
be able to read the plaintext messages or insert messages encrypted with the right
key. Of course, this assumes that the encryption is set up in a way such that the
adversary does not get hold of the secret key. The default attacker is assumed not to
have direct access to the local area network (LAN) and therefore not to be able to
eavesdrop on those connections.

The definition of the stereotypes allows for model checking and tool support. As an
example consider «secure links». This stereotype is used to ensure that security
requirements on the communication are met by the physical layer. More precisely,
when attached to a UML subsystem, the constraint enforces that for each dependency
d with stereotype s in the set ({«secrecy»,«integrity»,«high»}) between subsystems or
objects on different nodes, according to each of the above stereotypes, there shall be
no possibilities of an attacker reading, or having any kind of access to the
communication, respectively. A detailed explanation of the tags and stereotypes
defined in UMLsec can be found in [Jür05a].

In Figure 2.3 we show the UMLsec metamodel.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 11/182

!

Figure 2.3: The UMLsec metamodel.

We give now a brief description of each stereotype in the UMLsec profile.

fair exchange (for use case diagrams)

Intuitively, this stereotype represents the security requirement that any transaction
should be performed in a way that prevents both parties from cheating. When applied
to a subsystem containing a use case diagram, it requires that this subsystem can be
refined by another subsystem only if that is also stereotyped «fair exchange». Note that
this usage of the «fair exchange», stereotype has only an informal meaning, as
opposed to the stereotypes below. In particular, “refinement" is meant here in an
informal sense. It just serves as an example how the security requirements included as
stereotypes in the other kinds of diagrams below can also conveniently be included in
use case diagrams.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 12/182

!

fair exchange (for activity diagrams)

This stereotype, when applied to subsystems containing an activity diagram, has
associated tags {start}, {stop}, and {adversary}. The tags {start} and {stop} take pairs
(good; state) as values, where good is the name of a good to be sold and state is the
name of a state. If there is only one good to be sold in a given system specification, the
value good can be omitted. The tag {adversary} specifies an adversary type relative to
which the security requirement should hold. The associated constraint requires that, for
every good to be sold, whenever a {start} state in the contained activity diagram is
reached, then eventually a {stop} state will be reached, when the system is executed in
presence of an adversary of the type A specified in the tag {adversary}.

provable

A subsystem S may be labelled «provable», with associated tags {action}, {cert}, and
{adversary}. The tag {cert} contains an expression which serves as proof that the
action at the state given in the tag {action} was performed. The tag {adversary}
specifies an adversary type relative to which the security requirement should hold. The
stereotype «provable» then specifies that S may output the expression E given in {cert}
only after the state with name in {action} is reached, when executed in presence of an
adversary of the type A that is specified in the tag {adversary}.

rbac

This stereotype of subsystems containing an activity diagram enforces role-based
access control in the business process specified in the activity diagram. It has
associated tags {protected}, {role}, and {right}. The tag {protected} has as its values the
states in the activity diagram the access to whose activities should be controlled. The
{role} tag may have as its value a list of pairs (actor ; role) where actor is an actor in the
activity diagram, and role is a role. The tag {right} has as its value a list of pairs (role;
right) where role is a role and right represents the right to access a protected resource.
The associated constraint requires that the actors in the activity diagram only perform
activities for which they have the appropriate rights.

Internet, encrypted, LAN, wire, smart card, POS device, issuer node

These stereotypes on links (resp. nodes) in deployment diagrams denote the
respective kinds of communication links (resp. system nodes). We require that each
link or node carries at most one of these stereotypes. An adversary A is associated to
each link as in figure Figure 2.2. (and similarly for the nodes).

secrecy, integrity, high

These stereotypes, which may label dependencies in static structure or component
diagrams, denote dependencies that are supposed to provide the respective security
requirement for the data that is sent along them as arguments or return values of
operations or signals. These stereotypes are used in the constraint for the stereotype
«secure links».

critical

This stereotype labels objects or subsystem instances containing data that is critical in
some way, which is specified in more detail using the corresponding tags (for example:
{secrecy}, {integrity}, {authenticity}).

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 13/182

!

secure links

This stereotype, which may label subsystems, is used to ensure that security
requirements on the communication are met by the physical layer, given the adversary
type A that is specified in the tag {adversary} associated with this stereotype.

secure dependency

This stereotype, used to label subsystems containing static structure diagrams,
ensures that the «call» and «send» dependencies between objects or subsystems
respect the security requirements on the data that may be communicated across them,
as given by the tags {secrecy}, {integrity}, and {high} of the stereotype «critical».

data security

This stereotype labelling subsystems has the following constraint. The behaviour of
any subsystem S stereotyped «data security» respects the data security requirements
given by the stereotypes «critical» and the associated tags contained in the subsystem,
with respect to the threat scenario arising from the deployment diagram and given the
adversary type A that is specified in the tag {adversary} associated with this stereotype.

no down-flow, no up-flow

These stereotypes of subsystems prevent the indirect leakage or corruption of
sensitive data: It enforces secure information flow by making use of the tag {high}
associated with the stereotype «critical».

guarded access

This stereotype of subsystems is supposed to mean that each object in the subsystem
that is stereotyped «guarded» can only be accessed through the objects specified by
the tag {guard} attached to the «guarded» object.

3 Change Taxonomy

This section outlines the type of changes that we consider in the Secure Change

project and why and how change comes about, based on [HD09]. The focus is on

reflecting change on the model level to ease system evolution by ensuring effec-

tive control and tracking of changes. The goal is to tackle possible challenges and

problems arising from change up-front. Change are considered from three aspects:

(i) Change dimension, (ii) Change perspectives, and (iii) Change schedule.

Change dimension allows us to trace the kind (cause) of change and up-front tackle

known problems as experience is gained. Change perspectives support the change

dimension by making explicit the circumstances under which the change happen,

while change schedule capture the timeliness at which change happens.

Working on the model level has several advantages, most notable the abstraction level

and easy to understand notation of design models which makes them particularly suit-

able for tracing change as we will see demonstrated later in the document. Design

models represent the early exploration of the solution space and are the intermediate

(negotiation level) between requirements and implementation. Design models can

be used for what-if analysis in requirements negotiation and to abstract away the de-

tails of an implementation, making it understandable and suitable to support decision

processes. Design models can also be explicit and formal and therefore be used to

specify, analyse and trace changes directly.

Changes in software systems that we consider are either functionality-driven or

security-driven. Changes introduced to fix a newly discovered security threat or to

patch the system due to a security attack are referred to as security-driven changes.

All non-security related changes are called functionality-driven changes. More details

are given in the following.

3.1 Change Requests

We use stereotypes, tagged values and constraints to model change in the UML mod-

els. We also advocate to use the design models for change exploration and decision

support when considering how to integrate new or additional (existing) security func-

tions and to explore the security implications of planned system evolution. To main-

tain the security properties of a system through change, the change must be explicitly

expressed such that its implications can be analysed a priory. In addition, it is impor-

tant to check whether the foreseen change can be explored using the current design

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 14/182

models, before a change exploration analysis can be such analyses to be effective,

changes should be formalized as change requests.

The purpose of the pre-analysis is to ease into the change, i.e. moving from the cur-

rent system state to the new and changed system state, whether in the past, present

or future. As we anticipate multiple rounds of change, and also changes to earlier

changes, it is important to formalize each change in a manner that it can be sepa-

rated and traced in the design models, but also to allow change-driven security ver-

ification and re-verification. The latter is important, although difficult. However, note

that expressing change as change requests according to our formalism is not a strict

requirement as such.

The pre-analysis involves the following activities, which should be undertaken before

allowing any change in the UMLsec design models:

• Check if the model permits the change outlined in the change request

• Check which parts of the model permit changes

• Check whether existing security properties are affected by the change and to

what extend they will or may be affected

• Check which artefact will or may be affected by the change

• Check what values under the artefact that need to be updated

• Check if there are additional/new values that need to be included

• Check if and how early security verification results can be reused

3.2 Change Dimension - Model Level

There are two main kinds of change: (1) Functionality (system)–driven and

(2) Security–driven. Functionality-driven changes covers normal system evolution,

i.e. additional requirements, new customer demands, refinements or extensions of

existing functionality and similar. Security-driven changes are introduced to a system

because of e.g. newly identified security threats and as to repair after being subject to

a successful security attack or attack attempt. Security-driven changes can also stem

from requirements, law and regulations and changes in a company’s security policy.

This means that both functionality– and security–driven changes are forms of adapta-

tions to the changing system environment and usage environments. For security, new

ways of using the system often refer to the discovery of a back-door or an irregular

manner of exploring system functionality, which in principle can be positive, but most

often is negative, i.e. misuse.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 15/182

In an industrial application context (such as the risk assessment scenarios consid-

ered in WP5), changes are tackled differently depending on their implications and

the size and kind of system change. For the model level change analysis, we con-

sider two change dimensions (as for risk analysis, however, note the differences in

the definitions) to distinguish between small and larger changes: (a) Evolution and (b)

Revolution.

Evolution - Smaller changes to one or more components and/or services (functional

or security; can also be both) of the system that accumulates over time. For the

GlobalPlatform, examples are: changes to application data, applications and card

data.

Revolution - Significant changes to several components and/or services (functional or

security; can also be both) introduced at a specific point in time or during a limited

time-frame. For the GlobalPlatform, examples are: changes to platform code and

changes to hardware and software interfaces

3.3 Change Perspectives - Model Level

There may be multiple reasons triggering change and these triggers are used to de-

cide on the security analysis strategy, i.e. the perspective and goal of the analysis,

as we will see demonstrated in Section 7.9. We separate between three change

perspectives: (i) Maintenance perspective, (ii) Continuous perspective and (iii) Un-

planned perspective.

The maintenance perspective covers all changes done to maintain the core services,

functional and security features and of a system. These changes are made in a

controlled environment (e.g., by taking a GlobalPlatform card to the “Card Locked”

state, performing the specific update, execute additional integrity and security analysis

and tests, and then actively taking the card back to the “SECURED” state of yet again

normal operation) and at a planned and announced point in time. Maintenance may

involve small (evolution) or large (revolution) changes, but are always carried out in a

controlled manner, meaning that there are most likely less undesired and unforeseen

after-the-fact implications of these changes.

The continuous perspective covers all small changes that are made to a system

that contributes to a consistent system service level. (For GlobalPlatform, continu-

ous perspective concerns changes to application data and applications, but not se-

curity domains and general platform applications, as these are only changed under

maintenance perspective or under unplanned circumstances). Only small (evolution)

changes are permitted under this perspective.

The unplanned (patch) perspective covers all changes, small (evolution) and large

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 16/182

(revolution), necessary to recover from a security attack, card failures and similar or

to protect the card against new and evolving security threats. For example, for a

GlobalPlatform card the card issuer can decide to block a particular security domain

and all its applications upon discovery a security attack or serious threats against a

specific security domain.

The design notation and verification techniques for secure evolving systems pre-

sented in this deliverable aim to be usable in the context of the various change di-

mensions and change perspectives mentioned above.

3.4 Change Schedule - Model Level

Changes might occur at any time during a system’s life-cycle. On the model level we

define change and time in terms of change schedule as following: (i) Past change, (ii)

Current change, and (iii) Future change.

Past change denotes changes already committed and employed in the system, i.e.

past system evolution. Such changes happens for many reasons, most often because

of circumstances resulting in a number of patches to a system, often also applied

within a short time. These changes are harder to backtrack and more permanent

than the current and future changes (for GP, applying several changes during pre-

issuance without explicitly checking each change before applying the next, where

the previous change becomes past change when immediately applying an additional

change). For security analysis purposes it is important to differentiate between the

status of changes according to a change schedule. For past changes, it only makes

sense to execute security analysis to discover security flaws or vulnerabilities arising

as a consequence to the already employed changes. Any countermeasures to such

changes will be in form of a new changes such as either a patch to deal with the

security problems caused by past changes. Past changes occurs at time t0 − x,

where t0 denotes the current time and x ∈ P .

Current change refers to changes currently being committed to the system, during the

actual addition process. Such changes can be abandoned and altered while being

committed as a consequence of e.g. a security-driven change analysis. The main

purpose of such an analysis is to merge the change into the system on an abstract

and a prior manner, such that potential security flaws or functionality problems can be

discovered before actually committing the change. In other words, current changes

occurs at time t0.

Future change covers all planned changes and are used to express the kind, per-

spective and other change specific details (see Section 7.9 for examples of change

specific details of interest) of future permitted changes. Such can be used to prevent

known change problems, e.g. change types that already have proven to introduce se-

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 17/182

curity or functionality problems in the system. Future changes happens at time t0 + y,
where y ∈ P .

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 18/182

4 UMLsec + Change: Meta-Model

This section introduces extensions of the UMLsec profile for supporting system evo-
lution in the context of model-based secure software development with UML .

This profile, UMLseCh, is a further extension of the UML profile UMLsec in order to
support system evolution in the context of model-based secure software development
with UML. It is a “light-weight” extension of the UML in the sense that it is defined
based on the UML notation using the extension mechanisms stereotypes, tags, and
constraints, that are provided by the UML standard. For the purposes of this docu-
ment, by “UML” we mean the core of the UML 2.0 which was conservatively included
from UML 1.51.

As such, one can define the meta-model for UMLsec and also for UMLseCh by refer-
ring to the meta-model for UML and by defining the relevant list of stereotypes and
associated tags and constraints. The meta-model of the UMLsec notation was de-
fined in this way in [Jür05a]. In this section, we define the meta-model of UMLseCh in
an analogous way.

In its current version, the UMLseCh notation is divided in two parts: one part intended
to be used during abstract design, which tends to be more informal and less complete
in its use and is thus particularly suitable for abstract documentation and discussion
with customers (cf. Section 4.1), and one part intended to be used during detailed
design, which is assumed to be more detailed and also more formal, such that it will
lend itself towards automated security analysis (cf. Section 4.2).

4.1 UMLseCh: Abstract Design

We use stereotypes to model change in the UML design models. These extend the
existing UMLsec stereotypes and are specific for system evolution (change). We de-
fine change stereotypes on two abstraction layers: (i) abstract stereotypes and (ii)
Concrete stereotypes. This subsection given an overview of the abstract stereotypes.

The aim of the abstract change stereotypes is to document change artefacts directly
on the design models to enable controlled change actions. The abstract change
stereotypes are tailored for modelling a living security system, i.e., through all phases
of a system’s life-cycle.

We distinguish between past, current and future change as described in Section 3.
1http://www.omg.org/spec/UML/1.5

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 19/182

The abstract stereotypes makes up three refinement levels, where the upper level
stereotype are « change ». « change » is the parent stereotype, can be attached to
subsystems and are used across all UML diagrams. The meaning of the stereotype is
the annotated modelling element and all its sub-elements has or is ready to undergo
change.

« change » is refined into the three change schedule stereotypes: (i) « past_change »
representing changes already made to the system (typically between two system ver-
sions), (ii) « current_change » representing changes currently being made to a sys-
tem, and (iii) « future_change » specifying the future allowed changes, as described
in Section 3.

To track and ensure controlled change actions one needs to be explicit about which
model elements that permits change and what kind of change that is permitted on a
particular model element. For example, it should not be allowed to introduce audit
on data elements that are private or otherwise sensitive, which is annotated using
the UMLsec stereotype « secrecy ». To avoid such conflict, security analysis must be
undertaken. This can partly bee addressed by the UMLsec tool-set and are partly
work in progress.

Past and current changes are categories into addition of new elements, modification
of existing elements and deletion of elements. The following stereotypes have been
defined to cover these three types of change: « new »; « modified »; « deleted ».

For future change we also include the same three categories of change and the follow-
ing three future change stereotypes have been defined: « allowed_add »;
« allowed_modify »; « allowed_delete ». These stereotypes can be attached to any
model element in a subsystem. The future change stereotypes are used to specify
future allowed changes for a particular model element.

Past and current change The « new » stereotype is attached to a new system part
that is added to the system as a result of a functionality-driven or a security-driven
change. For security-driven changes, we use the UMLsec stereotypes secrecy, in-
tegrity and authenticity to specify the cause of security-driven change; e.g. that a
component has been added to ensure the secrecy of information being transmitted.
This piece of information allows us to keep track of the reasons behind a change.
Such information is of particular importance for security analysis; e.g. to determine
whether or which parts of a system (according to the associated dependencies tag)
that must be analysed or added to the target of evaluation (ToE) in case of a security
assurance evaluation.

Tagged values are used to assist in security analysis and holds information relevant
for the associated stereotype. The tagged value: {version=<version_number>} is
attached to the « new » stereotype to specify and trace the number of changes that

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 20/182

has been made to the new system part. When a ’new’ system part is first added to
the system, the version number is set to 0. This means that if a system part has
the « new » stereotype attached to it where the version number is > 0, the system
part has been augmented with additional parts since being added to the system (e.g.,
addition of an new attribute to a new class). For all other changes, the « modified »
stereotype shall be used.

The tagged value: {dependencies=yes/no} is used to document whether there is a
dependency between other system parts and the new/modified system part. At this
point in the work, we envision changes to this tag, maybe even a new stereotype
to keep track of exactly which system parts that depends on each other. However,
there is a need to gain more experience and to run through more examples to make
a decision on this issue, as new stereotypes should only be added if necessary for
the security analysis or for the security assurance evaluation. Note that the term
dependencies are adopted from ISO 14508 Part 2 (Common Criteria) [Com07].

The « modified » change stereotype is attached to an already existing system part that
has been modified as a result of a functional-driven or a security-driven change/change
request. The tagged values is the same as for the ’new’ stereotype.

The « deleted » change stereotype is attached to an existing system part (subsystem,
package, node, class, components, etc.) for which one or more parts (component,
attributes, service and similar) have been removed as a result of a functionality-driven
change. This stereotype differs from the ’new’ and ’modified’ stereotypes in that it is
only used in cases where it is essential to document the deletion. Examples of such
cases are when a security component is removed as a result of a functionality-driven
change, as this often affects the overall security level of a system. Information about
deleted model elements are used as input to security analysis and security assurance
evaluation.

Future change The allowed future change for a modelling element or system part
(subsystem) is adding a new element, modifying an existing element and deleting
elements (« allowed_add », « allowed_modify » and « allowed_delete »). We reuse
the tagged values from the past and current change stereotypes, except for ’ver-
sion_number’ which is not used for future changes.

Summary Figure 4.1 lists the abstract UMLseCh change stereotypes and Figure 4.2
lists the abstract UMLseCh tagged values.

A summary of the abstract notation metamodel can be found in Figure 4.3.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 21/182

S
te

re
ot

yp
e

B
as

e
C

la
ss

A
ss

oc
ia

te
d

Ta
gs

C
on

st
ra

in
ts

D
es

cr
ip

tio
n

st
er

eo
ty

pe
s

ch
an

ge
su

bs
ys

te
m

sp
ec

ifi
es

th
at

ch
an

ge
s

ar
e

al
lo

w
ed

or
ch

an
ge

s
th

at
ha

ve
be

en
m

ad
e

to
th

e
su

bs
ys

te
m

pa
st

_c
ha

ng
e

su
bs

ys
te

m
ch

an
ge

sp
ec

ifi
es

an
al

re
ad

y
co

m
m

itt
ed

ch
an

ge
(p

as
t)

cu
rr

en
t_

ch
an

ge
su

bs
ys

te
m

ch
an

ge
sp

ec
ifi

es
an

on
go

in
g

ch
an

ge
fu

tu
re

_c
ha

ng
e

su
bs

ys
te

m
ch

an
ge

sp
ec

ifi
es

th
at

fu
tu

re
ch

an
ge

s
ar

e
pe

rm
itt

ed
ne

w
al

l
pa

st
_c

ha
ng

e
de

pe
nd

en
ci

es
,

sp
ec

ifi
es

ad
di

tio
n

of
a

ne
w

el
em

en
t

cu
rr

en
t_

ch
an

ge
ve

rs
io

n_
nu

m
be

r
(p

as
to

rc
ur

re
nt

)
m

od
ifi

ed
al

l
pa

st
_c

ha
ng

e
de

pe
nd

en
ci

es
,

sp
ec

ifi
es

m
od

ifi
ca

tio
n

to
ex

is
tin

g
cu

rr
en

t_
ch

an
ge

ve
rs

io
n_

nu
m

be
r

el
em

en
t(

pa
st

or
cu

rr
en

t)
de

le
te

d
al

l
pa

st
_c

ha
ng

e
sp

ec
ifi

es
re

m
ov

al
of

el
em

en
t

cu
rr

en
t_

ch
an

ge
(p

as
to

rp
re

se
nt

)
al

lo
w

ed
_a

dd
al

l
fu

tu
re

_c
ha

ng
e

de
pe

nd
en

ci
es

,
sp

ec
ifi

es
th

at
ad

di
ng

ne
w

el
em

en
ts

ve
rs

io
n_

nu
m

be
r

ar
e

pe
rm

itt
ed

(fu
tu

re
)

al
lo

w
ed

_m
od

ify
al

l
fu

tu
re

_c
ha

ng
e

de
pe

nd
en

ci
es

,
sp

ec
ifi

es
th

at
m

od
ify

in
g

ex
is

tin
g

ve
rs

io
n_

nu
m

be
r

el
em

en
ts

ar
e

pe
rm

itt
ed

(fu
tu

re
)

al
lo

w
ed

_d
el

et
e

al
l

fu
tu

re
_c

ha
ng

e
sp

ec
ifi

es
th

at
de

le
tin

g
ex

is
tin

g
el

em
en

ts
ar

e
pe

rm
itt

ed
(fu

tu
re

)

Fi
gu

re
4.

1:
U

M
Ls

ec
C

h
ab

st
ra

ct
de

si
gn

st
er

eo
ty

pe
s

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 22/182

Tag Stereotype Type Multip. Description

dependencies new, modified, all * specifies whether there are

allowed_add, dependencies with other elements

allowed_modify

version_number new, modified all * specifies the change number

Figure 4.2: UMLsecCh abstract design tags

Figure 4.3: UMLseCh metamodel for the abstract notation

4.1.1 Examples - Abstract Change

This section demonstrates the use of the abstract change notation to annotate past,

current and future changes. The goal of the annotation is to provide information as

input to conflict detection and resolution analysis (for security-driven changes), se-

curity analysis (for fulfilment of required security properties) and security assurance

evaluation.

Future Change Future change notation is used to specify allowed changes. Often,

during development and design the permitted future changes would be added to the

model e.g. to avoid repeating mistakes made in past and current changes.

Figure 4.4 shows a simple subsystem consisting of a sender node and a receiver

node with associated components. The only allowed action in the subsystem is for

the sender to send data to the receiver. This can be an example of the simplicity that

one can have very early in the design phase and which gets extended as the design

phase moves forwards and the design matures.

We use the UMLseCh stereotype « change » together with the UMLseCh

« future_change » to specify that it concerns future changes. The change types per-

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 23/182

Figure 4.4: Annotating permitted future change using abstract change notation

mitted on the subsystem are all of adding a new element, modifying an existing ele-
ment and deleting elements. Furthermore, it is only allowed to add and modify ele-
ments associated with the sender node. Elements in the receiver node can also be
deleted, as can be seen in the figure.

Somewhat later in the design, the subsystem has matured and the associated classes
have been identified and specified. Figure 4.5 shows the updated design, with the
sender and receiver classes and interfaces included. As can be seen in the figure,
the allowed future changes have been revised and deleting elements is no longer an
allowed future change.

Past Change Past changes are those that are already committed to the system.
Note that we distinguish between past and current change, which is of particular im-
portance for tool support, as we will see demonstrated later. In cases where future
changes are specified prior to change, the future changes are used to restrict and
control past changes.

Figure 4.6 gives a simple example of using the abstract « past_change » notation to
specify that a new element has already been employed in the subsystem. The sub-

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 24/182

Figure 4.5: Annotating permitted future change using abstract change notation

system is the same simple system comprised of a sender and receiver node and
components, as used for annotating future change. As can be seen in the figure, the
subsystem is annotated with the stereotypes « change » and « past_change » This
should be interpreted in the following way. A change has already been deployed in
the subsystem. The change is a past introduction of a new element to the subsystem.
We then examine the elements in the subsystem and see that the added element is
the “encryption service”, which has no dependencies on the other elements in the
subsystem. We can also deduce that the added element is new, as the version num-
ber given is 0 (0 is given as the version number when the element is first introduced).
As also can been seen in the figure, the encryption service has three associated
operations: encrypt, decrypt and sign.

Current Change Current change represents ongoing modifications to a subsystem
and differs from past changes in that the change has not yet been incorporated into
the system design or code, meaning that security analysis can be applied to the
change to discover e.g. any undesired consequences of the change a priori. Cur-
rent changes can most often easily be rolled-back, while this is more difficult in the
case of past and already committed changes. In cases where future changes are

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 25/182

Figure 4.6: Using abstract change notation to annotate the introduction of a new element

specified prior to change, the future changes are used to restrict and control current
changes.

Figure 4.7 shows the same subsystem, but at a later stage. It has been discovered
that there is a need to add functionality to verify signatures and this change is about to
be introduced into the subsystem. At this stage, security analysis can be applied and
any undesired consequences of the change can be discovered and fixed a priori. The
version number is now set to 1, as the semantic meaning of ’1’ is the first modification
to an already existing element.

4.1.2 Abstract change stereotypes - Semantics

This subsection elaborates on the ascribed meanings of the abstract change stereo-
types as defined and described in Section 4.1. The abstract changes stereotypes
deals with higher levels change artefacts and allow one to address change from both
a general and specific levels. The main purpose of these stereotypes is to document,
trace and analyse implications of evolution and revolution kinds of changes.

The abstract stereotypes are categorized into three groups and structured into three

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 26/182

Figure 4.7: Using abstract change notation to annotate modification of an exisiting element

levels, where lower levels represent refinements of the upper levels. For example, new
is a refinement of current_change, which again is an refinement of change. The three
categories of abstract change stereotypes are: (i) past change, (ii) current change,
and (iii) future change.

Past changes document events already happened and are important for documen-
tation purposes and to enable a structured after-the-fact analysis of the implications
that these changes has had on the core system functionality and the desired security
properties of the system. Such analysis may result in not acceptable results, meaning
that the change or parts of the change should be undone and that roll-back actions
are required.

Current changes are used to evaluate required or desired modifications to the sys-
tem, such as its application and application data. The stereotype annotates design
models with the proposed change in a way that the meaning of the change on the
affected system parts can be analysed. The meaning can be implications (indirect
consequences) or direct undesired modification of system or security behaviours of
the system. As a minimum, the security properties should be preserved through any
current type of change, if not the change must be re-considered.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 27/182

Future changes denotes modifications to system parts or the security behaviour of
the system that are permitted, along with documenting up front which system parts
that specific changes are permitted for. Acceptable future changes can be derived
from the result of past and current changes (it is wise to deny changes that already
have showed to introduce undesired consequences) or document changes that the
various parts will be able to handle in a manner that avoids, as a minimum, breach of
the security properties of the system.

change is the most abstract change stereotype and is used to mark a past, cur-
rent or future change. The stereotype allows for tracing change throughout the
system life-cycle. The change refines into. past_change; current_change; fu-
ture_change.

past_change is a refinement of stereotype change used to document changes al-
ready applied to the system. This stereotype documents changes already intro-
duced to the system and are used by tools to check for preservation of system
security properties after the fact (after the change has already been applied).
The stereotype past_change refines into: new; modify; delete.

current_change is a refinement of stereotype change used to denote present change.
This stereotype should preferable be used to “test” the consequences of pro-
posed changes a priori and represent a change control tool. The stereotype
past_change refines into: new; modify; delete.

future_change is a refinement of stereotype change used to model future permit-
ted change. The stereotype can be used to prevent future undesired changes
(already known as a result of unsuccessful past or current change analysis)
and to specify up-front how a system preferable should evolve. This stereotype
is part of the change control tool. The stereotype future_change refines into:
allowed_add; allowed_modify; allowed_delete.

4.1.3 Abstract change stereotypes - Tool support

The abstract change stereotypes in the UMLseCh profile enable an easy and effec-
tive way to identify and analyse the specific parts of a system that has or is about
the undergo change. These stereotypes also makes it possible to learn from pre-
vious change cases and learn from experience and thus avoid introducing known
change problems in the future. Tool support for the abstract stereotypes serves three
purposes: (i) detecting and repairing past changes, (ii) assisting current change pro-
cesses and (iii) prepare the system for future change processes, ensuring a continu-
ous and controlled system change.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 28/182

The most abstract change stereotype change is attached to subsystems and used to
specify that change, not specifying the type, is permitted in that particular subsystem.
This stereotype does not imply any kind of change and is merely used to enable the
tool to easily identify the parts of a system that have been, are undergoing or permits
change. Consequently, the change stereotype enables the tool to narrow the analysis
scope (systems parts not concerned with change does not need to be analysed).

4.1.4 Security Checking Methodology after the addition of elements

If new elements have already been introduced to the system, the impact of this action
should be investigated. The tool does this in the following way:

• Start with the before model of the system (the model before the change was
introduced into the system)

• Introduce the new element into the before model

• Identify affected elements in the relevant subsystem

• Identify security properties of the affected elements

• Create the after model

• Analyse the after model against the before model (delta analysis):

– Security analysis of new element locally in the relevant subsystem – check
for preservation of security properties after composition with the existing
system

– Compare the before and the after models – check if security properties of
before model is preserved in after model for the relevant subsystem

4.1.5 Security Checking Methodology after the modification of elements

Modifying existing elements follows much the same analysis process as for intro-
ducing new modelling elements into the system. The only difference is that existing
elements may have dependencies across subsystems and these must be identified
and analysed, in addition to checking the security implications locally in the relevant
subsystem.

The process that the tool follows for analysing modification type of change is the
following:

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 29/182

• Start with the before model of the system (the model before the modification
was introduced into the system)

• Introduce the modification into the before model

• Identify affected elements in the relevant subsystem

• Identify any dependencies (both in the local subsystem and across the system
specified by the tag {dependencies})

• Identify relevant security properties of the affected elements

• Create the after model

• Analyse the after model against the before model (delta analysis):

– Security analysis of modified element locally in the relevant subsystem –
check for preservation of security properties after modification

– Compare the before and the after models – check that the security proper-
ties of before model is preserved in after model for the relevant subsystem

– Security analysis of dependencies – check for preservation of security
properties of dependent model elements

4.1.6 Security Checking Methodology after the deletion of elements

Security analysis for delete type of change is carried out in the following way by the
tool:

• Start with the before model of the system

• Identify affected elements locally in the relevant subsystem

• Identify relevant security properties of the affected elements

• Identify any dependencies (both in the local subsystem and across the system
specified by the tag {dependencies})

• Remove the element from the before model to create the after model

• Analyse the after model against the before model (delta analysis):

– Analyse for preservation of security properties locally in the subsystem

– Compare the before and the after models – check that security properties
of before model is still preserved in the after model locally in the subsystem

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 30/182

– Security analysis of dependencies – check for preservation of security

properties after removing modelling element of dependent model elements

Deleting elements from a system should be done with care as such changes may

result in undesirable and also hidden security weaknesses if not done in a controlled

manner. Of particular importance are to check any dependencies on other system

elements. E.g., if the key generation element is removed without updating the depen-

dent cryptographic operations the operation will fail or worse end in an introduction of

static encryption keys.

4.1.7 Security Checking Methodology for Future Kinds of Change

Future changes should learn from unsuccessful past and current changes. This

means that tool support for future kind of changes should include a learning capa-

bility that ensures that future permitted changes do not conflict with prior change

experience. I.e., the model should not permit changes that have previously proven

to introduce security weaknesses or problems with the system functionality. Allowed

addition, modification and deletion of elements in a system will therefore be updated

as change experience is gathered. The security analysis process for each follows that

of above.

4.2 UMLseCh: Concrete Design

We further extend UMLsec by adding so called "concrete" stereotypes: these stereo-

types allow to precisely define substitutive (sub) model elements and are equipped

with constraints that help ensuring their correct application.

Figure 4.8 shows the stereotypes defining table. The tags table is shown in Figure

4.9.

The UMLseCh metamodel is summarized in Figure 4.10.

4.2.1 Description of the notation

In the following, we describe informally the semantics of each stereotype.

substitute

The stereotype substitute attached to a model element denotes the possibility for that

model element to evoluate over the time and what are the possible changes. It has

three associated tags, namely {ref}, {substitute} and {pattern}.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 31/182

Stereotype Base Class Tags Constraints Description

substitute all ref, substitute, FOL formula substitute a model

pattern element

add all ref, add, FOL formula add a model

pattern element

delete all ref, pattern FOL formula delete a model

element

substitute-all subsystem ref, substitute, FOL formula substitute a

pattern group of elements

add-all subsystem ref, add, FOL formula add a group

pattern of elements

delete-all subsystem ref, pattern FOL formula delete a group

of elements

Figure 4.8: UMLsecCh concrete design stereotypes

Tag Stereotype Type Multip. Description

ref substitute, add, delete, object name 1 Informal type

substitute-all, add-all, of change

delete-all

substitute substitute, list of model elements 1 Substitutives

substitute-all elements

add add, add-all list of model elements 1 New elements

pattern substitute, add, delete, list of model elements 1 Elements to

substitute-all, add-all, be modified

delete-all

Figure 4.9: UMLsecCh concrete design tags

Figure 4.10: UMLseCh metamodel for the concrete notation

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 32/182

These tags are of the form { ref = CHANGE-REFERENCE }, { substitute = MODEL-
ELEMENT } and { pattern = CONDITION }. The tag {ref} takes a string as value, which
is simply used as a reference of the change. The value of this tag can also be consid-
ered as a predicate and take a truth value to evaluate conditions on the changes, as
we explain further in this section. The tag {substitute} has a list of model element as
value, which represents the several different new model elements that can substitute
the actual one if a change occurs. An element of the list contained in the tagged value
is a model element itself if it can fit in the tag notation (e.g. a stereotype, "{substitute =
« stereotype »}"). If the model element cannot fit in the tag notation (e.g. a diagram),
it is placed in a package and this package name is the element of the list contained in
the tagged value. The last tag, {pattern}, is optional. If the model element to change
is clearly identified by the syntactic notation, i.e. if there is no possible ambiguity
to state which model element is concerned by the stereotype « substitute », the tag
pattern can be omitted. On the other hand, if the model element concerned by the
stereotype « substitute » is not clearly identifiable, the tag pattern must be used. This
tag has a model element as value, which represents the model element to subsitute
if a change occurs. In order to identify the model element precisely, we can use, if
necessary, the abstract syntaxe of UMLsec, defined in [Jür05a].

Therefore, to specify that we want to change, for example, a link stereotyped
« Internet » with a link stereotyped « encrypted », using the UMLseCh notation, we
attach:

« substitute »

{ ref = encrypt-link }

{ substitute = encrypted }

{ pattern = Internet }

to the link concerned by the change.

The stereotype « substitute » also has a constraint formulated in first order logic. This
constraint is of the form [CONDITION]. As mentioned earlier, the value of the tag {ref}
of a stereotype « substitute » can be used as the atomic predicate for the constraint
of another stereotype « substitute ». The truth value of that atomic predicate is true
if the change represented by the stereotype « substitute » for which the tag {ref} is
associated occured, false otherwise. The truth value of the condition of a stereotype
« substitute » then represents whether or not the change is allowed to happen (i.e. if
the condition is evaluated to true, the change is allowed, otherwise the change is not
allowed).

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 33/182

To illustrate the use of the constraint, let us refine the previous example. Assume

that to allow the change with reference { ref = encrypt-link }, another change, simply

named "change" for the example, has to occur. We then attach the following to the

link concerned by the change:

« substitute »

{ ref = encrypt-link }

{ substitute = encrypted }

{ pattern = Internet }

[change]

add

The stereotype « add » is similar to the stereotype « substitute » but, as its name in-

dicates, denotes the addition of a new model element. It has three associated tags,

namely {ref}, {add} and {pattern}. The tag {ref} has the same meaning as in the

case of the stereotype « substitute », as well as the tag {add} (which here is the equiv-

alent of the tag {substitute}, i.e. a list of model elements that we wish to add). The

tag {pattern} has a slightly different meaning in this case. Indeed, while with stereo-

type « substitute », the tag {pattern} represents the model element to substitute, with

the stereotype « add » it does not represent the model element to add, but the model

element concerned by the addition, as for evident reasons, we cannot associate the

stereotype « add » to a model element that does not exist yet.

The stereotype « add » is a syntactic sugar of the stereotype « substitute », as a

stereotype « add » could always be represented with a stereotype « substitute ». Nev-

ertheless, the semantic of « add » will change slighly from one situation to another.

Indeed, in the case of, for example, a class diagram, adding a new method to a class

will consist of substituing the set of methods of that class with a new set that is the

copy of the former set in which we add the new method. Formally, if s is the set of

methods and m the new method, the new set of methods is:

s� = s0 ∪ {m}

where s0 is a copy of s. However, in the case of an activity diagram, adding a new

node on the flow will consist on substituing an activity edge (the one placed were we

want to add the new node) with an activity subdiagram. In the simple case of adding a

new node, this subdiagram will simply be the new node together with the two activity

edges connecting this node with the previous ones and the next ones on the flow. In

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 34/182

the case of adding a more complex subdiagram, the activity edge will be substituted
with this subdiagram in which we replace the entry point by the previous node of the
substituted activity edge and the exit point by the next node of the substituted activ-
ity edge. Because of this inconsistency of the semantics, the use of the stereotype
« add » will be restricted in certain diagrams, namely the state diagrams and the ac-
tivity diagrams. For these particular diagrams, « add » will be limited to the addition of
model elements that do not imply any substitution of activity edge, as stereotypes for
example. For the addition of model elements that imply a substitution of an activity
edge, the stereotype « substitute » will be used.

The stereotype « add » also has a constraint formulated in first order logic, which
represents the same information as for the stereotype « substitute ».

delete

The stereotype « delete » is similar to the stereotype « substitute » but, obviously, de-
notes the deletion of a model element. It has two associated tags, namely {ref} and
{pattern}, which have the same meaning as in the case of the stereotype « substitute »,
i.e. a reference name and the model element to delete respectively.

The stereotype « delete » is a syntactic sugar of the stereotype « substitute », as a
stereotype « delete » could always be represented with a stereotype « substitute ».
Nevertheless, as for the stereotype « add », the semantic of « delete » will change
slighly from one situation to another. In the case of a class diagram, deleting a method
will consist of substituing the set of methods of that class with a new set that is the
copy of the former set in which we remove the method. Formally, if s is the set of
methods and m the method to delete, the new set of methods is:

s� = s0 \ m

where s0 is a copy of s. In the case of an activity diagram, deleting a node will consist
of substituing the node and the activity edges connecting the node with the previous
ones and the next ones on the flow by activity edges connecting the previous nodes of
the deleted node with the next nodes of the deleted node. Again, as for the stereotype
« add » this inconsistency of the semantics will lead to a restricted use of the stereo-
type « delete » in the state diagrams and the activity diagrams. For these particular
diagrams, « delete » will be limited to the deletion of model elements that do not imply
any substitution of activity edge, as stereotypes for example. For the deletion of model
elements that imply a substitution of an activity edge, the stereotype « substitute » will
be used.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 35/182

The stereotype « delete » also has a constraint formulated in first order logic, which
represents the same information as for the stereotype « substitute ».

substitute-all

The stereotype « substitute-all » is an extention of the stereotype « substitute » that
can be associated to a (sub)model element or to a whole subsystem. It denotes
the possibility for a set of (sub)model elements to evoluate over the time and what
are the possible changes. The elements of the set are sub elements of the ele-
ment to which this stereotype is attached (i.e. a set of methods of a class, a set
of links of a Deployment diagram, etc). As the stereotype « substitute », it has the
three associated tags {ref}, {substitute} and {pattern}, of the form { ref = CHANGE-
REFERENCE }, { substitute = MODEL-ELEMENT } and { pattern = CONDITION }. The
tags {ref} and {substitute} have the exact same meaning as in the case of the stereo-
type « substitute ». The tag {pattern}, here, does not represent one (sub)model el-
ement but a set of (sub)model elements to substitute if a change occur. Again, in
order to identify the list model elements precisely, we can use, if necessary, the ab-
stract syntaxe of UMLsec, defined in [Jür05a].

If we want, for example, to replace all the links stereotyped « Internet » of a subsystem
by links stereotyped « encrypted », we can then attach the following to the subsystem:

« substitute-all »

{ ref = encrypt-all-links }

{ substitute = « encrypted » }

{ pattern = « Internet » }

The tags {substitute} and {pattern} here allow a parametrisation of the tagged val-
ues MODEL-ELEMENT and CONDITION in order to keep information of the different
model elements of the subsystem concerned by the substitution. For this, we allow
the use of variables in the tagged value of both, the tag {substitute} and the tag
{pattern}.

To illustrate the use of the parametrisation in the stereotype « substitute-all », we have
the following example. Assume that we would like to substitute all the secrecy tags in
the stereotype « critical » by the integrity tag, we can attach:

« substitute-all »

{ ref = secrecy-to-integrity }

{ substitute = { integrity = X } }

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 36/182

{ pattern = { secrecy = X } }

to the model element to which the stereotype « critical » is attached.

The stereotype « substitute-all » also has a constraint formulated in first order logic,

which represents the same information as for the stereotype « substitute ».

add-all

The stereotype « add » also has its extension « add-all », which follows the same se-

mantics as « substitue-all » but in the context of an addition.

delete-all

The stereotype « delete » also has its extension « delete-all », which follows the same

semantics as « substitue-all » but in the context of a deletion.

4.2.2 Semantics

In the following, we give the semantics of the UMLseCh stereotypes. This semantics

is based on the fact that every model element of a system can be expressed precisely

using the abstract syntax of UMLsec, defined in [Jür05a].

substitute

Assume that { ref = R1 } and there exists other UMLseCh stereotypes with references

R2, · · · , Rn. The application of « substitute » on a UMLsec (sub)model element M of

a subsystem S (specified in { pattern = M1 }) yields:

In case [Constraint R2, · · · , Rn] evaluates to true and the type of M is the same as

the type of M �
1, · · · , M �

n, as specified in { substitute = M �
1, · · · , M �

n }, then it returns the

list M �
1, · · · , M �

n. Otherwise it returns M .

add

The « add » semantics is similar, but here, the tag { pattern = M } does not refers to a

(sub)model element, but to a list of (sub)model elements that belongs to the model

element concerned by the addition (for example, the list of attributes of a class, the

list of classes of a class diagram etc.)

Its semantics is then:

In case [Constraint R2, · · · , Rn] evaluates to true and the type of the elements of the

list M is the same as the type of M �
1, · · · , M �

n, as specified in { add = M �
1, · · · , M �

n },

then it returns the list M :: M �
1, · · · , M :: M �

n. Otherwise it returns M .

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 37/182

delete

For the stereotype « delete », the tag { pattern = M } refers to a (sub)model element.

Its semantics is:

In case [Constraint R2, · · · , Rn] evaluates to true, it returns the empty set ∅. Other-

wise it returns M .

substitute-all

The semantics of « substitute-all » is similar to the semantics of « substitute », but

here, the tag { pattern = M1, · · · , Mn } does not refer to a (sub)model element but to a

list of (sub)model elements.

Its semantics is then:

In case [Constraint R2, · · · , Rn] evaluates to true and the type of the elements of the

list M1, · · · , Mn is the same as the type of M �
1, · · · , M �

m, as specified in

{ substitute = M �
1, · · · , M �

m }, then it returns the list of lists {M ��
1 , · · · , M ��

n}

where M ��
i = {n copies of M �

i}

∀i : 1 ≤ i ≤ m. Otherwise it returns M1, · · · , Mn.

add-all

The semantics of « add-all » is similar to the semantics of « add », but here, the

tag { pattern = M1, · · · , Mn } does not refer to a (sub)model element but to a list of

(sub)model elements.

Its semantics is:

In case [Constraint R2, · · · , Rn] evaluates to true and the type of the elements of the

list M1, · · · , Mn is the same as the type of M �
1, · · · , M �

m, as specified in

{ add = M �
1, · · · , M �

m }, then it returns the list of list:

{{M1 :: M �
1, · · · , Mn :: M �

1}, · · · , {M1 :: M �
m, · · · , Mn :: M �

m}}.

Otherwise, it returns {M1, · · · , Mn}.

delete-all

The semantics of « delete-all » is similar to the semantics of « delete », but here, the

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 38/182

tag { pattern = M1, · · · , Mn } does not refer to a (sub)model element but to a list of
(sub)model element.

Its semantics is then:

In case [Constraint R2, · · · , Rn] evaluates to true, it returns the empty set ∅. Otherwise
it returns {M1, · · · , Mn}.

4.2.3 Examples

Simple example As a first example, we give the following simple scenario. A sender
sends data to a receiver. The link between the sender and the receiver has the stereo-
type « Internet ». Therefore, the current design does not provide security, since the
stereotype « Internet » is not sufficient to ensure any of the main security require-
ments (i.e. secrecy, authenticity, integrity and freshness). However, one could change
the model to ensure sender’s data secrecy by adding a « critical » stereotype with
the tagged value { secrecy = d } where d represents the sender’s data. This possi-
ble change can be modelled by adding the stereotype « add » with the tagged val-
ues { ref = make-data-secret } and { add = « critical », { secrecy = d } } on the current di-
agram. Here, the tag { pattern = MODEL-ELEMENT } can be omitted. Indeed, the
stereotype « critical » can only be added to a class and the stereotype « substitute »
is located inside the class. It is therefore clearly indicated where « critical » should be
added.

To ensure data secrecy, the stereotype « critical » with the tagged value { secrecy = d }
is not sufficient. The link has to be encrypted. Therefore, one also has to change the
stereotype « Internet » with the stereotype « encrypted ». Again, this change can be
modelled by adding the stereotype « substitute » with the tagged values { ref = make-
link-secure }, { substitute = « encrypted » } and { pattern = « Internet » } on the link stereo-
typed « Internet ». The diagram of this example is shown in Figure 4.11.

To ensure that the link is encrypted when the data secrecy is required, we add the
following condition to the stereotype with reference make-critical:

[make-link-secure].

In this example, there are two stereotypes representing possible changes that could
occur on our model. Therefore, there are several possible transitions, each resulting
from the application of different changes modelled by the stereotypes. One could in-
deed change the model by adding the stereotype « critical » on the sender class, i.e.
apply the stereotype « add » with reference { ref = make-data-secret }. Another transi-

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 39/182

Channel

Sendercomp

S:Sender

«LAN»Sendernode

Receivercomp

R:Receiver

«LAN»Receivernode

«send»

S:Sender

sending
«Interface»

send(d:Data)

{ref = make−data−secret}
«add»

{add = {«critical»,secrecy = {d}}}

receiving
«Interface»

receive():Data

R:Receiver

receive():Data
transmit(d’:Data)

«send»

{ref = make−link−secure}
«substitute»«Internet»

{substitute = «encrypted»}
{pattern = «Internet»}

[make−link−secure]

send(d:Data)

Figure 4.11: First example of evolution

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 40/182

Channel

Sendercomp

S:Sender

«LAN»Sendernode

Receivercomp

R:Receiver

«LAN»Receivernode

S:Sender

sending
«Interface»

send(d:Data)

{secrecy = {d}}
«critical»

send(d:Data)

receiving
«Interface»

receive():Data

R:Receiver

receive():Data
transmit(d’:Data)

«send»

«encrypted»

«send»

Figure 4.12: One application of the modelled possible changes

tion could be to substitute the stereotype « Internet » with the stereotype « encrypted ».
Or finally, one could apply both changes on the model. In this case, the first transition
is not allowed. Indeed, if one simply applies the change modelled by the stereotype
« add » with reference { ref = make-data-secret }, this transition violates the constraint

[make-link-secure].

On the other hand, the second transition is correct. One could certainly decide to
encrypt the link although the secrecy of the data is not requested. Applying both
the changes, represented by the stereotypes with reference { ref = make-critical } and
{ ref = make-link-secure }, is, of course, also allowed. The model resulting from this
particular transition is shown on Figure 4.12.

Booking a flight For the second example, we use the following scenario. Bob had
booked a flight for a business trip. Because of bad weather conditions, the flight is
cancelled. In consequence, Bob decides to promptly book a new flight on his mo-
bile device. However, some changes could have happened between the cancelled

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 41/182

Book a flight «secure dependency»

pay(Real amount): Boolean
requestFlight(): Flight

Airport server

«add»
{ref = add−check−in−method}
{add = checkIn():Boolean}

«call»

Customer «critical»

Name: String

{high={pay(Real amount)}}

Figure 4.13: Class diagram for the flight booking example

flight and the moment when Bob wants to book a new one. A possible change for

the airport system would be to offer a new online check-in service. To add this func-

tionality, one needs to add a check-in method in the class diagram. To model this

possible change, we add the stereotype « add » with the tagged values { ref = add-

check-in-method } and { add = checkIn():Boolean } on the class diagram. This result is

shown in Figure 4.13. Note that we use the syntactic notation defining methods in the

tag add, so that it cannot be confused with other model elements that could also be

added or changed, such as attributes or stereotypes. Note also that the stereotype

« add » being located inside the class and the model element to add being a method,

the place where the model element should be added is implicit and therefore the tag

{ pattern = MODEL-ELEMENT } can be omitted.

This new check-in functionality also changes the workflow of booking a flight. There-

fore, it is necessary to update the activity diagram to model the possibility of using

the check-in functionality during the process of booking a flight. In this particular sit-

uation, we need to add an optional online check-in on the workflow, which means

new actions, decision nodes and activity edges. This possible change can be mod-

elled with our notation. At first, one needs to model the check-in functionality which

will give us a new activity diagram. This new activity diagram can be considered

as a sub-diagram of the main flight booking activity diagram. To model the possible

change on the main diagram, one then has to add the stereotype « add » with the

tagged values { ref = add-online-check-in } and { add = Check-in }. The value of the tag

{ add = VALUE } represents the package VALUE containing the sub-diagram to add.

In this example, the sub-diagram is contained in the package Check-in. Note that the

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 42/182

Customer
{start={Pay}} {stop={Book}}
Book a flight «fair exchange»

Airport

Request flight

Pay

Check availability

Book

«add»
ref = {add−online−check−in}
add = {Check−in}

AirportCustomer

Check−in

Check−in

no

online

Check−in

yes

[add−check−in−method]

Figure 4.14: Activity diagram for the flight booking example

stereotype « add » is associated with the activity edge linking the action Book and the
exit point of the activity diagram. This means that the sub-diagram contained in the
package Check-in will be added on this activity edge. In other words, the workflow will
go from the action Book to the entry point of the sub-diagram and then from the exit
point of the sub-diagram to the exit point of the main diagram. We can fairly assume
that the model element concerned by the stereotype « add » is clearly identified and
therefore the tag pattern is not requested. The activity diagram of this example is
shown in Figure 4.14.

Note that to have the Check-in node on the activity diagram, which means a check-in
action in the workflow, it is necessary to have a check-in method in the class diagram.
Therefore, we add the following condition to the stereotype with reference add-online-
check-in in the UML model:

[add-check-in-method].

In this example, we only have one possible transition per diagram. Figure 4.15 shows
the model resulting from the application of the changes on both diagrams. Note that
although only one change can happen per diagram, both the changes must happen
together, otherwise the constraint:

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 43/182

Customer
{start={Pay}} {stop={Book}}
Book a flight «fair exchange»

Request flight

Pay

Airport

Check availability

Book

Check−in

no

online

Check−in

yes

«secure dependency»Book a flight

Airport server

«call»

Customer «critical»

Name: String

{high={pay(Real amount)}}

requestFlight(): Flight
pay(Real amount): Boolean

checkIn():Boolean

Figure 4.15: Application of the modelled possible change

[add-check-in-method]

will be violated.

Generalisation - add-all, substitute-all In this example, we show an application of
the stereotypes « add-all » and « substitute-all ». The scenario is similar to the one of
the first example ("Simple example"): a sender sends data to a receiver. However,
here, the sender does not know the location of the receiver and therefore sends the
data to a server. The server then sends the data to the attended receiver. The server
may also provide extra services (e.g. translate the data, add additional information,
etc). In consequence, the data sent by the server may be different from the data sent
by the sender. Our system already provides integrity for the data. Nevertheless, for
security reasons, one could require the data to also remain secret. To model this
new security requirement, one thus can add a tag { secrecy = X } on each stereotype
« critical » having a tag { integrity = X }, where X is the meta-variable representing the
data. To model this possible change, instead of adding a stereotype « add » with the
related tags on each stereotype « critical », we add a stereotype « add-all » on the sub-
system with the tagged values { ref = make-data-secret }, { add-all = { secrecy = X } },
which represents the model element to add, and { pattern = { integrity = X } }, which
allows us to represent which model elements are concerned.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 44/182

As explained in the first example ("Simple example"), the stereotype « critical » with
the tag { secrecy = X } is not sufficient to ensure the data secrecy. The link has to
be encrypted. Again, we can modify all the links of the model by using the stereo-
type « substitute-all » with the tagged values { ref = make-link-secure }, { substitute-
all = « encrypted » }, { pattern = « Internet » }. For the same reason as the one in the
first example, the following constraint, attached to the stereotype with reference
{ ref = make-critical }, has to be verified:

[make-link-secure].

The diagram of this example and the result of applying the changes modelled by both
stereotypes are shown respectively in Figure 4.16 and Figure 4.17.

Selection of links - substitute-all This example aims to show that the selection of
the model elements on which the changes should apply can be define precisely. To
show this, we give the following scenario. A client can exchange data with a server
and another client can exchange secret data with a secured server. Both server can
also communicate to exchange data. On our actual model, the links are stereotyped
« Internet » and therefore do not provide any secrecy of the data. To make the system
secure, one has to encrypt the link. This can be done by changing the stereotype
« Internet » with the stereotype « encrypted » on the link between the secured server
and the client and on the link between the servers. However, the link between the
client and the normal (i.e. not secure) server does not need to be encrypted. This
change can be modelled with our notation by adding a stereotype « substitute-all »
with the relevant tagged values. We add the tagged values { ref = make-link-secure }
and { substitute-all = « encrypted » } and for the condition of the tag pattern, we use the
abstract syntax of deployment diagrams defined in [Jür05a]. Therefore, to express
precisely which links should be affected by the changes, we have:

{ pattern = {l1 = (nds(l1), ster(l1)), l2 = (nds(l2), ster(l2))} }

where:

nds(l1) = (SClientnode, SServernode),
nds(l2) = (Servernode, SServernode)
and ster(l1) = ster(l2) = {« Internet »}.

The diagram of this example is shown in Figure 4.18 and the transition resulting from
applying the changes is shown in Figure 4.19.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 45/182

Channel «substitute−all»
{ref = make−link−secure}
{substitute−all = «encrypted»}
{pattern = «Internet»}

«add−all»
{ref = make−data−secret}
{add−all = {secrecy = X}}
{pattern = {integrity = X}}
[make−link−secure]

sending
«Interface»

send(d:Data)

receiving
«Interface»

receive():Data

R:Receiver

send(d:Data)

S:Sender
{integrity = {d}}

receive():Data

X:Server
{integrity = {d’}}

transmit(d’:Data)

«critical»

«critical»

«send» «send»

Sendercomp

S:Sender

«LAN»Sendernode

R:Receiver

Receivercomp

«LAN»Receivernode

X:Server

Servercomp

«LAN»Servernode

«Internet»

«Internet»

«send»

«send»

Figure 4.16: Example of use of add-all and substitute-all

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 46/182

Channel

Sendercomp

S:Sender

«LAN»Sendernode

R:Receiver

Receivercomp

«LAN»Receivernode

X:Server

Servercomp

«LAN»Servernode

«encrypted»

«encrypted»

«send»

«send»

sending
«Interface»

send(d:Data)

receiving
«Interface»

receive():Data

S:Sender «critical»

send(d:Data)

{integrity = {d}}

X:Server
{integrity = {d’}}

«critical»

transmit(d’:Data)

{secrecy = {d’}}

{secrecy = {d}}

R:Receiver

receive():Data

«send»«send»

Figure 4.17: Application of the changes

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 47/182

Channel

l2
l1

nds() = (Servernode, SServernode)
and

where
nds() = (SClientnode, SServernode),

l1ster() = ster() = {«Internet»}

SServercomp

«LAN»SServernode

Clientcomp

C:Client

«LAN»Clientnode

S:Server

Servercomp

«LAN»Servernode

SS:SServer

SClientcomp

«LAN»SClientnode

SC:SClient

«Internet»

«Internet»

«send»

«send»

«send»

«send»

«send»«send» «Internet»

«substitute−all»
{ref = make−link−secure}
{substitute−all = «encrypted»}

= (nds(),ster()),l1

l2

l1 l1 = (nds(),ster())l2l2l2{pattern = { }}

Figure 4.18: Selection of the links for the substitute-all

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 48/182

SServercomp

«LAN»SServernode

Clientcomp

C:Client

«LAN»Clientnode

S:Server

Servercomp

«LAN»Servernode

SS:SServer

SClientcomp

«LAN»SClientnode

SC:SClient

«Internet»

«send»

«send»

«send»

«send»

«send»«send» «encrypted»

«encrypted»

Channel

Figure 4.19: Selection of the links for the substitute-all

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 49/182

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 50/182

!

5 Background: Global Platform

We describe in the following the background for the smart cards use case used in the
project. Note that with respect to the modelling only some specific aspects should be
modelled, in particular to be able to represent the changes and their impact vs the
properties. For example, the security modelling notation must allow at least the
modelling of an aspect of the use case (control, data, etc) and the modelling of the
changes. Then a security property must be ensured before and after the changes, for
example see Section 5.4.1 property 5 .

That means that the modelling notation developed in this Work Package 4 will be used
by the Work Package WP6 for verification and Work Package 7 for testing, that are the
two means used in Gemalto to assess security changes.

5.1 Introduction

The POPS use case involves a smart card (an UICC card) intended to be plugged in a
mobile phone or other mobile devices to provide services to an end user (card holder).
We will consider a multi-application and a cross-sector card because this USIM card
will be used for mobile payment.

This smart portable object is composed of:

• An embedded Integrated Circuit (IC),

• An embedded Operating System (OS) which provides classical OS features
(memory access, etc.) using OS functionalities,

• A Java Card System (JCS) according to [Inc03a], built on top of the OS which
manages and executes applications called applets. It also provides APIs to
develop applets on top of it, in accordance with Java Card specifications.

• A GlobalPlatform (GP) including the application loader and the APIs, which
provides a common and widely used interface to communicate in a secure way
with the external world, in accordance with [GPS06] specifications. This
environment is primarily used to manage the contents of the card.

• (U)SIM APIs, which provide a means to specifically interact with (U)SIM
applications, according to [ETSI-TS131.130] specifications.

The architecture of this object is presented in Figure5.1. For the purpose of the project,
we will focus on the GP and JCS part of this architecture. We assume that in post
issuance, the card is managed over the air (OTA) e.g., using SMS.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 51/182

!

Hardware (IC)

OS

(C
a
rd

 M
a
n
a
g
er)

G
P
(O

P
E
N

) JVM + APIs

UICC

SWP
HTTP over BIP/TCP

(SCWS)

BIP SCWS OTA

!"#$%&'()*+,

USIM
APP EMV App

Epurse
AP V1

Jticket

Hardware (IC)

OS

(C
a
rd

 M
a
n
a
g
er)

G
P
(O

P
E
N

) JVM + APIs

UICC

SWP
HTTP over BIP/TCP

(SCWS)

BIP SCWS OTA

!"#$%&'()*+,

USIM
APP EMV App

Epurse
AP V1
Epurse
AP V1

JticketJticket

Figure 5.1: Architecture of POPS

5.1.1 Java Card System

The Java Card System is defined by a runtime environment (JCRE) specified in
[Inc03b], that includes:

• A virtual machine (JCVM) specified in [Inc03c]: the JCVM is responsible for
interpreting the byte-codes of the applets.

• A set of APIs specified in [Inc03a]: that provides commonly used services to the
applets. Some support services for managing securely and efficiently the
applets.

In contrast to a normal Java runtime environment, the JCRE is always in a running
state on the card.

Java Card Firewall Since smart cards are mainly used in fields where security is very
much an issue, a special security concept was designed for Java Card. This additional
security is ensured in smart cards via a context firewall system. The basic concept is
that only one applet can be selected at one time. Each applet belongs to a specific
context. One or more applets may belong to the same context. In current Java Card
technology, all applets sharing the same package are in the same context (package
context). Only the objects belonging to the context of the selected applet can be
accessed. Whenever an applet is deselected and an applet belonging to another
context is selected, the context is also deselected and the other context becomes
active (selected). The JCRE ensures that references to objects do not cross over
context borders. The only objects that may be referenced over a context border are
special objects owned by the JCRE (JCRE Entry Point Objects and global arrays). For
example, these are instances of exceptions that the applet might want to return.
Consequently, applets in a context run in isolation to those in another context and to
the JCRE, and they only have access to objects and methods within this context.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 52/182

!

Shareable interfaces Sometimes, it is necessary to communicate between appets (i.e.
getting through the firewall). In Java Card, the interactions between two applets are
done using the shareable interfaces. The server applet (which provides some services)
defines a shareable interface including these services. The client applet connects to
the interface to get the services. The JCRE ensures that only the services defined in
the interface are available to the client. The server applet may also implement an
access control on the client applets asking for its services. This ensures that only the
allowed clients can use its services. The access control is mainly based on the
identifier of the applets (AID – Applet identifier).

5.1.2 GlobalPlatform

The Global Platform [GPS06] consists in:

• A runtime Environment, running on top of the Java Card runtime environment,
responsible for providing a secure storage and execution space for applications
to ensure that each application's code and data can remain separate and
secure from other applications on the card. Fixed memory addresses can be
allocated to each application on the card, preventing each of them from
accessing the memory space assigned to another application.

• Global Platform API. While the Runtime Environment provides generic
services needed by a basic smart card application, the Global Platform
environment, being primarily the Card Manager, provides additional services
relating to card and application management and a mechanism for securing
communication between a card and an off-card entity.

• The Card Manager. The Card Manager represents the Issuer’s interest on the
card by preventing unauthorized use of the card. The Card Manager is what
enables the Card Issuer to maintain ultimate control of the card and its
contents. The Card Manager supports the following four functions; Command
Dispatch, Content Management, Security Management and Security Domain.

• Card Content Management. The applications and data on the card represent
the differentiated and customisable services that can be offered to cardholders.
There will be one or more applications on the card, and each of these
applications will need to connect with a terminal, containing the complementary
terminal component of the application before it can be used. These applications
and data can be loaded or removed during Pre-issuance and Post-Issuance
(e.g. a load file is a CAP file for Java Card™).

• Security Domains. In addition to the Issuer Security Domain, separate Security
Domains can be established on the card to protect application providers or
groups of applications. Security Domains enable the applications of various
providers to share space on a card without compromising the security of any
particular provider or application. Security Domains also allow the application
owner to control its applications without the Issuer having to share its keys with
the provider. The use of Security Domains is ideal when the Issuer is dealing
with a trusted provider who is capable of maintaining its own applications. This
prevents the Issuer from incurring the administrative overhead associated with

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 53/182

!

monitoring and controlling applications, which are not part of its core business.
Multiple Security Domains can coexist on the card.

Using the extradition operations, the Security Domains may be structured in
one or several hierarchies in the card. In a hierarchy, an Security Domain may
use the services provided by the Security Domain that is extradited to it.

5.1.2.1 GlobalPlatform API

The Java card Runtime API provides the basic services of a smart card application.
The Global Platform environment provides another layer of service. These services are
accessed through a separate Global Platform API that handles such things as secure
off-card communication, card or applet lockdown during security threats, and enables
secure applet personalization such as key loading. The Global Platform API interacts
between the applications and the Card Manager or the Security Domains. It is
important to know that the Global Platform API acts as the link to the services offered
by Card Manager and security domains, while the Runtime API acts as a link to the
services offered by the underlying operating system.

The Global Platform API provides another level of interoperability for application
developers. The application providers can create a single version of the application that
works through the Global Platform API to leverage the unique services of the Card
Manager and Security Domains. This avoids costly application development costs
across multiple Issuer systems.

Secure Channel protocol : Global Platform API provides a secure service for
communication with the devices or server through Secure Channel Protocol. The
secure communication through the Global Platform API is available for use by the
applications through services supported by the Card Manager and the Security
Domains. The services are authentication, confidentiality, and integrity of the
messages. This secure communication is critical to off-card communication with
devices. The Global Platform API provides the method for this secure communication
by opening the channel and securing messages exchanged between the on-card
application and the off-card application of the device/server. Depending on the security
needs of the business model, different Secure Chanel Protocols are available. The
Secure Channel Protocol SCP01 and SCP02 offer secure communication based on
symmetric keys while SCP10 uses the assymmetric keys.

Global Platform Personalization Support : The Global Platform API provides
services for personalization on the card. This is another service available to the
applications. The Global Platform API provides the services to accomplish this task
using standardized tools that application providers can tap into during the development
of their particular application.

Global Platform Card Global Services : The Global Platform API provides
mechanisms that allow applications to offer on-card services to other applications. An
application who decides to propose a Global Service can register this service. .A
second application can requests this service without having to know who is actually
providing the service. The client applet uses an authentication method defined by the
server applet. This authentication method restricts access to the service and manages
a trusted list of services. An example of this method is the Java Card shareable
interfaces.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 54/182

!

Cardholder Verification Methods: Another use of the Global Platform Global
Services is to manage access to the cardholder verification methods (CVM) present on
the card. For example, a cardholder may have a PIN or password that is held on the
card in a CVM space. Global Platform API provides applications access to this
cardholder verification service. This allows the applications to verify the cardholder’s
authenticity through a centralized, shared space. Cardholders can then change their
PIN access once and have all applications on the card use the same revised access
code. Although applications need not use the underlying Global Platform functionality
in order to be fully functional on a Global Platform card, there are many significant
advantages to be achieved when an application does use this functionality.

Using a Global Platform Secure Channel (e.g. during personalization) allows an
application to minimize its own code size by leveraging the card’s platform security
mechanisms and minimizes the impact on systems using the standardized secure
communication protocols.

Using the Global Platform Life Cycle State management gives an application the
advantage of making its Life Cycle State available to off-card management systems in
a standardized manner through Issuer Security Domain commands. It also provides
useful functionality for supporting application specific risk management policies and
implementing associated enforcement mechanisms.

Using the Global Platform CVM (a.k.a Global PIN) in applications that employ a user
PIN can simplify the application itself, and can increase card usability by having a
common PIN for multiple applications.

5.1.3 UICC configuration

The UICC configuration is a specific configuration of GP that is dedicated to USIM
cards [GPS08]. These cards implement ETSI-related specifications. The UICC
configuration requires an issuer security domain (ISD), AP (application provider)
security domains, and optionally a trusted CA (controlling authority) security domain.

Figure 5.2 describes the privileges of the security domains in the UICC configuration.
This means for example that the AP security domain have at least the trusted path
privilege while the CA has at least the global service privilege.

The UICC configuration requires that the ISD supports the SCP80 secure channel
protocol specified in [ETSI-TS-102.225]. It is also required that in any Security Domain
hierarchy, there is at least one “Authorized Management” security domain. Moreover,
there is not more than one “Authorized Management” security domain in each path
from the root to the leaves.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 55/182

!

Figure 5.2: Privileges in the UICC configuration

5.1.4 Card life cycle

 The main actors are:

• The IC manufacturer who is responsible for designing and manufacturing the IC

• The smart card manufacturer who is responsible for designing the OS, JCS, GP
and for manufacturing the card

• The application providers who are responsible for developing the applications

• The card issuer who is the owner of the card

• The verification authority who is responsible for verifying the applications before
allowing them to be loaded.

The card has the following phases:

Pre- issuance: The IC is developed and manufactured by the IC manufacturer in
parallel with the smart card software (OS+JC+GP) by the card manufacturer. Then in a
production and personalization phase, the software is “embedded”, the JC and GP
environment are installed and initialized on the card. It is a pre-personalization
phase. In a personalization phase, the card being compliant to GP and JC, the
application can be installed and initialized. and the whole is personalized by the card
manufacturer.

Post-issuance: The normal usage of the card when it is in the hand of the final user.

The specificities of the “open” card implies that software (applications) could be
“loaded” on the card that is already on the field. This loading is done contactless over
the air (OTA) or with a reader over the Internet (OTI).

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 56/182

!

5.1.5 Application development life cycle

A Java Card application is developed and compiled on a host using a
standard compiler. Those standard Java class files are then converted into a Java
Card Converted Applet file (CAP File). Export files representing the imported tokens
are input for the converter too. The converter resolves in fact external references and
adapts bytecode accordingly; An off-card byte-code verifier may be used to statically
check the CAP Files. After thorough testing on a software-simulation environment,
such as the JCWDE environment, and a hardware emulation (optional), the CAP File
can be loaded by a loader and installed on the card. The installation could be
performed within a secure environment, in a pre-issuance phase or in a post issuance
for open cards. The life-cycle of an application is described in Figure 5.3.

.java

files

.class

filesjavac

.cap

fileconverter

.cap

fileBytecode
Verifier

download

hardware

Card

manager
API

...

OS and native methods

linker interpreter

APDU command

APDU responseAPDU response

Applet 1 Applet n

JCVM

Figure 5.3: Application life-cycle

5.2 The scenario

In this section, we describe a scenario of using an UICC card that includes the
development of applications, their loading on the card and contents management using
the global platform commands, their execution and some changes on the card.

An overview of the scenario is given in Figure 5.4. A mobile network operator,
proposes a SIM card to its customers that will also be used for payment as a
contactless credit/debit card and for mass-transport as a contactless ticket card.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 57/182

!

Figure 5.4: Overview of the scenario

5.2.1 Actors

The scenario involves several off-card actors that will be represented by on-card
entities:

• The mobile operator is the card issuer (He bought the card from the card
manufacturer)

• A bank that develops and provides some banking applications

• A transport operator that develops and provides some transport applications

5.2.2 Samples of applications

The application involved in the scenario are from different markets, banking and
transport field. Those applications will be the on-card representative of the actors and
of the services they provide.

• An e-ticketing application (JTicket) that will be used as a set of tickets :

• Each access decrement the counter (N :number of tickets) by 1

• When the counter is 0, the access is denied (JTicket needs to be
refilled)

• Jticket refill :

! Use the epurse to buy tickets

! Two cases :

• Transaction accepted : N is reinitialized

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 58/182

!

• Transaction refused : the requested amount is higher
than JTicket_limit (the limit amount that epurse grants to
JTicket)

• EMV: a classical credit-debit application

• E-purse (an electronic purse): for any e-purse transaction, the purchasing
amount must be lower than a pre-defined limit (epurse_limit)

5.2.3 Flow

We describe here the main steps to load the application on the card, illustrating the use
of GP commands (blue typesetting in the figures).

First in the pre-personalisation phase that is proprietary because the GP is not yer
available on the card:

• we create the issuer security domain, ISD

• we initialize the issuer security domain by loading its keys

Then in the personalization phase that follows the GP specification

• we create the bank security domain (SD_Bank): see Figure 5.5

• we personalize the keys of the bank: see Figure 5.6

• we load the EMV application, that has been provided by the bank to the issuer,
into the SD_Bank: see Figure 5.7

Figure 5.5: Create a new security domain

!

Host Card

SELECT ()

OK

INSTALL (INSTALL,SDS_aid,SD_aid,{SD_Privilege})

OK

ISD becomes the
active application

- various checks

- create a new SD by
calling install()
method of
Security_Domain_Ap
plet

- update the OPEN
registry

-set the state of the
new SD to
SELECTABLE

open_secure_channel (ISD_keyset#,2)
… …

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 59/182

!

Figure 5.6: Personalize a security domain

Figure 5.7: Load a new application (application_aid)

!
The process open_secure_channel(keyset#,security_level) opens a
secure channel between the card and an external entity using a specific keyset and
providing a specific security level (integrity, integrity and confidentiality, or none).
Figure 5.8 shows how it is done in SCP02 using the GP commands.

Host Card
SELECT ()

OK

INSTALL (LOAD,file_aid,isd_aid)
OK

ISD becomes the
active application

open_secure_channel (ISD_keyset#,2)
… …

•check file_aid is
not already used

•register file_aid
LOAD (MORE_BLOCKS,0,block_0)

OK
•check block
number

•perform the
loading of the block

… … …

get
block_0

LOAD (LAST_BLOCK,n,block_n)

OK

•check block number

•perform the loading

•check .cap file integrity

•finalize linking

get
block_n

INSTALL (INSTALL && MAKE_SELECTABLE,

file_aid,module_aid, application_aid, privileges)

OK

•various checks

•register appli_aid

•call install() method of
the applet

•set application state to
SELECTABLE

Host Card

SELECT (SD_aid)

OK

PUTKEY (format_1,new_keyset#,keyset_data)

OK

SD_aid becomes
the active
application

•encrypt the key
value

•put keyset data in
PUTKEY format_1
structure (used for
symmetric key)

-various checks (see GP
spec)

-add the new key set

-set the state of the new
SD to PERSONALIZED

open_secure_channel (ISD_keyset#,3)
… …

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 60/182

!

Figure 5.8: Open a secure channel following SCP02

5.2.4 Implementation details

The EMV, Jticket and e-purse applications are implemented as Java Card applets.
Each of them has an unique identifier (AID).

The security domains are implemented by a proprietary applet.

• each security domain is an instance of this applet (created with “SD_Privilege”)

• each security domain has a unique identifier (AID)

5.3 Changes and Evolution

We focus on the changes during the usage phase of the UICC card, because in the
other phases, the changes are managed in a secure environment (in card
manufacturer or card issuer highly-protected sites). In order to illustrate the security
properties, two categories are considered: administrative and usage changes.

5.3.1 Administrative changes

• The first administrative change is the creation of the security domain
associated to the transport operator (SD_transport). This step is necessary
in order to download the ticketing application (JTicket). Then, JTicket is
loaded into SD_transport.

• The bank offers an e-purse service: the e-purse application is loaded into
SD_bank

5.3.2 Application data changes

The changes on the application data includes:

Host Card

INITIALIZE_UPDATE (keyset#,host_random)

OK (card_random, card_cryptogram)

EXTERNAL_AUTHENTICATE (security_level,host_cryptogram)

OK

•generate
card_random

•compute
(sk_mac,sk_enc)

•compute
card_cryptogram

•compute
(sk_mac,sk_enc)

•check
card_cryptogram

•compute
host_cryptogram
 •check

host_cryptogram

•switch to the required
security level using
(sk_mac,sk_enc)

Generate
host_random

switch to the
required security
level using
(sk_mac,sk_enc)

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 61/182

!

• Change of Jticket_limit

• Change of epurse_limit

5.3.3 Security policy changes

The change of the policy will be illustrated by allowing the refill of the epurse using
EMV.

5.4 Requirements

5.4.1 GP requirements

1. All entities on the card must be uniquely identified.

2. The loading of applications in post issuance must respect the policy of the card.

3. The application installation must be safe, e.g. to ensure that all external
references of the application are valid.

4. The application deletion must be secure, i.e., it shall not leak previous
information to the new application to be allocated in the same memory space.

5. Card content management must be done by authorized actors and ensure:

• The consistency of card and application life-cycle

• The enforcement of the card issuer policy

5.4.2 Application development requirements

1. All the applications loaded on the card must follow the guidelines to develop
secure Java Card applications

2. All the applications must be bytecode verified (off-card or on-card). If the
verification is done off-card then:

• the adequacy between the export files used in the verification and those
used for installing the verified file must be ensured

• no modification of the file is performed between the verification and the
signing operation (by the verification authority)

5.4.3 Change-related requirements

1. If an actor is added on the card, the corresponding security domain must not be
able to access the applications from other security domain.

2. If an actor is added on the card, the consistency of the existing security policy
must be preserved, e.g. the privileges policy.

3. Adding an application or updating an application must not generate

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 62/182

!

• Illegal interaction with existing applications

• illegal modification of GP system data (e.g. card or application’s life-
cycles, privileges, AID)

• illegal modification or leak of GP user data (e.g. ISD/SD keys, global
PIN)

4. Updating an application code or data must preserve its consistency/correctness
(with respect to its specification).

5.4.4 UICC specific requirements

1. The security domain keys of the application providers are generated and stored
in a secure way.

2. The transmission of keys to the application provider must be trusted and
performed in a secure way.

3. Isolation between the security domain hierarchies: a security domain or
application in a hierarchy is not allowed to access to the data/services of the
other hierarchies.

4. Isolation between branches (a branch is a path from the root to a leaf) in a
hierarchy: the data and services of a security domain are only accessible to the
security domains and applications that are under it in the hierarchy.

!

6 Smartcard specific extensions of UMLseCh

6.1 UMLseCh stereotypes for Smartcards

This section attempts to employ the foundations (i.e. abstract and concrete modelling

concepts) for expressing change in smartcard-type platforms. We follow the Glob-

alPlatform specification to identify the relevant security properties and behaviour for

smartcards [GPS06]. We start with identifying the security goals. The aim of this

exercise is to define the security constraints that must be analysed for fulfilment to

attain the security goals. These goals not only support rationale about identifying

security requirement but also support security analysis in particular to perform risk

assessment when new change arise [Isl09]. Furthermore tracing of the initial system

objective throughout the system evolution can also be facilitated by the goals. We

identify UMLsec stereotypes to support these requirements so that system design

can support the requirements [Jür05a].

The primary security objective (goal) of a Smartcard is to ensure the security and

integrity of the card’s components throughout the life cycle of the card. Of particular

importance are the following components: The runtime environment; Security Do-

mains; and all general smart-card and security domain associated Applications and

Application Data. The security measures identified to fulfil this goal are the following:

Data integrity, Resource availability, Confidentiality, Identification, Authentication and

Authorization Control. For the Runtime Environment this implies a number of security

requirements:

• Security Requirements RE1: The Runtime Environment shall provide a secure

interface to all Applications of the smart-card, including general card applica-

tions and its associated application data, Security Domains and its associated

applications and application data.

• Security Requirements RE2: The Runtime Environment Secure Interface shall

protect the runtime environment security mechanisms from be bypassed, deac-

tivated, corrupted or otherwise circumvented.

To address these two security requirements (RE1 and RE2) we need to define a new

UMLseCh stereotype. The syntax of this new stereotype is: « secure interface », asso-

ciated to the UML base class interface or link end-points. Semantically, this stereotype

specifies that the security mechanisms of the associated entity cannot be bypassed,

deactivated, corrupted or otherwise circumvented. The entity having «secure inter-

face» associated to it must adhere to the semantic meaning of the stereotype and

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 63/182

this must be verified as being fulfilled by the design solution and implementation. Se-
cure Change will develop security analysis methodology and verification tools for such
analysis.

• Security Requirements RE3: The Runtime Environment shall provide secure
memory management, where secure memory management is defined as con-
sisting of:

– All application code and data (including transient session data), the run-
time environment itself and its associated data (including transient session
data) shall be protected from unauthorised access from on-card compo-
nents;

– In cases where more than one logical channel is supported by a smart-
card, all concurrently selected Application code and data (including tran-
sient session data) and the runtime environment itself and its associated
data (including transient session data) shall be protected from unautho-
rised access from on-card components;

– All previous contents of the memory shall not be accessible when the mem-
ory is reused;

– The memory recovery process shall be secure and consistent in case of
a loss of power or withdrawal of the card from the card reader while an
operation is in progress.

For this security requirement (RE3) we also need to define a new UMLseCh stereo-
type. The syntax of the new stereotype is: « secure runtime env ». The base class
of this stereotype is sub-system, node and components and the stereotype can be
used in deployment diagrams to specify the sub-system of the runtime environment.
Semantically this stereotype defines the sub-system and its contained nodes and
components involved in secure memory management, as specified above. The asso-
ciated constraint are: « memory management ». The memory management constraint
is used to specify how memory should be managed. The semantics of this constraint
is specified by RE3.

• Security Requirements RE4: The Runtime Environment shall provide communi-
cation services with off-card entities that ensures that data and command trans-
mission are according to the specific communication protocol rules.

• Security Requirements RE5: All communication between the Runtime Environ-
ment and off-card entities shall be protected from unauthorized disclosure.

• Security Requirements RE6: All communication between the Runtime Environ-
ment and off-card entities shall be protected from unauthorized modification.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 64/182

The security requirements RE4, RE5 and RE6 are addressed by the existing UMLseCh
stereotypes « secure links », « secrecy » and « integrity ».

6.2 Modelling change in Smartcards

As stated, UMLseCh stereotypes are employed to model change within the secure
design diagrams. Therefore we investigated the detailed about the existence stereo-
types to support both architectural and detailed design of the smart card system. This
is because initially our focus is to use the existing stereotypes to enforce security in
design in particular integrity due to any change during the system life cycle. How-
ever, note that all changes can not be supported by the existing stereotypes. Change
may arise from functional or security perspective and classified through change to
application data, change to application, change to platform data, change to platform
code and change to hardware and software interfaces. Therefore any type of change
may arise at any time and adequate security analysis is required before supporting
the change. Several existent stereotypes such as: « fair exchange », « smart card »,
« authenticity », « integrity », « secrecy » and « secure links » are already proven to be
relevant for the smart card system by based on the GP specification. To support the
change we prefer to follow the below given strategy:

• Initial consideration would be whether existing model element such as stereo-
types, tags and constraints support the relevant change. If yes then we retain
the detailed of the stereotype.

• Otherwise, we try to identify the minimum permissible change through the tags
and constraints of the stereotype through adding new tags or constraints, mod-
ifying the existence tag values to support the change.

• Otherwise, new stereotype would be introduced along with tags and constraints
to support the change.

We propose to introduce new stereotypes along with tags values and constraints by
investigating the specification to enhance the stereotype repository of UMLseCh as
well as to support the smart card system. These stereotypes if require include the el-
ements of the meta model for change. E.g. associate tag value of version=<version_
number> {dependencies=<yes/no>}. This facilitates to perform proper security anal-
ysis on any part of the system before approving the change. Figure 6.1 outlines the
new defined stereotypes, together with their tags and constraints to support any future
change of the system environment.

Detailed about the tags values within the stereotype are also given in Figure 6.2. The
concept describes for the tag is instance level. Therefore the stereotypes along with

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 65/182

S
te

re
o

ty
p

e
B

a
s
e

C
la

s
s

A
s
s
o

c
ia

te

s
te

re
o

ty
p

e

T
a

g
s

C
o

n
s
tr

a
in

ts
D

e
s
c
ri

p
ti
o

n

s
e

c
u

re

ru
n

ti
m

e

e
n
v
.

s
u

b
s
y
s
te

m
,

n
o

d
e

«
in

te
g
ri

ty
»

,

«
a

u
th

e
n

ti
c
it
y

»

d
a

ta
,

c
o

d
e
,

v
e

rs
io

n
_

n
u

m
b

e
r,

d
e

p
e

n
d

e
n

c
ie

s

S
e

p
a

ra
te

s
to

ra
g

e
fo

r

d
a

ta
,

c
o

d
e

a
n

d
s
e

c
u

re

m
e

m
o

ry
d

e
a

ll
o

c
a

ti
o

n

T
o

e
n

s
u

re
p

ro
p

e
r

m
e

m
o

ry
a

ll
o

c
a

ti
o

n

a
n

d
d

e
a

ll
o

c
a

ti
o

n
b
y

th
e

ru
n

ti
m

e
e

n
v
i-

ro
n

m
e

n
t

s
e

c
u

re
in

-

te
rf

a
c
e

n
o

d
e
,

li
n

k
«

in
te

g
ri

ty
»

,

«
a

u
th

e
n

ti
c
it
y

»

d
a

ta
,

v
e

rs
io

n
_

n
u

m
b

e
r,

d
e

p
e

n
d

e
n

c
ie

s

S
e

c
u

ri
ty

m
e

c
h

a
n

is
m

c
a

n
n

o
t

b
y
p

a
s
s
e

d
d

e
-

a
c
ti
v
a

te
d

c
o

rr
u

p
te

d

c
ir
c
u

m
v
e

n
te

d

T
o

e
n

s
u

re
p

ro
p

e
r

im
p

le
m

e
n

ta
ti
o

n
o

f

s
e

c
u

ri
ty

m
e

c
h

a
n

is
m

w
it
h

in
th

e
a

s
s
o

-

c
ia

te
d

e
n

ti
ty

le
g

it
im

a
te

p
ro

c
e

s
s

s
u

b
s
y
s
te

m
,

n
o

d
e

«
p

ro
v
a

b
le

»
,

«
in

te
g
ri

ty
»

,

«
a

u
th

e
n

ti
c
it
y

»
,

«
s
e

c
u

re

li
n

k
s

»
,

«
a

d
v
e

rs
a

ry
»

a
c
ti
o

n
,

ri
g

h
t,

re
s
s
o

u
rc

e
s
,

v
e

rs
io

n
_

n
u

m
b

e
r,

d
e

p
e

n
d

e
n

c
ie

s

O
n

ly
p

e
rm

it
te

d
le

g
a

l
a

c
-

ti
v
it
ie

s

T
o

e
n

s
u

re
le

g
it
im

a
te

p
ro

c
e

s
s
in

g
b
y

th
e

u
s
e

r
a

p
p

li
c
a

ti
o

n
p

ro
v
id

e
r

a
s

p
e

r

th
e

s
p

e
c
ifi

c
a

ti
o

n
a

s
w

e
ll

a
s

in
tr

o
d

u
c
-

in
g

a
n
y

n
e
w

p
o

li
c
ie

s
a

n
d

re
g

u
la

ti
o

n
s

d
a

ta
fi
lt
e

r
n

o
d

e
,

li
n

k
«

g
u

a
rd

e
d

»
a

c
ti
o

n
,

re
s
s
o

u
rc

e
s
,

a
d

v
e

rs
a

ry

M
o

n
it
o

r
d

a
ta

a
n

d
fi
lt
e

r
(i
f

re
q

u
ir
e

d
)

T
o

e
n

s
u

re
a
v
a

il
a

b
il
it
y

o
f

d
a

ta
a

n
d

c
o

d
e

d
u

ri
n

g
th

e
li
fe

c
y
c
le

o
f

s
y
s
te

m

c
o

m
p

o
n

e
n

ts

F
ig

u
re

6
.1

:
U

M
L

s
e

C
h

s
te

re
o

ty
p

e
s

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 66/182

Tag Associate stereotype Type Description
data « secure runtime env. » variable specific information

about
« secure interface » the memory by the ap-

plication
code « secure runtime env. » variable specific information

about
the memory allocation
by the application code

version_number all possible stereotypes state version state by number
that handle change due to any change

dependencies all possible stereotype boolean dependencies due to
change

that handle change by a specific stereotype
in system

action « legitimate process » value possible actions sup-
ported

« data filter » by node
right « legitimate process » value right to perform the ac-

tion
« data filter »

resource « legitimate process » value resource require to per-
form

« data filter » the action

Figure 6.2: UMLsec tags

associate tags and constraints assume to support any change mainly from security
perspective of the system.

A summary of the UMLseCh metamodel for smart-cards can be found in Figure 6.3.

Example: smart card Now we want to use this notation to design a smart card sys-
tem based on the GlobalPlatform specification. We design the physical architecture of
the components through deployment diagram and architectural design of the compo-
nents through state chart, activity and class diagram. Details of the design diagrams
based on the GlobalPlatform specification can be found in Section 7.1.

6.3 Semantics of the Smart-cards stereotypes

The newly defined stereotypes for smart-card is now elaborated to provide common
understanding how they can be used to ensure security under GP environment. Note

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 67/182

Figure 6.3: UMLseCh metamodel for the smart-card notation

that as we follow the GlobalPlatform specification to defined these stereotypes there-
fore we assume the stereotypes compliance with the requirements from the specifi-
cation. The main purpose of these stereotypes is to ensure security in the Runtime
Environment. The stereotype « secure runtime env. » mainly concerns with memory
management and « secure interface » concerns with the security mechanism sup-
ported under the Runtime Environment. Both of them link associate with the existence
« integrity » and « authenticity » stereotypes.This is because whenever participants
under the platform access to the memory for any purpose then their authentication is
required as well as any modification by the participant shall preserve integrity. For in-
stance there is an authentication mechanism for the users under the Global platform.
We assume it as an instance of the « secure interface ». When user under the partic-
ipating entities attempt to log in then by any means authentication mechanism must
not by pass, deactivated, corrupted, and circumvented. It preserve the « authenticity »
of the system. Thus model should allow the preservation of authentication mechanism
for node or established communication link. This way all existing security mechanism
should preserve its goal by employing the « secure interface » stereotype.

The stereotype « legitimate process » is rather high level and more concerns with
the relevant legislation that should compliance within the system environment. For
instance, implementing of smart-card within the Federal Republic of Germany must
compliance with the German Federal Data Protection Act (FDPA).Therefore business
partners under the GlobalPlatform offer smart-card based service to the customers
within Germany must preserve privacy of the customer data. This stereotype is appli-
cable within this context to integrate legal constraints into the system design. Several
existent UMLseCh stereotypes are also related with « legitimate process » such as

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 68/182

« integrity »,« authenticity », « provable », and « secure links ». It allows the permis-
sible actions from the relevant legislation for the system environment. For instance,
consider according the Federal Data Protection Act, data can not distribute to any third
party with out data owner consent. Therefore application provider who is responsible
to store customer private data must now distributed it to another party even though the
party is under Global Platform. Thus permissible action through data owner consent
is an instance under the right of the « legitimate process » stereotype.Note that the
stereotype also includes possible right and obligation from the related security and
privacy policies of the system.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 69/182

7 Applying UMLseCh to the Global Platform
Specification

7.1 Introduction

This section applies UMLseCh as part of model based security engineering for secure

design of the GlobalPlatform architecture. We follow the GlobalPlatform specification

to understand the basic concept of the system architecture. In particular, we exam-

ined the specification document for the system, card, and security architecture and

the life cycle models. Several components under the GlobalPlatform card architecture

such as security domain, runtime environment, trusted framework, GlobalPlatform en-

vironment, GlobalPlatform API, and card content management and security goals and

requirements are analyzed to model node, functions, subsystem through UMLseCh

deployment,activity, and class diagram. The life cycle of the card is modeled through

UMLseCh state chart diagram. Furthermore,we try to model the change through the

diagrams along with the stereotypes and tags. Therefore, it facilitates different view

of the system through several level of abstraction and able to capture and trace any

relevant change of the System model. Main focus lies to trade-off between permissi-

ble changes with minimum cost-effective security analysis so that existence security

property would not be destroyed due to the change. The deployment diagram and

class diagram is constructed based on the abstract specification from the global plat-

form. UMLseCh provides concrete detail specification of the system. Therefore we

start from the abstract level and continue to the detail architecture from the security

requirements. Thus the scope of this section is based on the input from the Glob-

alPlatform specification. Note that well-designed security architecture is crucial to

protecting the structure and functions of the card with the Global Platform system.

UMLseCh attempt to serve this purpose and our contribution is within this context.

Main participants of the GP platform within any business environment are as follows:

• The card issuer/ mobile network operator (MOB)

• The application provider/ business partners of card issuer/transport

• The controlling authority

• The cardholder

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 70/182

7.2 Goal-driven security risk management model (GSRM)

We employ the goal-driven modelling approach to perform the security risk manage-
ment activities for the GlobalPlatform. The model initially identifies the goals from
the system components that require attaining to satisfy the security properties of the
system and then system vulnerabilities and threats that directly or indirectly obstruct
these goals. These risks are then analysed to identify its consequence within the
system under environment. And finally mitigation actions identify and suitable one se-
lects to countermeasure the risks in order to attain the goals. GSRM focuses on holis-
tic view to perform risk management for the GlobalPlatform components considering
both technical and non-technical perspective. This is because only the system tech-
nical issues can not ensure total security of the overall infrastructure. Security require
supports from the proper user action involve with the Global Platform environments,
well defined policies and procedures, appropriate administrative control, and so on.
Note that non-technical issues are mainly focus on security management and policy
in the overall system infrastructure. Any change occurs throughout the states of the
life-cycle should analysis through GSRM to support the evolution. There are several
activities under the risk management method of GSRM such as identify and model
goals, identify and model the risk-obstacle, assess risk, and treat & monitor risks.
These activities are refined into tasks to perform specific action for the security risk
management. There are several artefacts produce through GSRM in particular risk
treatment action concern more with the refinement of the initial higher level goals into
to more concrete requirements so that Design can support the requirements through
UMLseCh stereotypes, tag values and constraints.

Goals

Goals are the objective, constraints, problems, and expectation from the system en-
vironment that satisfy the main security properties including confidentiality, integrity,
availability, authenticity, and non-reputation. Goal satisfaction requires cooperation
of the system agent. For instance, user as system agent use password in login the
system. In this context user is the agent with support the authenticity by performing
an action. To identify and model the goals, initially our focus is to consider the main
system components and elements and factors that comprise these components. The
identified goals can be initially higher level therefore it requires proper refinement from
higher level to lower lever finer goals. The more the goals refined the easier to iden-
tify the threat obstacle that obstruct the goals. Main components and the relevant
elements and factors under the components of the Global Platform system are given
below:

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 71/182

• Security domain

– Service

∗ Key handling

∗ Cryptographic operation

∗ Digital signature

∗ Provider verification

– Security policies

– Secure channel protocol

• Runtime environment

– Storage management

∗ Execution space

∗ Data space

– Communication services

• Trusted Framework

– Security assessment

– Interapplication communication services

• GlobalPlatform Environment(OPEN)

– Logical channel management

– Card content management

– Executable load file under card content management

• GlobalPlatform API

Therefore, we identify several goals based on these components and their elements

and factors. Before elaborating these goals, we have identified several main high level

goals from the overall system environment. They are:

• Attain[ApplicationProvidersBusinessNeeds]

• Attain[SecurityOfTheOverallEnvironment]

• Maintain[SecureCommunication]

• Adapt functional and security driven change

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 72/182

However these high level goals are refined through several sub-goals by the system
components, elements and factors

• Maintain[ProperOperationsbySecurityDomain]

– Maintain[SecureSerivces]

– Ensure data security

– Share common card space by preserving seucirty

∗ Maintain[ProperCryptographicOperation]
∗ Proper cryptographic keys generation and distribution

– Attain[CardContentIntegrity]

– Proper implementation of secure channel

∗ Ensure identification and authentication for every participating entities
∗ Message and data integrity
∗ Confidentiality and authentication of message
∗ Secure message exchange between on card and off-card entities

– Enforce security policies in Pre-Issuance and Post-issuance phase

• Secure runtime environment

– Maintain[SecureStorageManagement]

– Separate storage space for application code and data

– Authorized access in single or multiple logical channels

– Secure memory recovery process

• Proper operation of GlobalPlatform API

– Secure off-card communication

– lock down card or applet during unresolve security threat

– Secure link among card manager and security domains

– Proper on card services offer to the application

• Trusted framework

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 73/182

7.3 Security requirements

A set of security requirements are specified to support these goals. These require-

ments are categorized based on the components of the global platform including run-

time environment, memory management, communication services, etc. Some re-

quirements are:

• Runtime environment shall provide an interface to ensure that the security mech-

anisms cannot be bypassed, deactivated, corrupted or otherwise circumvented.

• Each application code, data and data relating to the runtime environment shall

protect from any unauthorized access.

• All participating entities shall uniquely identified.

• The system shall add any new application to support global business service by

the card, but addition shall not generate illegal interaction with existing applica-

tion

• The transmitted data through the communication channel should ensure in-

tegrity.

• System shall verify integrity while updating the software running on the card.

• OPEN shall ensure that card content changes are authorized by the card is-

suers.

• The key generation and distribution shall confirm be done in secure manner

7.4 Secure architecture of GP specification by UMLseCh

Security requirements are traced within the UMLseCh diagrams by incorporating

UMLseCh stereotypes. Therefore, we employ existent UMLsec stereotypes to ad-

dress the identified security requirements and if required introduce new stereotypes to

support the Global platform specification. To cope with the evolution from the card is-

suer, application providers, and card under the GlobalPlatform we integrate UMLseCh

stereotypes. Our initial focus is to integrate the UMLseCh abstract stereotype to model

the change by using UMLsec along with the extending UMLseCh stereotypes. The

secure architecture cover both architecture and detailed design of the system. For

simplicity reasons, all confidential information including key, customer financial infor-

mation, and code are viewed as data. Therefore, UMLseCh requires providing ad-

equate protection of existence as well as updating data. We start with a UMLseCh

deployment diagram to specify the physical layer of the specification and continue a

class diagram for detailed elaboration of the individual components.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 74/182

Deployment diagram

Deployment diagram focuses on the interaction among the main components within

the physical layer of the GlobalPlatform. It includes physical nodes and their associ-

ated or contained logical components. A node in deployment diagram may contains

components and connects with other nodes through solid line. Components within the

different nodes may also connect through broken arrows. Therefore the deployment

view also shows the links between the nodes and the security requirement posed

upon these links. Several nodes by following GolbalPlatform specification are: GP

smart card, off card entity card issuer, controlling authority and application providers.

Security domain is the main component to manage security issues relating to the ser-

vices for these components. Therefore nodes such as card, card issuer, controlling

authority and application providers have their individual security domain to support se-

curity services like key handling, cryptographic operations,identification and authenti-

cation, and many more. Furthermore, the card also contains instance for every appli-

cation, Executable Load File(ELF),GP register,OPEN, Trusted Framework, and so on

through mutable persistent memory. Figure 7.1 shows three nodes instance such as

card holder, card issuer and application provider. The off card entity mainly concerns

service update, card content management and application provider with application

management along with the primary operations by the nodes. Secure memory man-

agement, access control, secure communication are the main security requirements

for the subsystem. Therefore to ensure confidentiality and integrity of the data com-

municate within the established channel the link should be secures through « secure

links » stereotype. Furthermore for proper memory management and implementation

of security mechanism we include « secure runtime env. » and « secure mechanism ».

Modelling change The change arises at any time during the system life cycle from

the components of the nodes within the subsystem. For instance, change to the ap-

plication data is very common and frequent for this context. This is because security

domain is a kind of application that contains the data for controlling the application

and once application change any thing then it must update to its individual domain.

Thus change from the security domain is more important compare to the change of

other application data due to the application privilege hierarchy. Change can also

arise from the general platform application such as secure runtime environment and

OPEN. Therefore this subsystem supports change by following the UMLseCh stereo-

types for both abstract and concrete design. We include the stereotypes « change »,

« current_change », and « future_change » along with associate stereotypes for the

subsystem. The tag values version=<version_ number>; {dependencies=<yes/no>}
is also associate for the UMLseCh stereotypes to specify the change version and de-

pendencies among the components within the subsystem. The abstract stereotypes

relating to change also associate with the UMLsec stereotypes to explicitly specify the

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 75/182

security properties which relate with the change. Such as change in the security run-
time environment is handled by the UMLseCh stereotypes within the « secure runtime
env. ».

<<secure links>>

application provider

GP smart card

Off card entity: card issuer
key management,service update,card content
management

security domain: service management

security domain: service management

Mutable persistent memory:ELF

<<secure runtime
env. >>

<<secure
mechanism >>

<<current_change>>;
<<add>>; <<modify>>; <<delete>>;
<<future_change>>
<<allowed_add>>; <<allowed_modify>>;
<<allowed_delete>>,
{dependencies=yes}

Mutuable Persistent Memory: SD

Application providers instance

key management,application management

OPEN GP Register

key management,memory management

Figure 7.1: Deployment diagram

Statechart diagram

We model the life cycle of the global platform components through the state chart
diagram. Every component in particular the card itself, application, and security do-
main has several states through out its life cycle. UMLseCh models the behavior of
these states by analysing the input requires for each state, relevant security issues
to support proper operations within the state and output produced by the state. Thus
statechart diagram specifies the sequence of state that an entity, object or component
goes through in response to events along with the responding actions.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 76/182

Card life cycle By following the GlobalPlatform specification, the card contains five
main states throughout its life cycle. Initially OP_READY and INITIALIZED states are
performed during Pre-Issuance phases of the card before supporting other compo-
nents of the platform. At the start of the card life cycle, OP_READY state enters to
initiate the card with several parameters such as its security domain, keys, application
providers information, etc. Run time environment and OPEN is ready for execution
by the runtime_env() and OPEN_ready() messages. Both of these messages trans-
form data d to initialize the execution state for run time and OPEN. Action key_exch ()
performs to exchange the initialized key with the selected application and the issuer
security domain. By the action select_app (), issuer selects applications explicitly. By
following these actions the card enters into the INITIALIZED state. The state INITIAL-
IZED is an administrative card production state and irreversible from OP_READY()
to INITIALIZED() state. It may be used to indicate some initial data and support any
change originates from the entities so that it can capture and integrate before card is
ready to issue for the card holder.

After setting the initial data, the card is in the Post-Issuance state to use the card
for specific purposes by the card holder. At the beginning, the card enters in the
SECURE state. The state intends to operate the card and if require action such as
enforce_policy(p1, p2,....) execute to implement certain policies among card issuers,
applications providers and user. The card can be disabled under certain circum-
stances. Therefore, state CARD_LOCKED provides capability to disable the selec-
tion of the security domain and applications. Nevertheless, state from SECURE to
CARD_LOCKED is reversible so that reuse of the same card is possible after control-
ling certain unavoidable circumstances. Finally TERMINATE state enter to end the
card life cycle. All states can directly enter into the TERMINATE state. Main purpose
of this state is to disable functionality belongs to the card and logical destroy through
message destroy_card. This ends the stated of the card life cycle.

Modelling change Except TERMINATE, remaining states are capable to perform
any change of the card life cycle. However in TERMINATE state, we need to deal-
locate the occupied memory by the card. Our focus is mainly with the changes at
Post-Issuance phase because the card is used by the card holder within states of
this phase. LOCKED state may performs change from any unplanned perspective
in particular when change arise due to security attacks and overall system failure.
Note that LOCKED state is not able to perform any type of card data management
change such as domain key, data, etc. SECURED state mainly supports change due
to maintenance and continuous operation of the card and the application providers,
for instance modification of key values, addition of new features, and so on. Several
function such as update_key() and update_data() support change for maintenance
at SECURE state and disable_domain(), disable_app() are mainly focus at LOCKED
state to handle any change from unplanned perspective. Figure 7.2 below shows

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 77/182

the underlying states of the card life cycle. UMLsec stereotype « legitimate process »

is relevant to support any change of existing policies and legal constraints from the

environment. Therefore we add UMLseCh abstract stereotype « future_change » for

« legitimate process » to allow addition, modification, and deletion of policies and legal

constraints. Furthermore at the end of life cycle « secure runtime env. » also require

to proper deallocation of memory by the card. Therefore « delete » added with the

« secure runtime env. »

OP_READY

/key_exch(k)
/select_app(d)
/load_files(d)

runtime_env(d)
OPEN_ready(d)

INITIALIZED

/initialized(k,d)

SECURE

/enforce_policy(p1,p2, ..)
/update_key(k)
/update_data(d)

CARD_LOCKED

TERMINATED/disable_functionality(d)

/disable_app(d)
/disable_domain(d)

/disable_datamanag(d)

<<legitimate process>>
<<future_change>>
<<allowed_add>>; <<allowed_modify>>:
<<allowed_delete>>.
{dependencies=yes},{version=0}

pre-Issuance
post-Issuance

<<integrity>>

/free_memoryspace()

<<secure runtime env.>>
<<delete>>

Figure 7.2: Statechart diagram of card life cycle

Application and Security domain life cycle The life cycle of the application and

domain instantiate from an executable module i.e executable load file. Executable

load file has only one state which loads the file to the card and updates the card

register with the relevant information. OPEN sets the application life cycle state to the

initial state during the application installation process. At any state of the life cycle,

the OPEN as well as the application itself control the security protection by setting the

life cycle state to LOCKED. OPEN also controls the deletion of an application from the

card.

Application Life Cycle The application life cycle has three different states. Ap-

plication may also define its own dependent states which would be controlled by the

application itself. The first is the INSTALLED state that links the application executable

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 78/182

code by link_code() and allocate required memory by allocate_memory(). Once these
actions are executed then certain information from the application enters to the Global
Platform registry by message send(entryGPR). After that, the application is properly
installed and functional by entering to the SELECTABLE state. This state receives
commands from the off-card entities by message receive(command). The application
can be LOCKED in the LOCKED stated by OPEN, and associate security domains.
The state LOCK, as security management control, prevents selection, and execution
of application with action or prevent_selection(d) or prevent_execution(d). Once the
application is in LOCKED state then certain components such as associate security
domain with both global and local lock privilege is allowed to unlock the application
through unlock_application(d) action. At any point OPEN, if require, delete application
as a part of change. However delete must confirm the consistency of an application
with other application and associate security features.

Modelling change The change arise due to maintenance, continuous and unplan-
ned operation within the application life cycle to support the change type like change
to the application data and the application itself. In particular, from the LOCKED to the
other states, the data of a specific application may change by the OPEN. Therefore
stereotype « modify » and « allowed_modify » is relevant for this state. The change
can initiate from OPEN, security domain of the application, off-card entities, and
global lock privilege. Any change in terms of add, modify, and delete is mainly per-
formed in the SELECTABLE state and « modify » is mainly applicable to the LOCKED
state. The DELETE state mainly considers UMLseCh stereotypes « delete » and
« allowed_delete ». Furthermore UMLsec stereotypes « secure runtime env. » and
« integrity » are essential for the application life cycle. Figure 7.3 below shows the
state chart diagram of the application life cycle.

INSTALLED

<<integrity>>

/link_code(d)
/allocate_memory(d)

send(entryGPR)

SELECTABLE

receive(command)

LOCKED

/prevent_selection(d)
/prevent_execution(d)
/unlock_application(d)

DELETE

/free_memoryspace

application specific states

receive(delete application)
end-of-life

<<delete>>

<<add>>;<<delete>>;
<<modify>>

<<secure runtime env. >>

<<modify>>

<<allowed_delete>>

<<allowed_modify>>

Figure 7.3: Statechart diagram of application life cycle

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 79/182

Security Domain Life Cycle There are four different states by the security domain
life cycle. Initially INSTALLED state specifies that the security domain is an entry to
the GP register by entry_GPR(d). However the state neither offer to select the domain
by application nor associate with the executable load files. SELECTABLE state after
the INSTALLED also cannot be associated with executable load files and application.
Therefore the services are not available at this stage. The security domain services
are available to the associate application through PERSONALIZED state. The per-
sonalization data and keys for full runtime functionality are available at this stage. Next
state is to LOCKED the security domain, if require, as a part of security management,
so that application cannot select the security domain, no executable load file is as-
sociate with the security domain. Finally security domain can be removed through
DELETE state. Therefore space occupied to memory as well as entries to the global
platform register by the domain need to be deleted. Figure 7.4 depicts the state chart
diagram for the security domain.

Modelling change The changes for the security domain are mainly considered
at PERSONALIZED, LOCKED, and DELETE state. The changes in security do-
main is critical for ensuring security service for the overall infrastructure. Therefore
« integrity » is included to the life cycle for ensuring accurate modification of data
and application. Similar like other component’s life cycle LOCKED state mainly han-
dles the unplanned changes by preventing the application to select certain services
from the security domain, or lock the entire security domain. We include UMLseCh
stereotypes like « add », « allowed_add »,« modify », « allowed_modify », « delete »,
and « allowed_delete » to support both current and future change.

INSTALLED

<<integrity>>

/entry_GPR(d)

SELECTABLE

receive(command)

LOCKED

/prevent_selection(d)
/prevent_

associate_executable(d)
/lock_domain(d)

DELETE

/delete_domain(d)
/remove_entry(GPR)

PERSONALIZED

receive(delete request)

<<add>>

/entry_
personalization_data(d)
/avaiable_services(d)

<<delete>>

<<allowed_delete>>

<<delete>>

<<allowed_delete>><<allowed_add>>

<<change>>

<<future_change>>

Figure 7.4: Statechart diagram of security domain life cycle

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 80/182

7.5 Activity diagram

We attempt to identify the activities within the several states of the card, application

throughout their life cycle by following the interactions among them. The activity dia-

gram models these interactions of interaction. We follow the card and application life

cycle along with the possible interactions between them based on the GolbalPlatform

specification. Initially, OP_READY and INITIALIZED state, executable files and rele-

vant modules are loaded by the card. Similarly, during INSTALLED state executable

file and modules are loaded by the application. Both of them require to allocate mem-

ory to install the code and entry into the GP register. Once the application is selected

by the card then necessary policies for the application are updated and ready to use

through the card. At any time, both components can be in LOCK state. In this state,

no application is available to the card issuer and application itself. Card and appli-

cation provider may delete through delete operation. Figure 7.5 shows the course if

interactions and individual activities of card and application provider.

Modelling change During the course of the activities, several actions are performed

such as entry into Global Platform register, allocate memory, prevent selection and ex-

ecution. These actions support certain change due to maintenance, continuous, and

unplanned based on environment, target system functionalities, legal context, and

business process. This require to cope all types of change such as add, modify, and

delete to the overall GP infrastructure. We assume UMLsec stereotype « secure run-

time env. », « data secrecy » are essential for the interactions. Furthermore UMLseCh

stereotypes are also applicable for the activity diagram.

7.6 Class diagram

The GP register (GPR), OPEN, Security domain, application are the main compo-

nents that store relevant information about the application, card, and environment

under the GlobalPlatform.We treat these components as main classes for the overall

infrastructure.Every class contains attributes to represent the characteristics of the

class and operations of the classless are supported by the functions. For instance by

using Put_add(), Get_data() the GPR allow to input at its registray, by Delete_data()

it can delete any entry from the registray. It stores several information such as ap-

plication_provider_ID, security_domain_AID, card_management, app_management,

card_lifecycle_state, app_lifecycle_state and counter.GPR update the GP API so that

other classes can communicate with the GPR such as OPEN. OPEN also supports

the Executable Load File and Executable Load Module to entry the application into

the card and the GPR API. Security domain control the security policy instance and

application is also relate with GPR. Figure 7.6 represents the class diagram.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 81/182

application providercard

select & install application

lock card

delete card

load executable file & module load executable file & module

entry global policy register

enforce security policy

offer service

unlock application

lock application

request application selection

unlock card

allocate necessary memory allocate necessary memory

delete application

free memory space free memory space

use application

<<data secrecy>>
{integrity(v,E),authenticity(a,0),adversary(T,C) }
<<secure runtime env. >>
{data(d),code(d),version_number(n),dependencies=y}
 <<current_change>>;<<future_change>>

<<delete>>

<<delete>>

<<add>>

<<modify>>

Figure 7.5: Activity diagram

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 82/182

Modelling change The changes are frequent for the class diagram because it store

all information relating to the every individual classes. The UMLseCh stereotypes

« integrity » and « authenticity » are essential for the sub system. Furthermore all

UMLseCh stereotypes are applicable for the class diagram.

<<add>>

<<integrity>>

+Put_data()
+Get_data()
+Delete_data()
+Search_data()

+application_provider_ID
+security_domain_AID
-card_management
-app_management
+card_lifecycle_state
+app_lifecycle_state
+counter

GPR

+Get_data()
+Check_authorization()
+App_service()

+application_ID
+name
-security_domain_info
+global service privilege
+service name

Application

-Encrypt()
-Decrypt()
-Sign()
-Verify()

+Owner
+Off_card_entry
-Private_key
-Public_key
+Lifecycle_state
#Security_policy
+Services

Security Domain

+Check_policy()

-Policy_ID
+Policy_detail
+Related_policy

SD Security Policy

+APDU_commands()
+GPregister_management()
+Card_content_management()
+SD-management()
+Check_service()
+Check_SDprivileges()

+OPEN_ID
OPEN

+Cardholder_verification()
+Access_application()
+Access_GPservices()

+GPAPI_ID
+Name

GP API

+Add()
+Operation()

+ID
-Name

Executable Load File

+Add()
+Operation()
+Create_appl_Instance()

+ID
-Name

Executable Load Module

<<future_delete>><<future_modify>><<future_add>>
<<delete>><<modify>>

<<authenticity>>

Figure 7.6: Class diagram

7.7 GP Security Domains - Clarifications Relevant for Change

The paradigm change introduced by the Global Platform specification is the ability to

support several off-card entities on the same card (smartcard). This means that sev-

eral off-card entities shall be able to own and manage data and applications on the

same card. Earlier, the card issuer (being it the card manufacturer or the card distribu-

tor or card owner, which is what a mobile operator are for SIM cards for GSM and 3G)

have been in charge of evolving and maintaining the card after it has been issued to

the card user. Hence, application providers relied on the card issuer for maintaining

their applications. E.g., for banking applications, the card issuer both installed and

managed the banking service on the card on behalf of the banking provider. This

hierarchy is based on a business model that trust on the card can only be maintained

by a single installer, manager and card control entity, and this entity has traditionally

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 83/182

been the mobile operator. This business model has now changed, opening up for

multi-provider card management and service providing environment and thus multiple

provider, of various kinds, can now make direct revenue of their on-card services.

To support the multi-provider business model, a GP card is virtually separated sepa-

rate into a number of sections on the card, each associated with one off-card entity.

This separation is virtual as it cannot be done hardware-based, which would have pro-

vided complete separation of sections on the card, because the number of off-card

entities is not know at the time of card pre-issuance. Therefore, software-based card

separation is necessary, also referred to as a software sandbox. This software-based

card separation is called Security Domain for GP cards. Also, not only is the number

of off-card entities unknown, the number may also dynamically change throughout

the GP card life-cycle, and hence real-time installation, modification and deletion of

security domains must be supported.

Software separation can only be achieved by means of (software) applications and

therefore the multi-provider separation on the card is merely virtual. This complicates

change management and normal maintenance operations on the card as we must

handle possible application dependencies and interrelations and potential breach of

the virtual separation. We will discuss these issues in depth in the following sections,

but first we aim at clarifying the relationship between security domains and applica-

tions, as this relationship is essential for understanding change.

A security domain is considered to be a specific-type” of application and is also treated

as such on the card. Applications in GP are loaded to the card in executable load files

(ELF). During card pre-issuance phase, ELFs can be loaded into both immutable per-

sistent memory and mutable persistent memory. In cases where an ELF is loaded into

the immutable persistent memory it cannot be changed, as this means that the EFL

is coded into the hardware and then shield. This also means that no changes can be

made to EFLs located in the immutable persistent memory. Typically, the immutable

persistent memory is used to store cryptographic keys, crypto seed procedures, ran-

dom number generators and other data relevant to security credentials or the making

of these and permanent card identities. The mutable persistent memory is accessible

in all card phases and therefore support change. If, for example, the number of secu-

rity domains were known at card pre-issuance phase, the security information used to

separate the security domains could have been loaded to immutable persistent mem-

ory and the change of compromising the separation between security domains would

have been largely reduced. However, this is often not the case and in our change

examples we assume installation of security domains both in the card pre-issuance

and post-issuance phase.

Furthermore, in the previous GP Specification an EFL was associated with a Security

Domain and all Applications instantiated from an EFL, when installed, were also as-

sociated with the same Security Domain. This method was restrictive and to closely

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 84/182

related to the Java card implementation of GP card. The new scheme provides ap-

plication extradition. Application extradition allows an application that is already as-

sociated with a security domain to be extradited and associated with another security

domain. Another benefit provided by this enhancement is that in addition to EFL and

applications, now applications within EFLs become visible in the GP Registry at the

time that the EFL is registered.

In order to avoid confusion between selectable applications and the applications within

an EFL a new term has been introduced i.e. Executable Module. The term Exe-

cutable Module is intended to identify the one or more applications present within an

EFL. This is essential to take into considerations when tackling change, as it means

that applications can move between security domains and that there now are no strict

and permanent association between security domain and its associated applications.

For this to be effective, applications are loaded and managed by off-card entities via

security domains, but live their separate lives on the card ones installed and made se-

lectable. Applications may have their own security credentials and functions, that are

not controlled by the security domain. Application may also use the security domain

security credentials for communication, but in such cases the communication is routed

via the security domain that performs e.g. the encryption or signing on behalf of the

application. The application does not get direct access to the security credentials of

a security domain. Please note the difference between secure runtime management

and secure runtime environment.

The card user is often referred to as the card owner and has traditionally been a cus-

tomer of the card issuer, i.e., the mobile operator. For GP, customers can be directly

associated with an application provider and do not need to have any relation with the

card issuer. The customer-provider relationship is now service and application ori-

ented rather than card issuer oriented. This is part of the GP paradigm shift (from one

entity doing all the management and card update to several entities performing these

activities).

The stakeholder model of the GP card significantly differ from that of today’s smart-

cards. In addition to the traditionally card issuer and card user stakeholder model, the

GP card may have one or more application providers associated to it as discussed

above. There may also be other off-card entities involved, such as controlling author-

ities of various kinds depending on the GP card application domain and usage en-

vironment (banking has different laws and regulators than telecommunication, which

differs from health care).

To summarize for change management purposes: There are no stable walls” between

the security domains and applications belonging to a particular security domain may

be extradited from this security domain and re-associated with another security do-

main. Hence, there are no guarantees that security domains remains truly separate

through change and that changes within one security domain does not affect any

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 85/182

other security domains or applications running on the card. Separation between se-
curity domains are done by means of encryption and signature (keying). Each security
domain is encrypted on the card with a separate key associated with and only known
to the relevant off-card entity.

Applications are installed using the card management modules of the relevant off-card
entity. The card management modules are associated with an on-card security do-
main and card management is done via this security domain using the cryptographic
key of the security domain (by encrypting and signing packets). Ones installed, the
application operates separately from the security domain during normal use. Applica-
tions may have their own security functions and may decide to encrypt the commu-
nication using their own set of keys. Thus, there is a clear separation between card
content, including application, management and normal card operation. This means
that there is no real and persistent software segmentation on the card, so changes
may have implications outside of the relevant security domain and application.

The card issuer security domain is the on-card representative of the card issuer, which
issues the card. The card issuer maintains the general data and applications on the
card. There are general GP applications. The card issuer may also have other appli-
cation running on the card, which are not GP general applications (for security man-
agement). Then, each application provider is represented on the card by a security
domain. They use this domain to manage their applications. Whether an application
runs on its own or controlled by a particular security domain depends on the applica-
tion preferences and security policy.

7.8 Notes about change in GP

One challenge when it comes to change is the problem of shareable services (across
applications on a GP card) such as banking services (credit, debit) and the issue
of ownership and how these applications are managed and controlled. In particular,
when there are some policy update to a banking application, such as those needed to
reflect changes in bank business processes, these will have affect on all applications
using these applications.

In general, there can be shareable general GP applications that are managed by the
card issuer (these are usually related to security management and APIs). Then the
bank can be one off-card entity represented by a security domain on the card and that
provides shared card services. This works fine because only the bank can manage
the applications associated with its security domain. However, the application runs
on the card together with all the other applications and these application can provide
services to each other (most applications will run side by side in a secure runtime
environment; that is, they will be prevented from changing each others code and in-

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 86/182

terfering with each others processes during run-time). The challenge is to look into

how to manage change during run-time (when the card is in use) as there actually are

possibilities for applications to influence each other during run-time (remember that

once an application is updated, only this application is locked during the update. All

other applications may still run). We assume an API-type of model, where an appli-

cation offers some services and requests some services in a secure manner (within

the secure runtime environment). If one look at the layered network communication

model, one layer provides services to other layers and as long as the service/info pro-

vided does not change the integrity of the protocol is maintained throughout changes

within the layers. However, the integrity of the protocol is broken as soon as the

info/service exchange type, content and pattern is altered such that what is provided

differs from what is expected across the layers. For example, if the banking application

offers one type of transferring money and then changes it such that the information

produced from other applications (e-purse or similar) does not match with what the

banking application expects.

7.9 Change examples Walkthrough

This section do a general walkthrough (to generalize over change also outside of the

case study; the GlobalPlatform) and gives concrete examples for the five kinds of

changes that we considered for a GP card.

Kinds of Change Considered for a GlobalPlatform (GP) Card For the purpose of

the following change analysis, we consider five kinds of change for a GP card.

Change type 1 Change to Application Data

Change type 2 Change to Application

Change type 3 Change to Platform Data

Change type 4 Change to Platform Code

Change type 5 Change to Hardware and Software Interfaces

These five types of change are categorized into evolution and revolution kinds of

change (ref. change taxonomy). Change type 1 covers all changes made on data

belonging or used by particular applications on the GP card. Recall that a security

domain is a kind of application, which host the security domain specific applications.

Thus, changes to data belonging to a security domain is considered to be changes

to application data, but such changes will have a larger effect than changes to data

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 87/182

belonging to applications within a security domain. This is due to the application priv-

ilege hierarchy, in which a security domain most often have more extensive privileges

than a “normal” application. In any case, application data represent minor changes to

a GP card compared to the other change types.

Changes to applications can be on several levels (change type 2). We can have

changes to general platform applications, changes to security domains and changes

to applications managed via particular security domains. Changes to general platform

applications can have serious implications on other applications on the card, but also

the card management routines. Examples of general platform applications are OPEN,

Runtime Environment, Access Control applications, APIs, etc.

Changes to platform data covers all changes made to the data used and operated

by the general platform applications (change type 3). Platform data are information

belonging to or used by general platform applications or the off-card card content man-

agement modules. Changes to security policies associated with content management

modules is an example of platform data change.

Changes to platform code covers all changes made to the core and supportive ser-

vices and components on the card (change type 4). Examples are the trusted frame-

work, runtime environment, OPEN and the APIs on a GP card. Platform code also

covers changes to the part of the bootstrap procedure stored in the mutable persistent

memory.

Changes to hardware and software interfaces (change type 5) are significant changes

to the card that might affect more or less all components and services of the card. On

the model level and taking the three security requirements into consideration, this

type of change might affect mechanisms and services associated with the «secure

interface» and «secure runtime environment» stereotypes.

Change Type 1 – Change to Application Data To demonstrate the magnitude of

impact that changes to application data can how the operation and security of a GP

card, we first run through an example addressing the maintenance change perspec-

tive under the evolution change dimension.

For our purposes we consider a Java Card implementation of the GP card. This

means that an application is in principle a java applet. Application data is stored in

the GP registry which is controlled by the OPEN. No other entities on the card have

direct access to the GP registry and thus all requests to access the GP registry is

routed via OPEN. Application data can only be changed by the owning Application

(i.e., the application associated with the particular application data in the GP registry).

There is one exception though and that are for changes to cardholder information

(PIN, keys, certificates and profile data). Such changes is restricted in the way it can

be accessed and changed and only the off-card entities Card Issuer and Application

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 88/182

Provider are permitted to perform these changes and only via the CI Security and Key

management module and the AP Application management module respectively.

There are several categories of application data change:

• Load new application data

• Replace existing application data

• Modify existing application data

• Delete application data

• Load new cardholder information

• Replace existing cardholder information

• Delete existing cardholder information

In addition, these categories of changes address both past and current change and

possible future changes. For the future changes, we need to annotate the model to

specify what changes that are permitted on the model and to which elements. We

give examples and provide a general discussion later.

First, we look into how to represent and manage change when loading new application

data to the card after the card has been issued and is in use by the customer. This will

help us understand the challenges we face when identifying and specifying change

privileges and allowed change implications for future changes; change as a first-class

citizen.

The Runtime Environment, in which all security domains, the OPEN and all applica-

tions run within, is a Java applet running in Flash. The GP Registry is also running

as an instance in Flash (has an operation representation or a handle into the actual

registry) and within the Java applet of OPEN there is an access controller applet that

manages all access requests to the GP registry. The Runtime Environment Java Ap-

plet must run under the requirements associated with the stereotype «secure runtime

environment», while all access to the OPEN from a security domain, applications or

general platform applications to OPEN must preserve and respect the rules associ-

ated with the stereotype «secure interface» .

We consider first change to Signature Applet Data. In particular, we study how to add

a new security rule to signing operation of the signature applet. Security rules are

specified as attributes to signing operation of the signature applet. For this example

we consider the Card Issuer signature applet. This implies that the signature applet is

owned and operated by the off-card entity Card Issuer, which means that it can only

be managed using the Card Issuer Security Domain Applet and that only the Card

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 89/182

Issuer can make the change. Furthermore, all changes must be executed over the

Card Issuer Application management module.

Application Data CR Steps – Overview and Example To control the change we

have specified the need of formulating change as a change request and we have

defined a change process that should be followed. For the change example that we

study, these steps can be formulated as follows:

1. Step 1: Check authorization privileges for the change request and the authen-

ticity of the CR

2. Step 2: Put Signature Applet (application SDX1_AP1) in state Locked

3. Step 3: Identify relevant Executable Load Files and associated Executable Mod-

ules for the signature applet

4. Step 4: Update security policy by adding the new security rule to signature

applet

5. Step 5: Check and verify successful addition of new rule to security policy

6. Step 6: Re-load relevant EFLs and ELFMs (and thereby the signature ap-

plet(application instance))

7. Step 7: Put Signature Applet in state SELECTABLE

There are specifications on which entities that can request and execute the various

changes on a GP card. It is therefore necessary to check that the requesting entity has

the necessary privileges to execute the change. When this is done, the authenticity of

the CR must be checked (to avoid replay and fabrication attacks). The latter includes

an integrity check. This covers step 1 of the change procedure.

For our example the application Data CR Step 1, including checking change request

authorization Checks can be specified as:

• IF Request_ID=Card_Issuer THEN

– Check_ReqModule(module_ID, Result) – This checks if ReqModule_ID ==

Valid Card Issuer Application management module and returns True/False

in variable Result

– Add_securityRule(security_rule, Result) – This adds and controls the suc-

cessful (correct) addition of new security rule to signing applet

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 90/182

• ELSE

– Silent reject – you do not want to send an error message in this case as
that can be used by an attacker to deduce privilege rules for particular
operations

– Return to last known good card state

Application Data CR Step 2: Signing Applet runs within the state SDX1 Personalized,
where SDX1 is the Card Issuer Security Domain. SDX1_AP represent Signature
Applet before change. Before the change can be executed the Signature Applet must
be put in the Locked application state. Note though that all security domains and not
affected applications maintains normal operation while the CR is processed.

Application Data CR Step 3. In step 3 the relevant Executable Load Files and Exe-
cutable Modules for the CR are identified by means of searching the GP registry. In
cases where a relevant ELF serves more than the signature applet, the associate ap-
plications must also be put in the locked state and possible implications on the other
applications must be investigated before executing the CR.

Application Data CR Step 4. Step 4 updates the security policy for signature applet
with a new security rule. Important to note is that the Card Issuer Security Domain has
an associated Security Policy (as all security domains have) and that a new security
rule is added using the ’add_security_rule’ operation of the Security Policy class. This
operation operates on the SD Security Rule class, which holds the list of security
rules for the associated security domain, application and load files. Security rules are
associated with each security domain, application and load file(s) and stored in the
GP registry. This means that updating the security policy with a new security rules
in practise is to add the new security rule to the SD Security Rule table for the Card
Issuer Security Domain in the GP Registry. All changes to application data results
in changes to information in the GP Registry. We can look at the GP Registry as a
set of database tables with associations. Making small changes to application data
usually means adding information in one or several of the existing tables. Making
larger changes to application data usually means to add new fields in one or several
tables and maybe even adding a new table.

Change Type 2 – Change to Application Applications runs separately from their
associated security domains on a GP card. This means that application may interact,
at least in theory. As for the security domains, which are themselves applications,
applications are installed, maintained and removed from a GP card using the card
content management module. Furthermore, the card content management module
ensures that only authorized off-card entities can perform the specific actions.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 91/182

From the perspective of change, being it functionality-driven or security-driven evo-

lution or revolution kind of change, we are concerned with the interrelation and de-

pendencies between applications on the GP. In particular, we are concerned about

cases where changes made to one application affects another application, within one

security domain but also across security domains. We use the tagged values of the

current and future change stereotypes to enable this checking, as is described in the

following.

Application change process is similar to that for application data change process and

we consider the following changes to applications:

• Load new application

• Replace existing application

• Modify existing application

• Delete application

Change Type 3 – Change to Platform Data Platform data are information such

as security domain and application priviliges and other general platform information

(such as version of GP, identity of card issuer, etc). From GP specification version 2,

security domain and application privileges can be dynamically modified during active

use of the card. Such modifications are done using the card content management

modules. From the perspective of SecureChange it is important to check that only

authorized changes can be performed and that the changes made does not open up

for unauthorized changes.

Other platform data changes of interest are changes to the management functionality

of the card. From GP specification version 2, it is possible to dynamically restrict the

card content management functionality for security domains and OPEN. This means

that in theory, a malicious user could change the management functionality in such a

way that it gets access to insall malware on the GP card.

Change Type 4 – Change to Platform Code The GlobalPlatform is an evolving

standard and there are already several expected extensions to the standard. Some of

these extensions may result in a need to change smaller or larger parts of the platform

code to either offer new functionality on the card or to change existing functionality.

One envisioned change are changes to the way security domains are separated.

Changes to platform code includes changes to the actual implementation of OPEN,

to the APIs, to the trusted environment and the other general platform functionalities.

Such changes differ significantly from changes to platform data and applications, as

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 92/182

these changes can alter the way application run on the platform, the way applications

are maintained and the way that the internal parts of the card communicates.

Change Type 5 – Change to HW/SW Interfaces Hardware and software inter-

faces on a GP card are used for off-card entities to manage the card and for daily

support and for the components on the card to exchange information or consume

services across applications. Hardware interfaces are immutable and only introduced

and modified during the pre-issuance phase. Software interfaces on the contrary can

be modified after the card has been issued to the card user. Software interfaces are

implemented as APIs and used by off-card entities and applications to request and

offer information and services.

Changes to hardware interfaces would have to be tested before issuing the card and

from the point of view of SecureChange we are only interessted in the security im-

plications that the proposed change (we only consider future change for hardware

interfaces) will have on the application data, applications, paltform data and platform

code of the GP card.

Changes to software interfaces can be both current and future changes and may lead

to a circumvent of security mechanisms. It is therefor important to check the secu-

rity implication of such changes and if and how the security properties can be main-

taned also after the change (actually, what it takes to preserve the security properties

through change).

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 93/182

8 Applying UMLseCh to the e-Purse

In this section, we consider a specific application example in the context of the Global

Platform specification, namely a smart-card based electronic purse system.

8.1 Overview of the application

E-purse is a small portable device that contains "electronic money" that can be used

for any for low-value transactions. It is integrated with the extension capability of

the smart card so that card includes additional value added services from business

partner of the card issuer besides primary service. This indeed facilitates to save cost

in terms of these secondary services offer by the card issuers such as mobile network

operator as well as support multiple uses of a single card. As recent smart cards are

based on the Global Platform specification, therefore the additional applications such

as e-purse also require to compliance with the specification to support its services

under the Global Platform environment.

When smart card allows to support additional services from the application providers

then there should have specific area for the application within the card called appli-

cation security domain. Security Domains act as the on-card representatives of off-

card authorities and enforce the security policies defined by the owner. It determines

the scope and responsibility of each actor participate within the environment. Every

participating entities such as card issuer, application provider has its own individual

security domain. To access the secure area, card issuer uses a secure connection

called a Secure Channel. Once a connection is established, the Secure Channel pro-

vides an end-to-end secure communication path between an on-card security domain

and an off-card entity. Subscripted user of the card issuer when agreed with the e-

Purse application then he/she can use e-purse to buy any specific item electronically.

One of this item is electronic-ticketing (e-ticket). E-ticketing is an electronic system for

issuing, checking and paying for tickets predominantly for public transport.Therefore

e-Purse is used to buy e-Ticket only when both the application providers of e-Purse

and e-Ticket agreed to interact their services under GP through a card issuer.

8.2 Challenges on the overall infrastructure

There are some challenges exist within the existence infrastructure. The card issuer

security domain simply have a set of security functionalities which the application can

use. Therefore all communication have to go via the security domain because it is the

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 94/182

security domain responsible to sign or encrypt packets on behalf of the application.
However card issuer security domain as such does not control the application, only
the changes to maintain such as update or delete the application and application
data. Therefore application is responsible to ensure its security as well as maintain
any change within its data and code. But it requires to synchronize any change from
the application with other participating entities such as card issuer, other application
providers, GP environment within the context. Because most of the applications are
running side by side in a secure runtime environment; that is, they will be prevented
from changing each others code and interfering with each others processes.And the
applications also provide service to each other. Therefore how to manage change
during run time in particular when the card is in use is non-trivial task. We need to
preserve integrity as well as other security properties due to any change from any
application to the overall system infrastructure.

8.3 Case study scope

The main scope of the case study in general is to ensure security to the overall sys-
tem architecture where several actors such as mobile network operator, customer,
bank, and transport as application providers are working concurrently to serve some
purposes. In particular, our focus is to model the secure design of the system that
support any change during the system evolution and revolution. The context is imper-
ative because the card is not working alone, due to the Global Platform several other
application providers integrated their services within the card to support value added
service for the customers. Therefore ensuring security in particular integrity is one of
the main goals of the overall environment. The objectives of the case study are to:

• (O1): Secure design in terms of architectural and detailed design of the e-Purse
application under Global Platform environment

• (O2): Trace requirement to the UMLseCh design diagrams and vice versa

• (O3):Model change throughout the design diagrams by using UMLseCh mod-
elling elements so that system would preserve the security properties due to
change

8.4 Detailed design

Use case diagram

We consider Mobile Network Operator (MOB) as card issuer who is responsible for the
overall infrastructure. Initially MOB proposes SIM as smart card to the customer which

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 95/182

includes additional service such as e-purse, e-ticketing from the business partners of

the MOB within the card. Customer once accept the card becomes a subscripted user

of the MOB and able to make use of the service that offer through the card. We de-

velop an UMLseCh use case diagram to sketch the scenario among the participating

actors. We integrate stereotype «fair exchange» to represent security requirements

that any transaction should be performed in a way that the actors involve within the

transactions prevent from any cheating. Figure 8.1 depicts the use case diagram of

the actor interacting within the application.

Modelling change This subsystem can support rather high level change. For in-

stance due to change of the business process, new service may be added to the

card. This implies that the card content should adapt with the future changed base

on the newly defined business case of the MOB. It may also possible the MOB accept

new application provider within the card. Therefore a new application would also be

installed into the card and user would be able to use of the new application. There-

fore we consider possible future changed for this subsystem. Figure 8.1 includes the

« change » stereotype to support the abstract change for the subsystem. The stereo-

type includes dependencies and version_number tag to specific the dependencies

with other stereotypes that are relevant for the change within the subsystem.

Customer
MOB

use e-purse

accept SIM propose SIM

<<fair exchange>>
{start=SIM request, stop=pickup ticket, reclaim}
<<change>>
{dependencies,version_number}

Transport

buy e-ticket

Figure 8.1: Use case diagram of detailed design

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 96/182

Sequence diagram

Subscripted user is able to make use of the e-purse to purchase e- ticket. User ini-
tially requests to select the e-purse application service to purchase the ticket through
the e-purse. Once the e-purse service is activated by the MOB, then user has to
send the ticket_id and amount to the card manager for continue the payment through
e-purse. Note that, only the subscripted users provide consent to used the e-purse
service through their existence SIM are allowed to purchase e-ticket through the e-
purse. User then proceeds further to use_ticket() to the transport. Transport verifies
the user information through the MOB and Jticket_limit before approve the purchase.
If verification fails, then user denies to continue with the purchase. Otherwise user
is able to purchase the ticket once adequate balance is available to the user e-purse
account through the EMV debit and credit service of the bank. Transport can debit the
amount from the e-purse as a part of shareable service among transport and bank.
Therefore several SHAREABLE_SERVICE such as debit called among the adminis-
trative entities during the course of the transactions. Finally if sufficient balance is not
available in e-purse then transaction would be refused by the transport. Figure 8.2
shows the sequence of actions performed among the participating entities.

Modelling change There may have several possible changes during these sequences
of actions. However for these sequences most of the changes are from the main-
tenance perspective. For instance, change of user data such as e-purse limit and
account balance, application data such as Jticket limit are common for this scenario.
These changes are rather trivial to manage. And we allow to integrate « integrity » tag
for this context. Additionally the change for this context is concrete, therefor we fur-
ther include UMLseCh stereotype « substitute » for the concrete change through ref
tag. However when participants like bank, transport, and MOB responsible to manage
their own applications then change may affect the SHARABLE_SERVICE in particular
change of policies. Therefore adapt the change is non-trivial for this scenario.

8.5 Architectural design

Statechart diagram

The card goes through several states throughout the life cycle. The states accom-
modate into Pre-Issuance, Issuance, and Post-Issuance phases of the card life cy-
cle. Manufacture of the card mainly supported by Pre-Issuance and partial Issuance
phase. While use of the card mainly supported by Issuance and Post-Issuance phase.
Initially during manufacture, enable, and personalize states of the card, card hardware
is assembled and application data as well as key are loaded into the card. GlobalPlat-

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 97/182

User MOB Transport

request(service_id)

[if available]

not available

ACK

active requested service

use_ticket(ticketid,amount)

activated service

Bank

check availability

check user identity

OK

proceed purchase

purchase_ticket(amount)

denied

check balance

debit(e-purse_id,amount)
deliver(ticket_id)

not(transaction_refused)

<<integrity>>

<<substitute>> {ref=data}

Figure 8.2: Sequence diagram of detailed design

form specification defines duties that require to perform by the all participating entities

within the card throughout the life cycle. Once personalization has taken place, then

separate activation process is required in order to prevent the card from misuse by

the applications before card holder start to use the card. Prior start to use the card,

card holder must need to be authenticated to gain access the data and service that

belongs to the card. Finally the card is terminated due to expiry, lost or any unplanned

problems such as security attack to the card manager or applications security domain.

The state must deactivate the card so that the card refuses to authenticate credentials

in off-line situations. Figure 8.3 outlines the sequence of state of the card life cycle.

Modelling change Main focus is to consider any change relating to Post-issuance

phase of the card. There may have several changes at post-Issuance sates of the

card life cycle where some of them are foreseen and other is unforeseen. Main chal-

lenge lies for the future change of the card life cycle in particular when any application

provider change its existence policy and the partners should adapt the amendment of

the policy. For instance, the bank has changed its policy so that transport can now not

only debit money when adequate amount is available to the e-Purse account but also

the amount can be credited from bank to support the customer purchase order, as

the bank value added service. Integrity is mainly required to all states of the life cycle

to adapt any change from present and future. Authenticity is also through out the life

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 98/182

cycle. Therefore « authenticity »,« integrity » stereotypes are included into the state
chart diagram. To adapt change, in particular supporting addition and modification
three different UMLseCh stereotypes are included « change » in general and in partic-
ular « allowed_add », « allowed_modify ». Further dependencies and version_number
tags are also included to support the UMLseCh stereotypes.

manufacture

/load_key(k)
/load_data(d)

runtime_env(d)
OPEN_ready(d)

enable personalize

/enforce_policy(p1,p2, ..)
/update_key(k)
/update_data(d)

activate

terminate

/activate_application(d)
/update/

delete_application(d)
/load_application(d)

Pre-Issuance Issuance

<<integrity>>

/deactivate_card(d)
/free_memoryspace(d)

use

Post-Issuance

<<authenticity>>

Individual_duty(d)
use_card

/access_data(d)

<<integrity>>

<<change>>
<<allowed_add>>,<<allowed_modify>>

{dependencies}, {version-number}

Figure 8.3: Statechart diagram of architectural design

Class diagram

Class diagram focuses on the attributes and the relevant functions to support the
e-purse application under the GP environment. The card manager is the main ad-
ministrative module for this application. It contains information about its own security
domain as well as other application security domain such as e-Purse and e-ticket.
Several attributes for the card manager are: card holder global personal identifica-
tion number (global PIN), privilege , card state, applications ID, and keys. Several
operations performed by this class that focus mainly the card content management
are: update, delete, and add new entry from the application, install application code,
and all cryptographic operations. Note that every class must has certain privilege to
perform any operation that related with other class. Transport and bank class also
require certain common attributes such as ID, domain, state and privilege to share
its service under the GP. Figure 8.4 shows the several class along with attributes
and functions for the system actors. They have also their common functions such as
check_availability(), check_balance() etc to perform their specific services.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 99/182

Modelling change Card manager would not always responsible to handle all changes
during the life time of the card. Sometimes applications have certain privilege un-
der the Global Platform to mange the changes for the specific application within the
card content. Therefore ensuring authenticity and integrity is mandatory within the
context whenever any changed would like to be performed. Therefore we include
« authenticity » and « integrity » stereotype for the class diagram. Additionally to adapt
change, UMLseCh stereotypes such as « substitute » and « add » are included along
with tag value ref.

<<integrity>>+new_entry()
+update_entry()
+delete_entry()
-install_code()
-cryptographic()

-global_PIN
-security_domain
-privilege
+application_ID
+application_security_domain_ID
+card_state
+app_lstate
-keys
+counter

card manager

+check_availability()
+update_counter()
+debit()
+cryptographic()

+ticket_application_ID
+security_domain_ID
+state
#privilege
-keys
-counter

transport

+check_balance()
+update_balance()
+cryptographic()

+e-Purse_application_ID
#global_PIN
+state
+security_domain_ID
#privilege
-keys
-balance

bank

<<authenticity>>

<<substitute>>

<<add>>

Figure 8.4: Class diagram of architectural design

Deployment diagram

Deployment diagram mainly outlines the interactions of the participating entities through
physical layer of the system. Security domain of the individual is considered as the
main component for the deployment diagram. Furthermore we also need to identify
node, process, and objects along with security domain. Several nodes such as card

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 100/182

manager, bank, and transport perform their task to offer e-ticket, e-purse, and EMV
services to the subscripted user. The figure shows three nodes instance card man-
ager, bank and transport. The node instance card manager contains a component
instance security domain to support both primary and additional security responsibil-
ities and requirements. Furthermore this component instance supports service such
as cryptography operations to support secure interaction among the nodes. Besides,
card manager install the loaded application code from the bank and transport to the
card. Several objects added within the security domain such as access control, con-
fidentiality and integrity, etc.

<<secure links>>

Transport

Bank Card manager

Install, cryptography

security domain

access control,
confidentality,

integrity

security domain

<<internet>>

send, cryptography

security domain

access control,
confidentality,

integrity

send, cryptography

access control,
confidentality,

integrity

<<substitute>>

Figure 8.5: Deployment diagram of architectural design

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 101/182

Modelling change Similar like other diagram, deployment diagrams also adapt the
change from the context. We ass UMLseCh stereotypes to support the change with
in the subsystem. All node instances are connected by a link stereotype « Internet ».
Figure 8.5 shows the physical architecture of the system. To ensure confidentiality
and integrity of the data communicate within the established channel, we need to
provide the link secure through « secure links » stereotype.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 102/182

9 Preservation of security properties by sys-
tem evolution

The evolution of a system is the result of applying a change on one or several of its

components. The resulting system from that change will then be the composition of

the elements that have been modified with the other elements (i.e. the unchanged

elements). In this section, we show how a model component can be represented by

a process and how processes can be composed to represent the new system.

As already introduced in Section 2, in UMLsec it is possible to make assumptions

about the adversary power to manipulate messages over a network according to the

type of link. In the case of an « Internet » link the adversary is able to delete, insert

and modify messages between two distributed systems components. This notion is

formalized by translating processes into first order logic to represent the constraints

necessary for automated security verification [Jür06].

The main goal of the section is to describe a verification method that decides whether

the composition of the processes verify or violate the security requirements, secrecy

in particular.

9.1 A Domain-Specific Language for Cryptographic Protocols

In this section, we shortly recall the main elements of the domain-specific language

for cryptographic protocols used in this paper, which was introduced in [Jür09] (where

more details and explanation can be found). We consider concurrently executing

processes interacting by transmitting sequences of data values over unidirectional

FIFO communication channels. Communication is asynchronous in that transmission

of a value cannot be prevented by the receiver. Processes are collections of programs

that communicate through channels, with the constraint that for each of its output

channels c a given process P contains exactly one program pc that outputs on c. This

program pc may take input from any of P ’s input channels. Intuitively, the program is

a description of a value to be output on the channel c in round n + 1, computed from

values found on channels in round n. Local state can be maintained through the use

of feedback channels, and used for iteration (for instance, for while loops).

We assume disjoint sets D of data values, Secret of unguessable values (such as

“nonces” – freshly generated values supposed to be used only once –, other random

values, session keys, or similar), Keys of keys, Channels of channels and Var of

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 103/182

variables. Write Enc
def
= Keys∪ Channels∪Var for the set of encryptors that may be

used for encryption or decryption. The values communicated over channels are formal
expressions built from variables, values on input channels, and data values using
concatenation. Precisely, the set Exp of expressions contains the empty expression
ε and the non-empty expressions generated by the grammar given in Figure 9.1. An
occurrence of a channel name c refers to the value found on c at the previous instant.
The empty expression ε denotes absence of output on a channel at a given point in
time. We write CExp for the set of closed expressions (those containing no subterms
in Var ∪ Channels). We write the decryption key corresponding to an encryption key
K as K−1. In the case of asymmetric encryption, the encryption key K is public,
and K−1 secret. For symmetric encryption, K and K−1 may coincide. We assume
DecK−1({E}K) = E for all E ∈ Exp, K, K−1 ∈ Keys and ExtK(SignK−1(E)) = E
for all E ∈ Exp, K, K−1 ∈ Keys (and we assume that no other equations except
those following from these hold, unless stated otherwise).

E ::= expression
d data value (d ∈ D)
N unguessable value (N ∈ Secret)
K key (K ∈ Keys)
inp(c) input on channel c (c ∈ Channels)
x variable (x ∈ Var)
E1 :: E2 concatenation
{E}e encryption (e ∈ Enc)
Dece(E) decryption (e ∈ Enc)
Signe(E) signature creation (e ∈ Enc)
Exte(E) signature extraction (e ∈ Enc)

Figure 9.1: Grammar for simple expressions

Programs in the DSL are defined by the grammar given in Figure 9.2. Note that
the grammar includes a non-deterministic choice operator. This allows one to use
the DSL notation for specifications which admit underspecification, or to admit non-
determinism at run-time. In the DSL grammar, variables are introduced in case con-
structs, which determine their values. The first case construct tests whether E is a
key; if so, p is executed, otherwise p�. The second case construct tests whether E is a
list with head x and tail y; if so, p is evaluated, using the actual values of x, y; if not, p�

is evaluated. In the second case construct, x and y are bound variables. A program is
closed if it contains no unbound variables. while loops can be coded using feedback
channels. From each assignment of expressions to channel names c ∈ Channels ap-
pearing in a program p (called its input channels), p computes an output expression.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 104/182

p ::= programs

E output expression (E ∈ Exp)

either p or p� nondeterministic branching

if E = E � then p else p� conditional (E,E � ∈ Exp)

case E of key do p else p� determine if E is a key (E ∈ Exp)

case E of x :: y do p else p� break up list into head::tail (E ∈ Exp)

Figure 9.2: Grammar for programs in the Domain-Specific Language

A process is of the form P = (I, O, L, (pc)c∈O∪L) where

• I ⊆ Channels is called the set of its input channels
and

• O ⊆ Channels the set of its output channels,
...

...

...

L

I

O

P

and where for each c ∈ Õ
def
= O ∪ L, pc is a closed program with input channels in

Ĩ
def
= I∪L (where L ⊆ Channels is called the set of local channels). From inputs on the

channels in Ĩ at a given point in time, pc computes the output on the channel c. We

write IP , OP and LP for the sets of input, output and local channels of P , KP ⊆ Keys
for the set of private keys and SP ⊆ Secret for the set of unguessable values (such as

nonces) occurring in P . We assume that different processes have disjoint sets of local

channels, keys and secrets. Local channels are used to store local state between the

execution rounds. Examples for processes specified using this DSL can be found in

Section 9.5.

We now explain the translation from programs in the DSL to first-order logic (FOL)

formulas. The formalization automatically derives an upper bound for the set of knowl-

edge the adversary can gain. We use a predicate knows(E) meaning that the adver-

sary may get to know E during the execution of the protocol. For any data value s

supposed to remain secret, one thus has to check whether one can derive knows(s).
The set of predicates defined to hold for a given program in the DSL is defined as

follows.

For each publicly known expression E, one define knows(E) to hold (in particular for

the empty message ε). The fact that the adversary may enlarge his set of knowledge

by constructing new expressions from the ones he knows is captured by the formula

in Fig. 9.3.

Given a program p in our DSL, we define the FOL formula φ(p) that represents p for

the security analysis. The definition is given in Figure 9.4. For the usages of E ∈ Exp
in Figure 9.4, the assumption is that there are n occurrences of input expressions in E,

and E(i1, . . . , in) is the expression derived from E by substituting these occurrences

by the variables i1, . . . , in. Similarly, for E � ∈ Exp, the assumption is that there are

m occurrences of input expressions in E �
, and E �(j1, . . . , jm) is the expression de-

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 105/182

rived from E � by substituting these occurrences by the variables j1, . . . , jm. Also, we
assume that the predicate key(K) is true iff K is a key. The formula formalizes the
fact that, if the adversary knows expressions exp1, . . . , expn validating the condition
cond(exp1, . . . , expn), then he can send them to one of the protocol participants to re-
ceive the message exp(exp1 , . . . , expn) in exchange, and then the protocol continues.

∀E1, E2.
�
knows(E1) ∧ knows(E2) ⇒ knows(E1 :: E2)

∧ knows({E1}E2) ∧ knows(SignE2
(E1))

�

∧
�
knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)

�

∧
�
knows({E1}E2) ∧ knows(E−1

2) ⇒ knows(E1)
�

∧
�
knows(Sign

E
−1
2

(E1)) ∧ knows(E2) ⇒ knows(E1)
�

Figure 9.3: Structural formulas

Suppose we are given a process P = (I, O, L, (pc)c∈O) where I, O, L are the sets
of input, output, and local channels. For each program p associated with a non-
local output channel, this gives a predicate PRED(p) where expressions of the form
knows(ik) (where ik is an input received over a local input channel) are substituted by
the expression sent(ik). For each program p associated with a local output channel,
the expression knows(E(i1, . . . , in)) in the first line of Figure 9.4 is similarly substituted
by sent(E(i1, . . . , in)). Additionally, we have sent(ε) as an axiom (where ε represents
the empty message). These modifications capture the fact that the adversary cannot
read from or write to local channels.

Given a process P specifying a crypto protocol, the logical formula ψ(P) used in the
security analysis is the conjunction of the formulas representing the publicly known
expressions, the formula in Figure 9.3, and the conjunction of the formulas PRED(p)
for each program p implementing a part of the protocol (with the modifications ex-
plained in the previous paragraph). The attack conjecture, for which the automated
theorem prover will check whether it is derivable from ψ(P), depends on the security
requirements given. For the requirement that the data value s is to be kept secret, the
attack conjecture is knows(s). Thus, we say that the process P preserves the secrecy
of the data value s if ψ(P) �� knows(s) (i.e. it is not possible to derive knows(s) from
the formulas defined by a protocol). Also, given a condition C on the input/output be-
havior of the process P , we say that the process P preserves the secrecy of the data
value s assuming C if ψ(P) ∧ C �� knows(s)

We then use an automated theorem prover (such as SPASS [WSH+07]) for verifying
security protocols as a “black box”: An input file (constructed using the translation
to FOL defined above) is presented to the ATP and an output from the ATP is ob-
served. No internal properties of or information from the ATP is used. This allows
one to use different ATPs interchangingly (besides SPASS, e.g. e-SETHEO, Vampire

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 106/182

and Waldmeister) which helps overcoming restrictions of a given ATP. The results of
the theorem prover have to be interpreted as follows: If the conjecture stating for ex-
ample that the adversary may get to know the secret can be derived from the axioms
which formalize the adversary model and the protocol specification, this means that
there may be an attack against the protocol. If the attack conjecture can be derived
from the protocol axioms, we use an attack generation script programmed in Prolog
to construct the attack scenario (which essentially implements the above FOL formal-
ization in Prolog to be able to directly query the variable valuations). If the conjecture
cannot be derived from the axioms, this constitutes a proof that the protocol is secure
with respect to the security requirement which is the negation of the attack conjecture,
because logical derivation is sound and complete with respect to semantic validity for
first-order logic. Note that since first-order logic in general is undecidable, it can hap-
pen that the ATP is not able to decide whether a given conjecture can be derived from
a given set of axioms. However, experience has shown that for a reasonable set of
protocols and security requirements, our approach is in fact practical.

φ(E) = ∀i1, . . . , in.
�
knows(i1) ∧ . . . ∧ knows(in)

⇒ knows(E(i1, . . . , in))
�

φ(either p or p�) = φ(p) ∧ φ(p�)
φ(if E = E � then p else p�) =
∀i1, . . . , in.

�
knows(i1) ∧ . . . ∧ knows(in) ⇒
[E(i1, . . . , in) = E �(i1, . . . , in) ⇒ φ(p)]
∧ [E(i1, . . . , in) �= E �(i1, . . . , in) ⇒ φ(p�)]

�

φ(case E of key do p else p�) =
∀i1, . . . , in.

�
knows(i1) ∧ . . . ∧ knows(in) ⇒

[key(E(i1, . . . , in)) ⇒ φ(p)]
∧ [¬key(E(i1, . . . , in)) ⇒ φ(p�)]

�

φ(case E of x :: y do p else p�) =
∀i1, . . . , in.

�
knows(i1) ∧ . . . ∧ knows(in) ⇒
∀h, t.[E(i1, . . . , in) = h :: t ⇒ φ(p[h/x, t/y])]
∧ [¬∃h, t.E(i1, . . . , in) = h :: t ⇒ φ(p�)]

�

Figure 9.4: Definition of φ(p).

A prototypical implementation of the tool-support, which performs a translation from a
state machine representation of the protocol to the FOL formulas, can be downloaded
as open source from [Too09].

9.2 System Evolution: Atomic Change

In this section we discuss which kind of atomic changes are possible in the context of
the DSL defined in Section 9.1, and how to deal with the changes in the context of the

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 107/182

security analysis approach explained in that Section.

First, we observe that any evolution from a DSL process P to a process P � can be
broken down into a sequence of subsequent modifications of the following kinds:

• deletion of any of the DSL constructs from Figure 9.2,

• insertion of any of the DSL constructs from Figure 9.2.

Thus, we can reduce the impact analysis of evolution on our security analysis to the
impact that any of the above atomic steps has on the analysis, which we will do in the
following.

Deletion We start by considering the case of deletion.

For a given DSL program p, we write ψP,A(p) for the conjunction of φ(p), the formulas
capturing the given public knowledge P and the given previous knowledge A of the
adversary, and the general axioms defined in Section 9.1.

We write p � p� (pronounced “p leaks more knowledge than p�”) iff for each pub-
lic knowledge P and previous attacker knowledge A and for each E ∈ Exp with
ψP,A(p�) � knows(E), we have ψP,A(p) � knows(E).

Theorem 1. Assume that the program p� evolved from the program p where p and
p� are related as in the following case distinctions. Assume we are given the public
knowledge P and the previous adversary knowledge A.

p = E, p� = ε (where E ∈ Exp and ε is the empty program): This implies p � p�.

p = either p� or p��: This implies p � p� and p � p��.

p = if E = E � then p� else p��: For any expression X ∈ Exp such that p preserves
the secrecy of X:
p� preserves the secrecy of X assuming E = E � and
p�� preserves the secrecy of X assuming E �= E �.

p = case E of key do p� else p��: For any expression X ∈ Exp such that p preserves
the secrecy of X:
p� preserves the secrecy of X assuming E ∈ Keys and
p�� preserves the secrecy of X assuming E �∈ Keys.

p = case E of x :: y do p� else p��: For any expression X ∈ Exp such that p pre-
serves the secrecy of X:
p� preserves the secrecy of X assuming ∃x, y.E = x :: y and p�� preserves the
secrecy of X assuming ¬∃x, y. E = x :: y.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 108/182

Proof sketch: The proof proceeds by case distinction along the definition of the gram-

mar of the DSL in Figure 9.2 and the translation to FOL defined in Figure 9.4.

As we can observe, deletion of program elements in the way considered above pre-

serve the level of confidentiality provided by the program, but only up to the conditions

in conditionals (because for example, there may be data leakage “hidden” in condi-

tional branches whose condition is never satisfied).

Insertion The case of insertion is more complex than deletion.

Theorem 2. Assume that the program p evolved from the program p� where p and p�

are related as in the following case distinctions.

p = E, p� = ε (where E ∈ Exp and ε is the empty program): For any expression X,
we have ψ(p) � knows(X) iff ψ(p�) ∧

�
∀i1, . . . , in.[knows(i1) ∧ . . . ∧ knows(in)

⇒ knows(E(i1, . . . , in))]
�
� knows(X).

p = either p� or p��: For any expression X, we have
ψ(p) � knows(X) iff ψ(p�) ∧ ψ(p��) � knows(X).

p = if E = E � then p� else p��: For any expression X, we have ψ(p) � knows(X) iff�
∀i1, . . . , in.[knows(i1) ∧ . . . ∧ knows(in) ⇒
(E(i1, . . . , in) = E �(i1, . . . , in) ⇒ φ(p�))
∧ (E(i1, . . . , in) �= E �(i1, . . . , in) ⇒ φ(p�))]

�
� knows(X).

p = case E of key do p� else p��: For any expression X, we have ψ(p) � knows(X)
iff�
∀i1, . . . , in.[knows(i1) ∧ . . . ∧ knows(in) ⇒

(key(E(i1, . . . , in)) ⇒ φ(p))
∧ (¬key(E(i1, . . . , in)) ⇒ φ(p�))]

�
� knows(X).

p = case E of x :: y do p� else p��: For any expression X, we have ψ(p) � knows(X)
iff�
∀i1, . . . , in.[knows(i1) ∧ . . . ∧ knows(in) ⇒
∀h, t.(E(i1, . . . , in) = h :: t ⇒ φ(p[h/x, t/y]))
∧ (¬∃h, t.E(i1, . . . , in) = h :: t ⇒ φ(p�))]

�
� knows(X).

Proof sketch: Again, the proof proceeds by case distinction along the definition of

the grammar of the DSL in Figure 9.2 and the translation to FOL defined in Figure 9.4.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 109/182

[E](�M) = {E(�M)} where E ∈ Exp

[either p or p�](�M) = [p](�M) ∪ [p�](�M)

[if E = E� then p else p�](�M) = [p](�M) if [E](�M) = [E�](�M)

[if E = E� then p else p�](�M) = [p�](�M) if [E](�M) �= [E�](�M)

[case E of key do p else p�](�M) = [p](�M) if [E](�M) ∈ Keys

[case E of key do p else p�](�M) = [p�](�M) if [E](�M) /∈ Keys

[case E of x :: y do p else p�](�M) = [p[h/x, t/y]](�M)

if [E](�M) = h :: t where h �= ε and h is not of the form h1 :: h2 for h1, h2 �= ε

[case E of x :: y do p else p�](�M) = [p�](�M) if [E](�M) = ε

Figure 9.5: Definition of [p](�M).

9.3 System Evolution: Architectural Change

In this section, we investigate several types of evolution at a higher level of abstraction
than the atomic changes considered in the previous section, namely architectural
changes.

For this, we first need to recall some information about the formal semantics of our
DSL from [Jür09].

For a formal semantics of the DSL, we use stream-processing functions (cf. [BS01a]).
We write StreamC

def
= (CExp∞)C (where C ⊆ Channels) for the set of C-indexed

tuples of (finite or infinite) sequences of closed expressions. The elements of this
set are called streams, specifically input streams (resp. output streams) if C de-
notes the set of non-local input (resp. output) channels of a process P . Each stream
�s ∈ StreamC consists of components �s(c) (for each c ∈ C) that denote the sequence
of expressions appearing at the channel c. The nth element xn in such a sequence
�s(c) = (x1, x2, x3, . . . , xn, . . .) consisting of expressions xi is the expression appear-
ing at time t = n. A function f : StreamI → P(StreamO) from streams to sets of
streams is called a stream-processing function.

The composition of two stream-processing functions fi : StreamIi → P(StreamOi)
(i = 1, 2) with O1 ∩O2 = ∅ is defined as:

f1 ⊗ f2 : StreamI → P(StreamO)

(with I = (I1 ∪ I2) \ (O1 ∪O2),
O = (O1 ∪O2) \ (I1 ∪ I2)).

... ...

... ...

I1 I2

f1 f2
O1 O2

where f1 ⊗ f2(�s)
def
= {�t �O: �t �I= �s �I ∧�t �Oi∈ fi(�s �Ii) (i = 1, 2)} (where �t ranges

over StreamI∪O). For �t ∈ StreamC and C � ⊆ C, the restriction �t �C�∈ StreamC� is
defined by �t �C� (c) = �t(c) for each c ∈ C �. Since the operator ⊗ is associative and
commutative [BS01a], we can define a generalised composition operator

�
i∈I

fi for
a set {fi : i ∈ I} of stream-processing functions.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 110/182

A process P = (I, O, L, (pc)c∈O) is modelled by a stream-processing function [[P]] :
StreamI → P(StreamO) from input streams to sets of output streams. For any
closed program p with input channels in Ĩ

def
= I ∪ L and any Ĩ-indexed tuple of closed

expressions �M ∈ CExpĨ we define a set of expressions [p](�M) ∈ P(CExp) in
Fig. 9.5, so that [p](�M) is the expression that results from running p once, when the
channels have the initial values given in �M . We write E(�M) for the result of substitut-
ing each occurrence of c ∈ Ĩ in E by �M(c) and p[E/x] for the outcome of replacing
each free occurrence of x in process P with the term E, renaming variables to avoid
capture. Then any program pc (for c ∈ Channels) defines a stream-processing function
[pc] : Stream

Ĩ
→ P(Stream{c}) as follows. Given �s ∈ Stream

Ĩ
, let [pc](�s) consist

of those �t ∈ Stream{c} such that

• �t0 ∈ [pc](ε, . . . , ε)

• �tn+1 ∈ [pc](�sn) for each n ∈ N.

Finally, a process P = (I, O, L, (pc)c∈Õ
) (where Õ

def
= O ∪ L) is interpreted as the

composition [[P]]
def
=

�
c∈Õ

[pc].

9.4 Reduction of non-determinism

We consider architectural change with the goal of reducing the non-determism admit-
ted in the running system.

Definition 1. For processes P and P � with IP = IP � and OP = OP � we define P � P �

if for each �s ∈ StreamIP , [[P]](�s) ⊇ [[P �]](�s) (i.e. each possible execution of P � is also
a possible execution of P).

Example (either p or q) � p and (either p or q) � q for any programs p, q.

Theorem 3.

• If P preserves the secrecy of m and P � P � then P � preserves the secrecy of
m.

• If P preserves the secrecy of m assuming C (for any condition C on the in-
put/output behavior of the process P) and P � P � then P � preserves the se-
crecy of m assuming C.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 111/182

Proof sketch: The proof follows immediately from the definitions of secrecy and the
� relation, since secrecy is defined over the set of communicated values, and this
set can only be reduced under �.

Note that the reduction of non-determism is technically related to the refinement by
removing under-specification considered in [BS01a, Jür09], although it is used in a
different context.

Restriction of Interfaces We consider architectural change with the goal of restrict-
ing the interface of a part of the system.

Theorem 4.

• If P preserves the secrecy of m then P preserves the secrecy of m assuming
C (for any condition C on the input/output behavior of the process P).

Proof sketch: The proof follows immediately from the definitions of secrecy, since
secrecy is defined over the set of possible system executions, and this set can only
be reduced by imposing the condition C.

Refactoring

Definition 2. Let P1, P2, D and U be processes with
IP1 = ID, OD = IP2 , OP2 = IU , and OU = OP1 . We

define P1
(D,U)� P2 to hold if P1 � D ⊗ P2 ⊗ U .

D U

P1

P2

Example Suppose we the formulas in Figure 9.6 hold. Then we have P1
(D,U)� P2.

• P1 = ({c}, {d}, pd
def
= if inp(c) = 1 then 2 else 3),

• P2 = ({c�}, {d�}, pd�
def
= if inp(c�) = 4 then 5 else 6),

• D = ({c}, {c�}, pc�
def
= if inp(c) = 1 then 4 else ε) and

• U = ({d�}, {d}, pd
def
= if inp(d�) = 5 then 2 else 3.

Figure 9.6: Example processes

For the next preservation result we need the following concepts. Given a stream
�s ∈ StreamX and a bijection ι : Y → X we write �sι for the stream in StreamY

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 112/182

obtained from �s by renaming the channel names using ι: �sι(y) = �s(ι(y)).

Given processes D, D� with OD = ID� and OD� ∩ ID = ∅
and a bijection ι : OD� → ID such that [[D]] ⊗ [[D�]](�s) =
{�sι} for each �s ∈ StreamID , we say that D is a left in-
verse of D� and D� is a right inverse of D.

D D’
=

Example pd

def
= 0 :: inp(c) is a left inverse of pe

def
= case inp(c) of h :: t do t else ε.

We write S ◦ R
def
= {(x, z) : ∃y.(x, y) ∈ R ∧ (y, z) ∈ S} for the usual composition

of relations R, S and generalize this to functions f : X → P(Y) by viewing them as
relations f ⊆ X × Y . We note that a condition C on the input/output behavior of a
process P can be viewed as a relation C ⊆ StreamOP × StreamIP .

Theorem 5. Let P1, P2, D and U be processes with IP1 = ID, OD = IP2 , OP2 = IU

and OU = OP1 and such that D has a left inverse D� and U a right inverse U �. Let
m ∈ (Secret ∪Keys) \

�
Q∈{D�,U �}(SQ ∪KQ).

• If P1 preserves the secrecy of m and P1
(D,U)� P2 then P2 preserves the secrecy

of m.
• If P1 preserves the secrecy of m assuming C ⊆

StreamOP1
× StreamIP1

and P1
(D,U)� P2 then P2 preserves the secrecy of

m assuming [[U �]] ◦ C ◦ [[D�]].

Proof sketch: This statement follows directly from Theorem 3 and the definition of
refactoring.

This notion of refactoring considered here is similar on a technical level to interface
refinement defined in [BS01a] and already considered in [Jür09], although again it is
used for a different purpose.

Change up to a Set of Behaviors C We consider the situation where a process has
changed arbitrarily, except that for a set of input/output behaviors C it has remained
the same.

Definition 3. Let P1 and P2 be processes with IP1 = IP2 and OP1 = OP2 . We define
P1 �C P2 for a total relation C ⊆ StreamOP1

× StreamIP1
to hold if for each �s ∈

StreamIP1
and each �t ∈ [[P2]], (�t,�s) ∈ C implies �t ∈ [[P1]].

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 113/182

Example p �C (if inp(c) = emergency then q else p) for C = {(�t,�s) : ∀n.�sn �=
emergency}.

Theorem 6.
Given total relations C, D ⊆ StreamOP × StreamIP with C ⊆ D, if P preserves
the secrecy of m assuming C and P �D P � then P � preserves the secrecy of m
assuming C.

Proof sketch: Again, this statement follows directly from Theorem 3 and the definition
of change up to a set of behaviors C.

The notion of change up to a set of behaviors C is technically similar to conditional
refinement from [BS01a] already considered in [Jür09], although again it is used for a
different purpose.

Modular Reuse of Verification Results In the situation where part of the system
remains unchanged (as considered in the previous subsection), we would like to be
able to reuse earlier verification results in a modular way by making use of security as-
sertions for system components which are generated during the automated security
analysis process. Note that our goal is not to investigate the problem of composition-
ality of security properties, but to collect the logical formulas generated from different
program fragments together and store them in assertions to be reused in a later anal-
ysis.

A set of security assertions for a program part p consists of statements derived(L, C, E)
where L is a list of variables, C is a condition over the variables in L, and E is an
expression which may contain free variables from L.

These assertions mean that the set of adversary knowledge is contained in the set
of expressions E that can be constructed by instantiating the variables from L with
values that themselves can be derived this way for p and which fulfill the condition
C. This way of formulating modular assertions on parts of the code is inspired by the
Assumption/Commitment specification approaches (see e.g. [BS01a]).

More formally, a program fragment p has an associated set L of statements
derived(L, C, E) if according to the security analysis in Section 9.1, an adversary gets
to know only those expressions that can be constructed recursively in the following
way.

• For all valuations of the variables v in L fulfilling C and such that knows(v) holds,
we have knows(Ē) for the corresponding valuation Ē of E.

Note that for a single protocol run of p, it is sufficient to use a finite set of such asser-
tions, namely those defined in the following way:

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 114/182

• For each expression E in the initial knowledge set of the adversary or the set of

previously known expressions for p, we define an assertion of the form

derived([], true,E) where [] is the empty list and true is the Boolean constant.

• For each list of predicates of the form

PRED(TRk) ≡ īk ∧ ck ⇒ āk ∧ PRED(TRk+1)

defined for p in Section 9.1 for k up to some number n, we define an assertion

of the form derived(L, C, E) where L is the list of free variables in that list of

predicates, C is a nested implication of the form

IMP(TRk) ≡ ck ⇒ āk ∧ IMP(TRk+1)

(where āk = ak in case ak is of the form localvar = value and āk = true other-

wise), and E is the concatenation of the actions ak that are of the form

ak = outpattern.

For atoms that are freshly generated in each protocol run, we assume that these are

given as methods with a sequence number of the protocol run as free variables. Then

one can obtain a finite set of assertions bounding the adversary knowledge by closing

the above assertions with forall quantification over the sequence number variables

that they contain.

In order to make sure that the set of expressions generated by L does not contain any

expressions that according to the security requirements for p are supposed to remain

secret (because otherwise the security assertions would be practically unusable), the

code fragment p is first analyzed using the approach in Section 9.1. We then say the

L is a secure bound generator for the adversary knowledge. Of course, there can only

be a secure bound generator for a program fragment p if p in fact fulfills its secrecy

requirements.

To analyze a program fragment p carrying a set of assertions L one takes the formulas

generated from the approach in Section 9.1 and adds for each assertion of the form

derived(L, C, E) an axiom of the form as in Figure 9.7 to the input file that is to be

![v1,...,vn]: knows(v1) &...& knows(vn)
& C(v1,...,vn) => knows(E)

Figure 9.7: Axiom

analyzed by the ATP (where L is assumed to be the list of variables v1, ..., vn and

C(v1, ..., vn) is the instantiation of the condition C with the variables v1, ..., vn).

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 115/182

Figure 9.8: Variant of the TLS handshake

9.5 Example: Secure Channel Evolution

As an example for how our approach allows us to deal with system evolution, we

consider the implementation of a secure channel W from a client C to a server S
using the handshake protocol of a variant of TLS.

Example: A Variant of the TLS Protocol We specify a variant of the handshake

protocol of TLS
2

as proposed at IEEE Infocom 1999
3

(note that this is not the variant

of TLS in common use). To show applicability of our approach, we exhibit a security

vulnerability, suggest a correction, and verify it. The goal of the protocol is to let a

client send a secret over an untrusted communication link to a server in a way that

provides secrecy and server authentication, by using symmetric session keys. The

central part of the specification of this protocol is shown in Fig. 9.8. The two protocol

participants client and server are connected by an Internet connection. The value

secret which is exchanged encrypted in the last message of the protocol is required to

remain secret.

Depicted in Fig. 9.8, the protocol proceeds as we explain in the following. Here we as-

sume that the set Var contains elements argO,l,n for each O ∈ Obj(D) and numbers

2
TLS (transport layer security) is the successor of the Internet security protocol SSL (secure sockets

layer).
3
V. Apostolopoulos, V. Peris, and D. Saha. Transport layer security: How much does it really cost?

In Conference on Computer Communications (IEEE Infocom), pages 717–725. IEEE, Mar. 1999.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 116/182

l and n, representing the nth argument of the operation that is supposed to be the
lth operation received by O according to the sequence diagram D. The client C initi-
ates the protocol by sending the message init(NC, KC,SignK−1

C
(C :: KC)) to the server

S. Suppose that the condition [tail(ExtK�(cC))=K�] holds, where K � ::= argS,1,2 and
cC ::=argS,1,3. That is, the key KC contained in the signature matches the one trans-
mitted in the clear. In that case, S sends the message resp

�
NS, {SignK−1

S
(K :: N�)}K� ,

SignK−1
CA

(S :: KS)
�

back to C (where N� ::= argS,1,1). Then if the condition

[head(ExtKCA(cS))=S ∧ tail(ExtK��(DecK−1
C

(ck)))=NC]

holds, where ck ::=argC,1,2, cS ::=argC,1,3, and K�� ::= tail(ExtKCA(cS)) (that is, the cer-
tificate is actually for S and the correct nonce is returned), C sends xchd({si}k) to S,
where k ::= head(ExtK��(DecK−1

C
(ck))). If any of the checks fail, the respective protocol

participant stops the execution of the protocol.

The goal is thus to let a client C send a master secret m ∈ Secret to a server S in
a way that provides confidentiality and server authentication. The protocol uses both
RSA encryption and signing. Thus in this and the following section we assume also
the equation {DecK−1(E)}K = E to hold (for each E ∈ Exp and K ∈ Keys). We
also assume that the set of data values D includes process names such as C, S, Y, . . .

and a message abort. The protocol assumes that there is a secure (wrt. integrity) way
for C to obtain the public key KCA of the certification authority, and for S to obtain a
certificate SignK−1

CA
(S :: KS) signed by the certification authority that contains its

name and public key. The adversary may also have access to KCA, SignK−1
CA

(S ::

KS) and SignK−1
CA

(Z :: KZ) for an arbitrary process Z. The channels between the
participants are thus as depicted in Figure 9.9.

Cl ��

c
��
A

c�
��

s�
�� S r��

s
��

CA

aC

��

aA

��

aS

��

Figure 9.9: Channels between participants

Now we define the protocol using our domain-specific language in Figure 9.10 (here
and in the following we denote a program with output channel c simply as c for read-
ability). For readability we leave out a time-stamp, a session id, the choice of cipher
suite and compression method and the use of a temporary key by S since these are
not relevant for the weakness. We use syntactic sugar by extending the case list con-
struct to lists of finite length and by using pattern matching, and we also leave out
some case of key do else constructs to avoid cluttering. Similarly, we use the ex-
pression DecKCS(inp(c�)) ∈ Data ∪ Secret as a short-hand for nested if then else
statements which iteratively check equality of DecKCS(inp(c�)) with all values in the

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 117/182

c
def
= if inp(l) = ε then NC :: KC :: SignK−1

C
(C :: KC)

else case inp(s�) of s1 :: s2 :: s3

do case Ext inp(aC)(s3) of S :: x

do if {DecK−1
C

(s2)}x = y :: NC then {m}y

else abort

else abort

else ε

l
def
= 0

s
def
= case inp(c�) of c1 :: c2 :: c3

do case Ext c2(c3)of x :: c2 do

NS :: {SignK−1
S

(KCS :: c1)}c2 :: inp(aS)

else abort

else ε

r
def
= if DecKCS(inp(c�)) ∈ Data ∪ Secret then

DecKCS(inp(c�)) else ε

aC
def
= KCA

aA
def
= KCA :: SignK−1

CA
(S :: KS) :: SignK−1

CA
(Z :: KZ)

aS
def
= SignK−1

CA
(S :: KS)

Figure 9.10: Protocol definition

finite set Data ∪ Secret. Here the local channel l of C only ensures that C initi-
ates the handshake protocol only once (by sending out an arbitrary message (0) so
that only at the start of the program execution the first condition in the definition of
the program on channel c will hold). The exchanged key is symmetric, i. e. we have
K−1

CS = KCS. The values sent on aA signify that we allow A to eavesdrop on aC and
aS and to obtain the certificate issued by CA of some third party. The local channel r
of the server will contain the decrypted secret (which is assumed to be a value in the
set Data ∪ Secret) after it has been communicated successfully.

The ATP e-SETHEO returns as an output that the conjection knows(secret) can be
derived from the defined rules (within three seconds4). For this example the attack
tracking tool needs around 20 seconds to produce the attack which is visualized in
Fig. 9.11.

4On a SunFire 3800 (4 processors, 6 GByte RAM, Solaris 9).

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 118/182

C
NC ::KC ::Sign

K−1
C

(C::KC)
�� A

NC ::KA::Sign
K−1

A
(C::KA)

�� S

C A
NS ::{Sign

K−1
S

(KCS ::NC)}KC
::Sign

K−1
CA

(S::KS)
�� S

NS ::{Sign
K−1

S
(KCS ::NC)}KA

::Sign
K−1

CA
(S::KS)

��

C
{m}KCS �� A

{m}KCS �� S

Figure 9.11: Attack against TLS Variant

We can fix this problem as follows: Let S � be the process derived from S by substi-
tuting KCS :: c1 in the second line of the definition of s by KCS :: c1 :: c2. Change C
to C � by substituting y :: NC in the fourth line of the definition of c by y :: NC :: KC

as depicted in Figure 9.12. Now the new version can be verified by the automated

C
NC ::KC ::Sign

K−1
C

(C::KC)
�� S

C S
NS ::{Sign

K−1
S

(KCS ::NC ::KC)}KC
::Sign

K−1
CA

(S::KS)
��

C
{m}KCS �� S

Figure 9.12: TLS fix

theorem prover approach. When e-SETHEO runs on the fixed version of the proto-
col it now gives back the result that the conjecture knows(secret) cannot be derived
from the axioms formalizing the protocol, within 5 seconds. More specifically, within
the e-SETHEO suite, the prover “eprover” was able to establish that there is no such
derivation by exhaustively trying all possibilities. Note that this result means that there
actually exists no such derivation, not just that the theorem prover is not able to find it.
This means in particular that the attacker cannot gain the secret knowledge anymore.

From the point of view of secure systems evolution, this improvement now raises the
question whether the modifcation may have a negative on the confidentiality of other
data values in the protocol.

Theorem 7. Let P be the process which formalizes the (insecure) TLS variant con-
sidered above and P � its patch suggested above. Then P � P � (that is, for every data
value d whose secrecy is preserved by P , the secrecy of d is also preserved by P �).

Proof sketch: Including the client’s public key in the message of the server does not
enlarge the adversary’s knowledge since it is already public knowledge.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 119/182

Adding another conjunct to the condition that is checked before the client sends out

the second message does not enlarge the possible behavior of the client (but on

the contrary restricts it). Therefore, it does not increase the adversary’s potential for

enlarging its knowledge.

Secure Channel Evolution The initial requirement is that a client C should be able

to send a message msg on W with intended destination a server S so that msg is

not leaked to A. Before a security risk analysis the situation may simply be pictured

in Figure 9.13. Since there are no unconnected output channels, the composition

C
co ��

W
ci

��

si ��
S

so
��

Figure 9.13: Situation before risk analysis

C⊗W⊗ S obviously does not leak msg.

Suppose that the risk analysis indicates that the transport layer over which W is to be

implemented is vulnerable against active attacks. This leads to the model in Figure

9.14.

C
co ��

Pc
ci

��
pc

���
��

��
�� Ps

si ��

ps
����

��
��

�

S
so

��

A
ac

���������

as

���������

Figure 9.14: Model following risk analysis

We would like to implement the secure channel using the (corrected) variant of the

TLS handshake protocol considered in Section 9.5. Thus Pc resp. Ps are implemented

by making use of the client resp. server side of the handshake protocol. In Figure 9.15

we only consider the client side. We would like to provide an implementation Pc such

C
co ��

Pc
ci

��
pc

���
��

��
��

A
ac

���������

Figure 9.15: Client side of the TLS variant

that for each C with msg ∈ SC, C ⊗ Pc preserves the secrecy of msg (where msg
represents the message that should be sent to S). Of course, Pc should also provide

functionality: perform the initial handshake and then encrypt data from C under the

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 120/182

negotiated key K ∈ Keys and sent it out onto the network. As a first step, we
may formulate the possible outputs of Pc as nondeterministic choices (in order to
constrain the overall behaviour of Pc). We also allow the possibility for Pc to signal
to C the readiness to receive data to be sent over the network, by sending ok on
ci as depicted in Figure 9.16. Figure 9.17 cK denotes the following adaption of the

pc
def
= either if inp(co) = ε then ε else {inp(co)}K

or cK

ci
def
= either ε or ok

Figure 9.16: Channel behaviour

(corrected) program c defined in Section 9.5 (for readability, we allow to use syntactic
“macros” here, the resulting program is obtained by “pasting” the following program
text in the place of cK in the definition of pc). For simplicity, we assume that Pc has
already received the public key KCA of the certification authority. We leave out the
definition of ci since at the moment we only consider the case where C wants to sent
data to S. One can show that for any C, the composition C⊗Pc preserves the secrecy

cK
def
= either NC :: KC :: SignK−1

C
(C :: KC)

or case inp(ac) of s1 :: s2 :: s3

do case ExtKCA(s3) of S :: x

do if Extx(DecKC (s2)) = y :: NC :: KC then {K}y

else abort

else abort

else abort

Figure 9.17: Program definition for channel ck

of the messages sent along c0.

As a next step, we may split Pc into two components: the client side H of the hand-
shake protocol (as part of the security layer) and program P (in the application layer)
that receives data from C, encrypts it using the key received from H and sends it out
on the network as depicted in Figures 9.18 and 9.19.

Here we have a refactoring Pc
(D,U)�T P ⊗ H up to the set of behaviors T (cf. Section

9.4 and 9.4) where

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 121/182

C
co ��

P
ci

��

hi ��

pc

���
��

��
�� Hho��

ha����
��

��
�

A
ac

���������

ah

���������

Figure 9.18: Pc after split

ha

def
= if inp(hi) = ε then NC :: KC :: Sign

K
−1
C

(C :: KC)

else case inp(ah) of s1 :: s2 :: s3

do case ExtKCA(s3) of S :: x

do if {DecKC (s2)}x = y :: NC :: KC then {m}y

else abort

else abort

else abort

ho

def
= if inp(hi) = ε then ε

else case inp(ah) of s1 :: s2 :: s3

do case ExtKCA(s3) of S :: x

do if {DecKC (s2)}x = y :: NC :: KC then finished

else ε

else ε

else ε

hi

def
= 0

pc

def
= if inp(co) = ε then ε else {inp(co)}K

ci

def
= if inp(ho) = finished then ok else ε

Figure 9.19: Program channel description

• T ⊆ StreamOPc
× StreamIPc

consists of those (�s,�t) such that for any n, if
(�s(c̃i))�i �= finished for all i ≤ n then (�s(c̃o))�i= ε for all i ≤ n + 1

• and D and U have channel sets ID = {c̃o, ãc}, OD = {co, ac, ah}, IU =
{ci, pc, ha} and OU = {c̃i, p̃c} and are specified by

co

def
= inp(c̃o), ac

def
= inp(ãc), ah

def
= inp(ãc),

c̃i

def
= inp(ci), p̃c

def
= inp(ha)

(after renaming the channels of Pc to c̃o, c̃i, p̃c, ãc).

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 122/182

Therefore, for any C with [[C]] ⊆ T , we have a refactoring C ⊗ Pc
(D,U)� C ⊗ P ⊗ H.

Since for any C, the composition C⊗ Pc preserves the secrecy of the messages sent

along c0, as noted above, this implies that for any C with [[C]] ⊆ T , the composition

C⊗ P ⊗H preserves the secrecy of these messages by Theorem 5 (since D and U

clearly have inverses).

9.6 Composition and Secrecy

Following the definition of composition of processes as stream functions, it is possible

to show that the FOL predicate of P ⊗ P
� is just:

ψ(P ⊗ P
�) = ψ(P) ∧ ψ(P �)

It follows immediately that ψ(P ⊗ P
�) = ψ(P � ⊗ P).

If we assume that both P and P
�
preserve the secrecy of the data value s, our goal is

to show conditions so that:

ψ(P ⊗ P
�) � knows(s).

In general this does not hold. For example consider a process P which outputs {s}K

and a process P
�
which outputs K

−1
. Independently this both processes preserve the

secrecy of s, but when composed an adversary could trivially compute s.

We will try to understand when secrecy is preserved in a single process in order to

understand when it is preserved under composition. To do that we will need some

definitions.

Definition 4 (Subterm). We say that a symbol x is a subterm of the symbol T and
denote it x ∈̂T when:

x=T

T={T’}K and x ∈̂T’

T=SignK{T’} and x ∈̂T’

T= h::k and x ∈̂h or x ∈̂ k

Where by “=” we mean syntactic equality.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 123/182

For example s ∈̂ {s}K but is not true that K ∈̂ {s}K. We denote this by K ˆ�∈ {s}K. In-
tuitively this means that an adversary could potentially compute s from {s}K but he
could not compute K.

Definition 5 (Inverse). Let x ∈̂ J. We define the cryptographic inverse of a symbol J
with respect to x and denote it J−1(x) in the following way:

x−1(x) = �

If J=h::k and x ˆ�∈h then J−1(x)=k−1(x)

If J=h::k and x ˆ�∈ k then J−1(x)=h−1(x)

If J=h::k and x ∈̂ k, x ∈̂h then:

J−1(x) = and(h−1(x), k−1(x))

If J={J’}K or J=SignK{J’} then:

J−1(x) = or(J�−1(x), K−1)

For example let J = {{s}K1}K2 . Then:

J−1(s) = or(K−1
1 , K−1

2)

which we will interpret later as “to preserve the secrecy s we need to preserve either
K−1

1 or K−1
2 ”.

Definition 6. Let ψ(P) be the first order logic formula associated to P . We define
ψ̄(P) to be the set of instantiated formulas of ψ(P) with all possible values satisfying
the constraints in ψ(P).

It is possible to show by induction on the program constructs that ψ̄(P) consists of
formulas Fi of the form:

knows(Ei) ⇒ knows(Ji)

for closed expressions Ei and Ji (symbols).

Definition 7. Let Pres(x,P) be the following inductively defined predicate:

((∀Fi ∈ ψ̄(P) x ˆ�∈Ji) ⇒ Pres(x,P))

∧ (∀Fi ∈ ψ̄(P) (x ∈̂ Ji) ⇒ ((Pres(Ei,P) ∨ Pres(Ji
−1(x),P))

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 124/182

∧ ((x = {x’}K ∨ x = SignK{x’}) ⇒ (Pres(x’,P) ∨ Pres(K,P))

∧ ((x = h::k ⇒ (Pres(h,P) ∨ Pres(k,P))

∧ ((x = and(h,k) ⇒ (Pres(h,P) ∧ Pres(k,P))

∧ ((x = or(h,k) ⇒ (Pres(h,P) ∨ Pres(k,P)))

⇒ Pres(x,P)

and ¬Pres(�,P).

We assume a closed world for this predicate, and therefore if we can’t derive Pres(x,P)
for some x, it follows ¬Pres(x,P).

Claim

If it is possible to derive Pres(x,P) (conversely ¬Pres(x,P)) then ψ(P) � knows(x)
(ψ(P) � knows(x)).

Proof
Clearly ¬Pres(�,P) since knows(�) ∈ ψ̄(P) for all P . If ∀Fi ∈ ψ̄(P) x ˆ�∈Ji that means
that there is no formula in ψ̄(P) containing x in a conclusive position, and therefore
there is no way to derive knows(x) from the structural formulas.

Now assume it is possible to derive Pres(x,P). We have already covered the base
cases so we can assume that in the formula:

(∀Fi ∈ ψ̄(P) (x ∈̂ Ji) ⇒ ((Pres(Ei,P) ∨ Pres(Ji
−1(x),P))

∧ ((x = {x’}K ∨ x = SignK{x’}) ⇒ (Pres(x’,P) ∨ Pres(K,P))

∧ ((x = h::k ⇒ (Pres(h,P) ∨ Pres(k,P))

∧ ((x = and(h,k) ⇒ (Pres(h,P) ∧ Pres(k,P))

∧ ((x = or(h,k) ⇒ (Pres(h,P) ∨ Pres(k,P)))

⇒ Pres(x,P)

ψ(P) � knows(y) for all the Pres(y,P) y �= x needed in the precondition.

Since in this formulas all the cases where we could apply the Structural Formulas are
covered, it is impossible to derive knows(x). The case ¬Pres(x,P) is similar.

�

Note that the converse does not hold, that is ψ(P) � knows(x) does not mean we can
derive Pres(x,P), because for some pathological cases we will have an infinite loop,
for example for:

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 125/182

ψ̄(P) = knows(x)⇒ knows(x).

It is although reasonable to expect this kinds of loops not to be present in practical

cases. It would be an interesting matter of future work to completely classify this kind

of cases. It is nevertheless possible to detect this loops in a machine implementation

of the preservation predicate.

Example

Consider P = ({s}h::t, K
−1
2) , P � = ({h}K2 , t).

Then ψ̄(P ⊗ P �) = {knows({s}h::t), knows(K−1
2), knows({h}K2), knows(t)}

where we omit knows(�)⇒ before each formula, but we assume it is there formally.

Now it is easy to see from the definition that to derive Pres(s,P ⊗ P’) we would need

derive Pres(h::t,P ⊗ P’) and that means deriving either Pres(h,P ⊗ P’) or Pres(t,P ⊗
P’). Trivially it is not possible to derive Pres(t,P ⊗ P’) because it inverse with respect

to t is just �. Now, to derive Pres(h,P ⊗ P’) we need Pres(K−1
2 ,P ⊗ P’) which is not

possible by the same argument we used for t.

So we conclude ¬Pres(s,P ⊗ P’).

Matter of current work is to show how would be the predicate be applied to the for-

mulas obtained by an incorrect implementation of the TLS protocol [Jür05a], and its

corrected version.

9.7 Composition and evolution

From the inductively defined predicates Pres(x,P) and ¬Pres(x,P) is possible to record

the (finitely many) symbols needed to verify the secrecy of x and a boolean value that

states for the secrecy preservation of those symbols.

One could then store this trees for separated processes and use to re-verify secrecy

of compositions whenever changes are made to single components.

It is matter of current work to find a way to merge this proof trees for two different

processes P and P � representing composition in a way that is more efficient as simply

recomputing the secrecy value for x.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 126/182

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 127/182

!

10 The SecureChange Process and
Integration of Design Models

The change driven security process contains the classical steps of well established
security-processes [IR008], [Dor02]. What distinguishes our vision of a change-driven
security process is that the process steps are initiated by change-events. These
change events affect the state of model elements. This section mainly focuses on the
conceptual core of the Secure Change process -- a state machine based model.

In [HD09] we identified four basic types of change in context of security management:

• Planned evolution refers to pre-empting small system changes.

• Planned revolution means planning major system changes.

• Unplanned evolution entails reacting to minor changes in context or
requirements.

• Unplanned revolution necessitates a reaction to major changes in context or
requirements.

Further, we identified the requirements for a framework supporting the process of
secure change [HD09]. It should support

• An integrated view: To keep a complex and interconnected system running
despite change a variety of stakeholders have to collaborate in their daily
operations. The modelling environments should support the collaboration of
these different stakeholders (e.g. Chief Information Officer, legal experts,
system administrators, software developers) in their daily work.

• Domains and Responsibilities: A stakeholder carries responsibility for a specific
Domain, i.e. a subset of the constituting elements of a system. It is important to
have a clear understanding of these governance aspects to be able to handle
change effectively in an organization. Depending on the type and extent of
change, certain stakeholders need to cooperate to provide solutions to handle
such change.

• Change Propagation: Change is perceived as an event which triggers a series
of consecutive steps. A framework which supports a change-driven security
process needs to provide a foundation for propagating change to the right
stakeholders in an organization. Change is perceived as an event which
triggers a series of consecutive steps.

• Bidirectional Flow of Information between Models and Executing System: On
the one hand, the target architecture of a Living Security framework is a security
infrastructure equipped with “sensors” and “agents” collecting information and
feeding it back into the modelling environment. Once there, information is
interpreted at the level of Model Elements in context of the System Model. On
the other hand, the security infrastructure ought to be configurable from a
modelling perspective.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 128/182

!

• Information Consistency and Retrieval: Stakeholders need explicit support to
appropriately visualize and query security related information in various
contexts. Information Retrieval goes beyond the mere checking of constraints
on model elements in that stakeholders can access semantically enriched
information.

Based on these requirements, we also outlined the foundation of a framework for
Secure Change roughly relying on four basic principles of Living Models [Bre10].

We present a running example for illustration purposes in Section 10.1, give a brief
summary of these principles in Section 10.2 and give on outline of the state machine
based model, the conceptual underpinning of the change driven process in Section
10.3.

10.1 Running Example

Our use case refers to a financial trading platform which allows traders to place orders
in specific market segments. The trading platform is directly connected with the
systems of major financial institutions who use the platform to place large volume
orders. In addition, individual traders can use an online frontend or download a client to
use the services. The trading platform is developed and operated by a medium sized
specialized company which offers services and support for the platform and sells
licenses to its users. The trading platform is developed in house by a team of software
developers who develop, deploy and actively manage the systems which are hosted in
an outsourced data centre. The trading platform uses standardized financial
communication protocols and is realized as a SOA. The company is certified
according to ISO 27001 to underline their emphasis on security. Currently, the
company offers access to specialized niche markets, but is planning to extend its
service to stock markets in the near future.

Subsequently, we illustrate these requirements with a running example for an evolving,
security-critical large-scale system which will be extended to illustrate the principles
and concepts as we go along in Sections 10.2 and 10.3.

10.2 Basic Principles of Living Security for Secure
Change

10.2.1 Common System View

The framework supports stakeholders in their various daily operations. This happens
through Stakeholder-Centric Modelling Environments, perspectives on the system’s
security status, customized to an appropriate level of abstraction. The analysis of
security attributes requires the analysis of interdependencies across the layers ranging
from IT management, software engineering and system management. Although the
framework also facilitates the cooperation among the stakeholders (Chief Information
Officer, Chief Security Officer, Network Administrator, Security Engineer etc.), it does
not necessarily need to provide an integrated and homogeneous modelling
environment. Rather, these stakeholder-centric modelling environments rely on a

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 129/182

!

common meta-model, the Common System View (Figure 10.1). This Figure also shows
an example of a system model composed of three layers of the modelling environment
Software Engineering, namely Requirements, SW-Architecture, and Code.

Security related concepts like threats, risks, requirements etc. are introduced into the
meta-model as Meta Model Plug Ins. Every element of the System Meta Model can be
decorated with security-related semantics. Figure 10.2 shows the security meta-model
that plugs into the System Meta Model as an extension for security. In addition other
security relevant meta-models like the UMLsec notation can be used to extend the
artefacts of the system model with security relevant information.

Figure 10.1: Sample System Meta Model

Other activities which focus on specific aspects like requirements engineering,
verification, and testing similarly use a specific system model as a basis and extend
this system model with the relevant concepts needed to fulfil the activity.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 130/182

!

Figure 10.2: Security Plug In

Example 1. In order to realize the first requirement, an integrated view, a common
system view is needed. The common system view provides on the one hand all
concepts to depict the building blocks of the entire system, beginning with its
infrastructural components and services, containing the deployed software artefacts,
modules, and their interfaces. On the other hand via appropriate plug-ins it provides
also concepts for modelling non-functional aspects such as security objectives,
requirements, threats, security controls. The common system view relates all these
concepts on different layers to each other. Consider as an example the business
process “Place Order” as depicted in Figure 10.3. It requires many different running
services in the trading platform, which in turn require system and network capacities. If
a legal experts identifies a new requirement (e.g. new contractual obligations related to
premium customers) which is valid for the business process “Execute order”, then she
links this requirement to the concept business process. Referring to the example
business process, the objective is “Maintain Service Level Agreements”. The
dependencies and relation between the different layers serve as a means to
identify which parts of the infrastructure are impacted by such a new requirement (e.g.
the service “execute order” requires an uptime of 99.999%). Carrying on the example,
a system operator might receive notice that certain parts of the infrastructure he is
responsible for are impacted by this new requirement. Another advantage of the
Common System View is the provision of stakeholder specific perspectives. In this
example a software architect does focus mainly on the deployed components
which realize the services and how these components communicate with each other.

!

Figure 10.3: Example instance of a system model extended with a security plug-in

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 131/182

!

10.2.2 Model Element States

To depict changes and distinguish different states of an information object, we want to
have the possibility to model not only the dependencies between business and
technical artefacts, but furthermore we want to differentiate information objects with
regard to their life-cycle. We model security relevant milestones in the lifecycle of
model element as Model Element States. Changes of Model Elements States can
propagate over the complex “network” of model elements as defined in instances of the
System Meta Model and its plug ins. Figure 10.4 shows the state diagram of the meta
model element Security Requirement defined in the Security Plug In.

Example 2. In the example outlined in Figure 10.3 the risks related to the service
“execute order” have two different states. The first risk R1 has already undergone a
risk evaluation and its state is therefore set to “evaluated”. second risk R2 has only
been identified but not evaluated yet, therefore its state is set to “pending”. The related
security requirement SR1 will remain in the state “pending” until all related risks (R1,
R2) have reached the state “evaluated”. Only then the security requirement SR1 will
also reach the state “evaluated”. Similarly, if the security requirements would be
already in the state “evaluated” and a new risk R3 would be added, its state would
immediately switch back to “pending”, therefore indicating that a change occurred and
additional steps are required to reach a new security state.

The integration of different meta-models will be based on the common system view
using plug-ins to extend the original concepts. In the case of the UMLseCh profile the
provided stereotypes, tags and constraints can be used to extend various elements of
the sample system meta-model. Whereas the common system view is a domain
specific language the UMLseCH profile is a generic extension to the UML.

To integrate the two meta-models and provide an appropriate plug-in for UMLseCh
appropriate element types of the sample system meta-model will be extended using
the concepts provided by UMLseCh.

Some of these concepts provided by UMLsec and UMLseCh are already defined in
existing plug-ins and can potentially be reused, e.g. the concept of security
requirement in the Security Plug In (c.f. Figure 10.2). Nevertheless the goal is to
provide an appropriate view for each of the plug-ins containing exactly those concepts
that are relevant.

Section 10.3 gives more details on how events affect the state of model elements
thereby driving the Secure Change Process.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 132/182

!

Figure 10.4: State Machine of Meta Model Element Security Requirement

10.2.3 Persistence, Tracing

As instances of the System Meta Model, System Models are the actual targets of
change. They capture the status (functional and non functional) of a system at all
relevant levels of abstraction. But to indicate change and facilitate planning they have
to be made persistent. This allows the definition of system (r)evolution as a sequence
of modelled status snapshots. Like the model elements, the System Meta Model itself
may undergo change and evolve over time.

Example 3. In our running example, the role of Persistence can be illustrated using two
examples. First, consider a situation in which new security requirement has been
identified as a change event and will be introduced in the common system view. The
new requirement triggers a series of actions which are executed by different
stakeholders. For instance, the software developer will be re-evaluating whether
there are any new potential risks which might be related to the new security
requirement. By keeping persistent versions of all the model snapshots, which are
reflecting the ongoing security process it is on the one hand possible to provide
an audit trail of the analysis and the resulting decisions. On the other hand it is possible
to trace specific security solutions which are still in place back to a now possibly
obsolete security requirement. Second, Persistence allows to model different future
scenarios. Consider a new security requirement for which several options of security
controls might be considered. Using different planning scenarios and snapshots of
the model it is possible to evaluate the impact of the planned controls on the current
system architecture.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 133/182

!

10.2.4 Close Coupling of Models and Code

As the framework aims to support security engineering and management activities
targeting the running system, the underlying models have to appropriately reflect the
system’s current security status. The Secure Change framework maintains a consistent
state between models and evolving system in a changing environment through the tight
coupling between models and the executing system.

Together with the Integrated View, this principle provides stakeholders with a Modelling
Environment that is directly linked to the executing system.

Example 4. In the concrete example of the financial trading platform and the instance
outlined in Figure 10.4, there might be specific sensors deployed in the system
which monitor the uptime and performance of the service “execute order”. The
collected key indicators can be fed back to the model to enrich it with information
reflecting the current status of the system.

10.3 State Transition and Change Propagation

In the System Model with its various views, change is propagated based on the
interrelationship of a changing model element with other model elements.

Figure 10.5: Concept of Distributed Security Process

Change events are sent to the current System Model where action is triggered and the
effects percolate through the three layers and their sub layers. Change is handled
according to the following procedure of the Change Driven Process:

A. State transition – A change event may induce a state transition of a model
element. For instance, the state of a security requirement is changed from
evaluated to added if the related model element (e.g. a software component)
has been modified.

B. Change propagation – The state transition of the model element may trigger
state transitions in related model elements according to stated propagation
rules. For instance, the modification of a security requirement attached with a
business process may cause state transitions in information objects and

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 134/182

!

services supporting this business process. The propagation rules are specific to
each meta model element.

C. Modification of task list – Each stakeholder is associated with a task list
describing the pending action events of model elements he/she is responsible
for. After each state transition new tasks may be pending and have to be added
to the task list. Consequently fired action events (e.g. after the evaluation of a
model element) are withdrawn from the task list.

Using the concept of change events and model element states it is possible to assign
and distribute the tasks of the security process to the according stakeholders.
Based on the concept of domains and responsibilities we are able to identify required
tasks and assign them to the respective stakeholders.

In reality, this implies a distributed security micro-process which is executed by each of
the stakeholders within his specific domains. Figure 10.5 highlights this concept of
distributed instances of a security process. Of course the stakeholders do not work
independently on their security related tasks, but a lot of coordination and cooperation
is necessary.

Example 5. Referring to our sample process, the security process can be
schematically described as follows. The identification of the new security objective
“Maintain Service Level Agreements” was brought up by the legal experts based on
new contractual obligations with premium clients. The legal experts introduced the new
security objective in the common system view using a security plug in and attached it
to the model element “Place Order”. Based on the dependencies of the system
depicted in the common system view, this change event percolates through the
processed information objects (e.g. “Account information” and “Order”) to the
respective services (eg. “log transaction” and “execute order”).

The software architect whose domain and responsibility contains the services and the
elaboration of the related security requirements receives a notification to evaluate
the existing services according to the new security objective. She or he then identifies
and translates the abstract security objective in the concrete security requirement “SLA
99.999% uptime”. This event which was triggered by the introduction of the new
security objective by the legal experts again triggers new actions.

In the concrete case, a security engineer whose domain consists of the threats and
risks related to services receives the notification to conduct a threat and risk analysis
for the service “execute order” since a new security requirement with the status
“pending” has been added. The security engineer then introduces two new risks (R1,
R2) which are related to the security requirement SR1. As can be seen in the example
the progress of the steps taken by the security engineer is also reflected as changes in
the common system view. She or he has already evaluated the new risk R1, which
state is set to “Evaluated”. As soon as the remaining risk R2 will be evaluated, the
software architect will receive a notification that his or her security requirement SR1
has too reached the state “evaluated”. In this manner it becomes possible to translate
change events in a series of tasks which have to be fulfilled by different domain
owners. The progress of the different distributed actions will be reflected by the model
element states and allow to analyze whether or not the whole system has again
reached a stable security status.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 135/182

!

10.4 Integrated Process

In order to integrate the solutions by all the different activities in the Work Packages we
enhance the SecureChange process by an integrated view. This integrated view is
based on the following concepts:

• Taxonomy: provides a classification of changes and attitudes to changes
• Artefacts: distinguishes on an abstract level the different models and artefacts

which are used by the different Work Packages
The taxonomy can be used on the one hand to identify different basic change
scenarios. These change scenarios on the other hand can be used to describe how
change is handled on an abstract level by the different Work Packages.

The artefacts provide an overview of all the different types of models used by the
various Work Packages of SecureChange. These artefacts are described on the meta
level and abstract from concrete concepts. That way it is possible to treat method-
specific conceptual models as black-boxes and plug-in different methods and
approaches to the integrated SecureChange process. Examples for such artefacts are
a system model which includes all artefacts related to the system, ie. architecture,
code, constraints and others. Other specific artefacts are a verification model, a risk
model, a requirements model and a test model.

Independently from which requirements engineering method and model is used, it is
clear that a change in a requirement has to trigger some changes in the test model.
Using the change scenarios derived from the taxonomy and case studies it can be
described how the different artefacts are updated and trigger changes in other models.
That way it is possible to outline how the results and solutions provided by one Work
Package impact the other Work Packages.

10.4.1 Artefacts and relations between artefacts

As a first basis for distinguishing an abstract approach is followed. This is at the
moment a non-exhaustive list which reflects the main types of artefacts which are
treated by the different SecureChange Work Packages. The different artefacts are:

• System Model: The System Model includes all artefacts related to the system
(from architecture to code, including constraints). It is a placeholder for the
system model of Work Package 4 and all types of system models used
throughout the other Work Packages.

• Verification Model: The Verification Model contains artefacts which are specific
to Work Package 6.

• Risk Model: The Risk Model includes all artefacts related to risk analysis (e.g.
assets, vulnerabilities, threats, controls, risk). It is a placeholder for different
conceptual models of risk, such as the CORAS model, the THALES risk model
or the ProSecO security model and therefore integrates mainly the artefacts
from Work Package 2 and Work Package 5.

• Requirement Model: The Requirement Model reflects all artefacts which are
related to requirements engineering. It is mainly related to Work Package 3.

• Test model: The Test Model contains the artefacts related to testing, and is
related to Work Package 7.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 136/182

!

Figure 10.6 outlines an overview of these different types of artefacts. Seen from an
overall integrative perspective the different artefacts are strongly related to each other.
The result of a requirement analysis will provide input for the test-engineers and be
used to verify code and infrastructure components.

Figure 10.6: Integrated view of SecureChange artefacts and their dependencies

The meta model which is described in Section 4 is a working model in a specific
context. It maps to the integrated view of SecureChange artefacts in the sense that it is
a specific instantiation of a system model, partly a requirements model and a risk
model. That way the specific working model can be mapped to one or more of the
artefacts depicted in Figure 10.6.

10.4.2 Integrated SecureChange process metamodel

The description of the overall SecureChange process will deliver concepts of change
derived from all the solutions of the different SecureChange Work Packages. The goal
is to provide an integrated meta model of change related concepts which is
independent from any Work Package specific solution (cf. 10.7).

Consider as an example a change in the infrastructure that requires a change in the
system model. The system change triggers a system analysis to analyse the changes
with the result of an updated system model. An updated system model might affect the
current set of requirements and therefore triggers a requirements analysis resulting in a
new updated requirement model. The update of the requirement model and the update

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 137/182

!

of the system model both potentially impact the current test model. Therefore both
changes trigger new test engineering with the result of a new updated test model.

The dependency relations between the different types of artefacts are the frame for
change propagation.

Currently this change model is in a conceptual development phase and will be
elaborated during Year 2 and Year 3. The different change related concepts provide a
basis for the description of change handling in the integrated SecureChange process.

Figure 10.7: The integrated SecureChange process metamodel

At the moment we have identified the following list of change concepts in the various
work packages (cf. Figure 10.7):

• ChangeScenario: is expressed at the requirements level and describes the

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 138/182

!

change in the requirements. This change scenario will consist of a before and
after requirements model.

• ChangePattern: consists of a specific change scenario, one or more solutions
and a mapping between the elements from the change scenario and the
architectural elements in the solution.

• ChangeEvent: is a general trigger of change which is derived from a set of
change scenarios.

• ChangeRequest: is a general description of some change in the system.
• ChangeTransition: is a description of all the differences from one change to

another.
Additional concepts which are candidates for the inclusion in the Change Model is the
concept of perspectives which is used in Work Package 5, the concepts of Change
Line, Version, Change Propagation and others.

Future tasks related to the refinement and further development of the integrated
SecureChange process meta model include the collection of additional change related
concepts throughout the other Work Packages. All these change concepts will be
consolidated as an integration for all the Work Packages. In addition changes need to
be classified to provide different basic categories of changes which might require a
different handling. Activities in other Work Packages provide a sound basis for the
development of such a Change Model, such as the Deliverable D3.2 of Work Package
3 and the Deliverable D5.2 of Work Package 5.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 139/182

!

11 Modelling Security Requirements

In this section we present the approach to model requirements evolution and how
changes in the requirements model can be propagated to UMLseCh models.

11.1 Meta-model for requirements representation

The conceptual model for evolving security requirements incorporates the state-of-art
requirement modelling languages such as Secure Tropos and Problem Frames. As a
unified extension to Secure Tropos and Abuse Frames, the conceptual model is explicit
in representing target specifications where vulnerability can be revealed.
Essential elements such as threats are also made explicit in order to analyze attacks
that are assumed to be present in a hostile operating environment. The overall goal of
the model is to provide mechanisms for protecting valuable assets from damage. Using
this conceptual model for security requirements, it is possible to construct arguments to
examine the security of systems as they change.
Figure 11.1 represents the entities characterizing our meta-model to represent
requirements and the relations between them.

Figure 11.1: The meta-model for requirements elicitation

We have outlined in green the concepts inherited from the goal-oriented approaches, in
magenta the concepts taken from Problem Frames approaches, and in red the
concepts borrowed from risk analysis approaches.

A situation of our requirements model is expressed in terms of propositions and
objects. Propositions are the sharable objects of attitudes and the primary bearers of
truth and falsity [McG08]. A proposition can be an optative or an indicative property

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 140/182

!

concerning objects. An object is an actor, a process or a resource. When a stakeholder
(actor) wants a desired or optative property, it is modelled as initial requirements, which
can be refined into derived requirements. Therefore, requirements are desired or
optative properties that the system-to-be ought to have, as wanted explicitly by
stakeholders. Initial requirements and derived requirements can be captured by goals,
the objectives that the system-to-be should achieve. A derived requirement can also be
a soft goal, which does not have a clear-cut evaluation of the truth value. . A security
goal expresses that an asset needs to be protected from harms. An anti-goal is a goal
of an attacker which may obstruct the achievement of a security goal. Both security
and anti-goals are soft goals.

Unlike requirements, a specification fulfils certain requirements under given indicative
domain properties.. It usually captures certain dynamic behaviour in order to satisfy
software requirements; therefore specifications are modelled as processes.

Objects are entities used to describe a state of the world. An object can be dynamic or
static. A static object can be an actor or a resource. An actor is an intentional entity
such as a human, a device, a legacy software or software-to-be component that
performs actions to achieve its own goals. We consider an attacker as a particular
actor who wants an anti-goal to be satisfied. A resource is a physical or an
informational entity which has no intention by itself. An asset is a resource which has a
value and needs to be protected. Vulnerability is a weakness, a flaw or a deficiency
that is exploited to carry out an attack which causes harm to or damages an asset. A
dynamic object can be a process that consists of activities. An activity is a sequence of
actions that can be performed by an actor to fulfill a goal.

A situation is a partial state of the world where some propositions are true and some
other propositions are nor true nor false. Thus, a situation consists of objects and
propositions concern these objects. Particular types of situations are context, the
domain, and an attack. The context is a situation within which the system-to-be will
operate. A context consists of several domains which interface with each other. An
attack allows an attacker to fulfill an anti-goal. In particular, an attack is a situation in
which vulnerability is exploited to cause damage on an asset.

For requirements analysis, these entities are related in the following seven basic types:

• Trusts is a relationship from one actor to another, which indicates the belief of
one actor that the other will provide a resource or will perform a certain activity ;

• Delegates is a relationship from one actor to another which specifies that the
fulfilment of a goal or the provisioning of an activity/resource;

Both trusts and delegates relationship are associated with a dependum, which
specifies which object (resource/process) or which requirement (goals, softgoals)
are trusted or delegated from one actor to another.

• Provides is a relationship either from an actor to a resource, which specifies
that an actor provides a certain resource; or from an activity to resources .;
Uses is the relationship opposite to Provides. ..

• Carries Out is a relationship either from an actor to a process, which specifies
that an actor carries out a certain activity; Carries Out is a relationship either
from an actor to a process, which specifies that an actor carries out a certain
activity.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 141/182

!

• Fulfils is a relationship from resources and activities to a goal, which specifies a
goals is fulfilled by a combination of the resources and the activities;

• Wants is a relationship from actors to goals which associates an actor with its
goals, including security and anti-goals.

• Contributions is a relationship among goals/security goals which indicates that a
goal contribute to the satisfaction of another goal.

• Decomposes is a relationship from a goal to its subgoals, which indicates that a
goal can be refined: AND-decomposition lists subgoals that must all be satisfied
in order to satisfy the goal, whereas OR-decomposition suggests alternative
ways to satisfy the goal.

For security requirement analysis, the following seven specific relationships are
considered on an attack situation and a security goal:

• Attacks is a relationship from one situation to a vulnerable actor;

• Damages is a relation from an attack to the assets;

• Exploits is a relationship from an attack to a vulnerability, which is a (part of)
specification that can be vulnerable to expose security problems;

• Protects is a relationship from a security goal to a set of valuable assets;

• Obstructs is a relation from an anti-goal to the corresponding security goal.

Such problem analysis for goal satisfaction can be done using proposition logic
qualitatively, or using risk analysis quantitatively. In either way, arguments on the
fulfilment of security requirements need to be acceptable after a negotiation process
during which the trusted domain assumptions may not always hold. Therefore, the
framework as such can support extensively evolving security requirements.

11.2 Meta-model of Security Requirements Evolution

After specifying the static view of situations about the security requirements, the next
step in our methodology is to deal with the dynamic view. In a reactive view of the
classification, situations are observed to change over time. Discrete changes have a
sequence of change descriptions associated with timestamps, while continuous
changes happen continuously in that the intervals can be arbitrarily further refined and
the length can be arbitrarily prolonged for the security requirements in long-lived
software systems.

In a nutshell, the situations that can change in the model for requirements include
generally entities and the relationships between them. In particular we consider
elementary types of changes, including the modification, the addition and the removal
of an element (such as an entity or of a relationship). An example of possible change is
the addition of a new actor (as the event that matches with the condition) that results in
the addition to the model of a new entity representing the actor and new relationships
such as the “wants” relationship to specify the goals the new actor wants to achieve or
a “provides” relationship from the actor to the resources and activities that it offers.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 142/182

!

Figure 11.2: A generic meta-model for evolution of security requirements

!
A more complex kind of situation change can be described by a composite change,
which is a transaction of elementary changes (or nested composites) that must happen
together or not at all. For example, the deletion of an actor A may require the deletion
of all the delegation relationships from A to another actor B, while finding for B
alternative actors A’ that can provide the same activities and resources delegated to A,
otherwise the incomplete change may violate the intention of B. Therefore we record
such complicated changes as a transformation that preserve the satisfaction of certain
high-level requirements.

A natural way is to represent the change as a transition rule between two situations,
denoted respectively as before and after situations (see Figure 11.2). Intuitively, the
before/after situation represents the elements in the model the change has occurred at
a given time before/after an adaptation has been applied. The outcome of changes is
monitored by evolution rules to decide whether an adaptation action needs to be taken.
If yes, the change will trigger the application of a general evolution rule in a concrete
place in the model, possibly causing additional changes.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 143/182

!

1

Action(s)
performed

2

3

4

5

External factors

No rules
triggered

Situation Change(s)

Evolution Rule(s)
triggered

Manual decisions
6

7

No intervention

Figure 11.3: The continuous adaptation process to maintain the requirements

The envisioned workflow of maintaining design and requirement models through
evolution requires the continuous adaptation of the models to react to changes.
Changes in external factors – changed requirements, new threats, revised design
decisions – can be introduced into the model by engineers (or automatic monitoring in
some cases); this model change, however, may violate constraints and requirements,
cause inconsistencies. Therefore reactions are required to handle the effects of
change. While most reactions will remain responsibilities of engineers, evolution rules
can be defined to automatically adapt and transform the model in some cases. Failing
that, rule-based automatic mechanisms are expected to be able to initiate the process
of adaptation in many cases, or at least indicate the problem to the engineers.

The applicability of automatic evolution rules is greatly enhanced by machine-
understandable, domain-specific refinement of the general requirement modelling
concepts appearing in this deliverable. Therefore SecureChange provides a general
meta-model for security-related concepts, and suggests domain-specific subclassing
where applicable to facilitate tool support and automated reaction mechanisms.

Figure 11.3 shows how the evolution rules are used in a feedback loop to deal with the
evolution of security requirements. Changes of situation are initially caused by external
factors (environment context) of the system. These changes can trigger evolution rules
that perform automatic adaptation, or otherwise result in a manual change process. As
a result of such an adaptation action, a new situation arises that one must iteratively
reevaluate for automatic rule execution or manual intervention. Or else, if the new
change does not trigger any further actions, or there is no further change, the control
feedback loop can exit.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 144/182

!

11.2 Example of requirements evolution modelling

In this section we show how we can represent the evolution of requirements that
characterize the ATM case study by instantiating the meta-model presented in Section
11.1. We show how functional and security requirements of the actual ATM systems
change due to the introduction of the AMAN queue management tool that supports
ATCOs.

Figure 11.4: Before Situation

Figure 11.4 represents the requirement model before the introduction of the AMAN.
The main actors are the Sector Team at the destination airport composed by the
Planning and the Tactical Controller, the CWP, and the dedicated communication lines
(telephone, radio communications). The flight arrival management operations are
performed by the Sector Team (Tactical and Planning Controllers) that has to compute
the arrival sequence for the flights and give clearances for landing to the pilots flying in
their sector on the basis of the information displayed by the CWP such air traffic, radar
data, monitor displaying inbound/outbound traffic planned for the sector, telephone
switchboards, airlines and airport operators preferences or priorities about arrival
runways. The communication between the different ATM actors takes place over
dedicated and secure communications lines. For example, for communication between
the Sector Team and the pilots specific radio frequencies are used.

In this scenario, the security requirements are associated with the CWP and the
Communication Lines:

• The CWP shall provide an authentication mechanism to verify users identity

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 145/182

!

• The Communication Lines shall provide secure and reliable communication
among ATM actors

As affect of the introduction of AMAN, ATM systems go under architectural,
organizational, and operational changes. At architectural level, the AMAN supports the
Sector Team by providing sequencing and metering capabilities for a runway, airport or
constraint point, the creation of an arrival sequence using ‘ad hoc’ criteria, the
management and modification of the proposed sequence, the support of runway
allocation at airports with multiple runway configurations, and the generation of
advisories for example on the time to lose or gain, or on the aircraft speed. At the
organizational level, the introduction of the AMAN requires the introduction of a new
type of ATCO, called Sequence Manager, who will monitor and modify the sequences
generated by the AMAN and will provide information and updates to the Sector Team.
At the operational level, on one side the AMAN interacts with the FDP, CNS, and
Meteo services to collect the Airport Operators priorities for runaways usage the
Airlines priorities in terms of flight arrivals, the Meteo condition, and the aircraft position
that it uses to compute an ad hoc arrival sequence or to generate advisories. On the
other side, the AMAN interacts with the Sequence Manager and the Sector Team
through their CWPs monitor. The Sequence Manager can check the arrival sequence
and the advisories generated by the AMAN, and if necessary can modify them, while
the Sector Team ATCOs can only view them. Based on the information provided by the
AMAN, the Sector Team gives clearances to the pilots flying in its sector. The
communication between the different ATM actors does not take place over secure and
dedicates lines: the actors are interconnected by the SWIM, an IP based data transport
network that will replace the current point to point data systems.

In this scenario we have new security requirements that need to be satisfied:

• The CNS systems shall check the authenticity of aircraft tracks

• The AMAN shall provide selective access control for the different ATM actors
(Sequence Manager, ATCOs,..)

• The AMAN shall disclose to another actor only the aircraft information
necessary for the actor to perform its task (need to know principle)

• The AMAN shall check that the information coming from Meteo Services,
Radars, Airlines and Airport Operators has not been alterated

• The SWIM shall require authentication sessions for users based on digitally
signed certificates

• The SWIM shall be able to detect fake stakeholders and trace them in a
blacklist

• The SWIM shall ensure data integrity and confidentiality.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 146/182

!

Figure 11.5: After situation

evolution rule NewActor {
 variables = (AMAN,CAS, SM, AS);
 event = appear {
 entity Component(AMAN);
 entity Component.Provides(AS)
 }
 condition {
 entity DependencyGoal(CAS);
 relation DependencyGoal.Component(CAS->SM);
 entity Component(SM);
 relation Component.Requires(SM->AS);
 }
 action {
 create relation DependencyGoal.Component(CAS->AMAN);
 }
 }

Figure 11.6: After situation

The evolution rule represented in Figure 11.6 is an example of rules that can
associated with the transformation of the requirement model represented in Figure 11.4
into the model shown in Figure 11.5. The rule is executed when the system detects the
appearance of the change pattern ``The Sequence Manager depends on the AMAN for
arrival sequences computation". The Condition part specifies that the Sequence
Manager requires the arrival sequence to support the Sector Team in managing the air

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 147/182

!

traffic in the sector. The Action part specifies that since the AMAN is now the
component that provides the arrival sequences, a delegation of execution dependency
for the ``Compute an Optimized Arrival Sequence" goal should be added between the
Sequence Manager and the AMAN actors.

11.3 Mapping security requirements to UMLseCh
stereotypes

In order to verify that UMLseCh design models comply with the changes in the
requirements model, it is important to map the addition, removal and modification of
entities or relationships to UMLseCh stereotypes.
To allow such mapping and traceability between requirements and UMLseCh models
we can use change-driven transformations [Zav97]. The key concept of change-driven
transformations is capturing and explicitly representing change operations, as model
elements. The elements that correspond to future changes are change commands,
while the ones that record already executed changes constitute a change history
model. The latter kind can be automatically generated on-the-fly during the execution
of model manipulation. Apart from basic change operations (creation, deletion, moving,
value setting, etc.), user-defined domain-specific macro change types are also a "#$"!
react to changes of the model by matching a single change operation and additional
model elements, and create change commands to manipulate the target model. The
created change command may be executed at a later time, even at a remote location.
Thus rules are incremental and evaluated asynchronously to the update of the target
model, and optionally asynchronously to the change of the source model that caused
the change propagation. Change history is derived on-the-fly and automatically after
the source model is updated, regardless whether the model manipulation was initiated
by another (not necessarily change-driven) transformation, or by user interaction.
Change history is asynchronously processed by transformation rules that should
depend on the change history element, and potentially an extended condition involving
the source model, but not the target. Instead of directly manipulating the target model,
the transformation rules only create change commands to express the required
modifications, thus allowing for deferred execution, remote processing, or piping
through the runtime manipulation API of an application.
Figure 11.7 represents the process related to a change-driven transformation. MA and
MA' are the requirement models before and after the change, and MB, MB' are the two
states of the UMLsecCh model before and after the application of the change
commands. CHMA is the change history model derived by observing the change of A,
and CCB represents the change commands that affect the target model.
Transformation and processing is indicated by circles.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 148/182

!

!
!

Figure 11.7: Change-driven workflow

Change driven transformation can also be used to automatically update the FOL
formulas used for the security analysis when a change in the security requirements
occurs. In fact, the attack conjecture is derived by security requirements and should be
updated when a change in the requirements occurs in order to assess the security of
the system with respect to the change. The Action part of the transformation rules will
indicate the predicate(s) to be added to the formula and the type of logical connector.
For example, if we refer to the ATM case study, let’s assume that when the SWIM is
introduced to replace the dedicated and secure communication lines, the SWIM has
the requirement to enable the communication between the different ATM actors but it is
not trusted by the ATM actors. Thus, a new confidentiality requirement is introduced to
protect the data exchanged by means of SWIM network. This change in the security
requirements should trigger the execution of a transformation rule which updates the
FOL formula which describes the ATM design model by adding in AND the following
predicate knows(s), where s represents the data exchanged via the SWIM network.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 149/182

!

12 From Thales Security DSML to
UMLseCh

In Thales environment, system security engineering classically involves:
1) The analysis and assessment of security risks encountered by the system
2) The specification of requirements for security measures to address those risks
3) The design, development, integration and validation of security architecture,

functions and mechanisms that address those requirements.

Our present work is focusing on security engineering activities 1 and 2 above. Our
objective is to provide adequate and efficient tooling to security engineers for an
effective integration of security engineering in the process of critical system design; this
will enable a better targeting of security specifications.

This section is organised as follows:

• Section 12.1 presents the principles of our approach to enhancing classical
security analysis methods.

• Section 12.2 presents an overview of the Security DSML: the domain covered
the actual contents of the DSML and conceptual models focussing in DSML
Context Model.

• Section 12.3 present a simple web architecture example defined in DSML and
an preview of related DSML Change Model

• Section 12.4 present how our DSML could be used to model UMLseCh
specification in the Thales context.

12.1 Enhancing system security engineering in
Thales

A comprehensive approach of security engineering starts with an analysis of the risks
pending on the system. For critical systems, this analysis must be conducted with the
biggest attention since the impacts can be very damaging for the populations in relation
to those critical systems. On the other hand, overestimating risks may lead to
excessive or unnecessary security measures, introducing undue rigidities and costs.
The specification of security requirements builds upon this risk analysis, and aims at
defining requirements that are commensurate with the risks.

Currently in our company, Security Analysis activities are carried out with the help of
structured and proven methods that use referential repositories (of types of threats and
vulnerabilities, of impacts and damages, attack scenarios, security functions etc.),
standardized or not, and tabular, cross-matrix and dashboard based tools. EBIOS [EBI]
and MEHAR [MEH] are the main methods employed at our company.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 150/182

!

These methods imply a limited perception of the architecture of the system upon which
the risk analysis is realised. In particular, we carried out a study of these methods and
realized that they target on the one hand the business process supported by a system
and on the other hand, in very little detail, technical and physical elements of the
system (applications, databases, data files, servers, networks, mobile PCs etc.). Finer-
grain knowledge of the architecture is not taken into account in these methods. The
topology, data flows and functional dependencies throughout the system are especially
not analyzed, which can lead to sub-optimal risk analyses and security requirements
specifications.

Our work aims at developing a method that enables an enhancement of these classical
risk analysis methodologies. As summarised in Figure 12.1, these enhancements rely
on leveraging detailed knowledge of the targeted system in close integration with the
mainstream system engineering process, and developing fine grain analyses of the
actual risks at stake. This method builds upon the capacities provided by model-based
development methods and techniques that are currently spreading in the systems
engineering community, but are still poorly used in the security engineering domain.

Figure 12.1: Enhancing system security engineering methods

Our general objectives of enhancement are the following:

• Objective1: To optimize the qualification of the risks and the specification of
security requirements and related security costs,

• Objective 2: To optimize the quality and the productivity of security engineering
by capitalizing on data from one study to the next, and by proceeding to
automatic calculation and consistency checking.

• Objective 3: To optimize the quality and the productivity of security engineering
by sharing common models of the system between system design and security

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 151/182

!

analysis and thus by working on synchronized and consistent models of the
system throughout the design process.

12.2 Thales Security DSML

12.2.1 Domain of interest

Our goal is to build a DSML allowing the support of finer grain, more formal security
analyses that exploit formalized system architecture descriptions. The security architect
formalizes security information and relates it to architecture components.

Figure 12.2 illustrates the scope and context of use for our “Security DSML”:

Figure 12.2: Scope of the Security DSML

• The System architecture model is built using distinct languages (like, for
example, UML and/or UML profiles) by a System architect. The Security DSML
is defined with limited dependency upon the specific system architecture
description formalism. The objective is to be able to use the DSML concurrently
with different languages for the specification of system architectures.

• Security needs are determined for each individual architecture components or
groups of such, by a Business expert. A Security need is initially expressed
intrinsically (e.g. “The document needs to be defence confidential”), without
taking into account the risks, but only the impacts of unwanted actions and
damages they may inflict.

• A Risk Analysis takes place, involving the collaboration of the Business and
Security experts, in order to identify and value risks regarding system
components and subcomponents.

The Security DSML shall support security needs and risks to be refined and projected
on a System architecture model.

The DSML shall then support the experts work in determining which risks are
unacceptable towards the specified security needs, either because they have a too

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 152/182

!

important impact, a too big opportunity of happening, or both, making these
components critical.

Security objectives are defined in order to reduce unacceptable risks and consequently
bring the current level of security to a newly defined targeted one. The Security DSML
shall support the capture of these security objectives and the assessment of their
coverage of unacceptable risks pending on architectural components.

12.2.2 Overview

The Risk analysis model, security requirements model and context model are
expressed in a dedicated DSML. As shown by Figure 12.3, these kinds of models are
parts of static model:

• Requirement Model describes the specialization of Objectives into several
Requirements and the links between those and the other elements of DSML
(Risk, Context). Requirements are then stored in a common requirement
Database which contains other kinds of requirements (safety, maintainability,
etc). In Thales context, the official database of System Engineering Workbench
for Requirement Management is Rational DOORS [Rat09] (Dynamic Object
Oriented Requirements System). An overview of this mapping is defined in
section 12.4, for further details see [Del10b].

• Context Model describes the System Architecture (Essential Elements and/or
Target), related constraints and the links between those and the other elements
of DSML (Risk, Requirement).

• Risk Model describes the risk characterization into threats, damages and
vulnerabilities and the links between those and the other elements
(Requirement, Context).

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 153/182

!

Figure 12.3: Security DSML Static Model description

To address change inside this DSML, we must consider a change model which could
be mapped with all models included in static model. Figure 12.4 depicts the traceability
relation between different models defined in DSML and the relation with the change
model (presented in sections 12.2.3.2 and 12.3.2).

Figure 12.4: Relationship between DSML Static Models and Change Model

12.2.3 Conceptual Models

12.2.3.1 Focus on Context Model

This deliverable cannot be the place for a detailed presentation of the context
metamodel and syntax of our DSML. We are providing below representative extracts.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 154/182

!

More details are provided in [NV09]. The core part of the conceptual model1 is
represented in Figure 12.5 below.

The system under analysis is considered to hold targets and essential elements.
Targets are physical elements subject to vulnerabilities and damages by threats.
Essential elements are usually more logical, functional elements: data and functions
(or services, or capabilities depending on context) that are essential to the business
stakes of the company, and therefore subject to security needs. Essential elements
depend on targets for their implementation.

Figure 12.5: Risk Model – Conceptual Model

The central concept of our security analysis conceptual model is the one of risk. A risk
pertains to an essential element of the system. A risk comes from the combination of a
threat that could exploit an opportunity to take advantage of a vulnerability of a target,
with the essential element depending on the target. A risk is valuated based on its
impact on the target and its opportunity to be triggered on the target.

The link between the risk analysis model and the system architecture model is
illustrated in Figure 12.6.

Our approach was to introduce in the DSML placeholders for system architecture
elements generic enough to support mapping to various types of architectures
(whether business, system or technical). In our current prototype DSML, only three
generic architectural concepts are used, as represented in the figure: components
(Component), communication channels (CommunicationChannel) linking the
components and data exchanged (ExchangedData) between components via the
communication channels. Data correspond to essential elements while communication

!!
1 For readability sake, it is represented in the form of a conceptual model rather than a formal metamodel.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 155/182

!

channels are considered as targets; components are considered as both essential
elements and targets.

Figure 12.6: Linking architecture description to risk analysis – Conceptual Model

12.2.3.2 Change Model

To represent traceability between changes and static model, we add a further Model
into DSML: Change Model which is composed by several Change Lines. As shown
by Figure 12.7, a Change Line is considered as set of Changes and Change
Transitions to grant consistency between successive changes which compose a
Change Line.

Change is described by a Change Trigger (e.g. discover a fault or a new threat) which
activates a Change Request. It’s also possible to activate a Change Trigger by a
threshold defined in an Evolution Function which monitors the static model of the
system, for further detail on Evolution Function see [HD09].

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 156/182

!

Figure 12.7: Change Model – Conceptual Model

As shown by Figure 12.8, a Change Request contains a PUID2 to identify it and a
status which represent the state of Change request (for further detail [Del10a]]). After
the activation of Change Request by the Change Trigger, Change Request status is
first defined in CCB (Configuration Control Board). The Configuration (or change)
Control Board (CCB) is a periodic meeting between several actors of a development
team (client, manager, quality, design, integration …) to define which change requests
which are accepted, refused or postponed in the next version of system. The detailed
behavior of Change Request is described in [Del10a].

To covers all kind of static model, Change Request is specialized into the following
kinds:

• Requirement Change Request modifies Requirement Model (Requirement,
Objectives). It’s possible to map this kind of Change Request with DOORS
Change Request.

• Context Change Request modifies Context Model (e.g. system architecture).

• Risk Change Request modifies Risk Model (Risk, Threat, Damage, and
Vulnerability).

These three kinds of Change Request are dependants; a Requirement Change
Request could impact on Risk Change Request and Context Change Request and vice
versa. This is why we consider a traceability relation between those Change Requests.
This relation is described by an “impacts_on” association (see Figure 12.8).

!!
2 PUID = Product Unique Identifier

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 157/182

!

Figure 12.8: Change Request - Conceptual Model

To define correctly a Context Change Request, Security Designer must first of all take
into account related constraints of the context model. This relation is shown by
association “respects” between Context Change Request and Constraint in Figure
12.9. These constraints describe how the service provided by the system should be
realized in the context model. Independent of Platform, theses constraints are
applied on Essential Elements of the System which describes the logical view of the
system. These constraints are evaluated on specific targets which realize Essential
Element in more concrete view dependant of the system platform. These constraints
must be stored in change transition in order to preserve them on successive changes
inside the change model.

Figure12.9: Relations between Context Change Request and Context Model – Conceptual Model

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 158/182

!

12.3 Simple Web Architecture security
implementation using the Security DSL

12.3.1 Static Model

Figure 12.10 shows the Simple Web Architecture3 represented in the Security DSML
Context Model. The main characteristic of the Context Model is that it shows the entire
model through a “filter” that lets us view only the architectural components. The
purpose of this diagram is to show an un-detailed view of the model, in which the
security information shall trespass only lightly.

As we can see in Figure 12.10, architectural elements are expressed as boxes, data as
discs and channels as arrows. Data linked to channels have the meaning that the data
are transmitted through the channels. The same architectural component is shown
more than once on the diagram, for readability and traceability reasons.

Figure 12.10: Simple Web Architecture – Context diagram (complete view)

The Security DSML Risk Model can be used to show partial views of the risk analysis
of the model. They do not filter it and let users create and view all the security
information predefined in the language. In Figure 12.11, we can see a partial view of
the risk model of the Simple Web Architecture, represented in the Risk Model. This
partial view treats the Web browser, the Web server and their connections and data
transmissions. In the Risk Model, all architectural and security components are
expressed as boxes (even channels). A color code is employed for simple observation:
elements are blue, data are green, channels are gray; security needs are yellow, risks
elements are red.

!!
%!The network infrastructure (switches, routers, firewall) is not considered in this example.!

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 159/182

!

Figure 12.11: Simple Web Architecture – Risk Model (partial view WB – WS)

In the requirement model, all architectural and security components are expressed as
boxes (even channels). A color code is employed for simple observation: elements are
blue, data are green, channels are gray; security needs are yellow, and objectives are
orange. Figure 12.12 depicts a close view on Security Objective O6 (Identifiers should

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 160/182

!

be chosen so that they do not compromise user‘s privacy). Figure 12.13 presents the
requirements derived from security objective in DOORS.

Figure 12.12: Close view on Security Objective O6 emphasizing its Properties – Requirement Model

Figure 12.13: Derived Requirements expressed in DOORS

There is information that has been set not to be shown in diagrams, but which can be
consulted in the Properties View (Description, constraints applied on it…), as can be

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 161/182

!

seen in Figure 12.14. This properties view is also defined in DOORS as shown by
Figure 12.15.

For all specificities of the concrete syntax and tooling of DSML, see [NV09]. For the
description of the mapping between DOORS and DSML, see [Del10b].

Figure 12.14: Properties of the Database Server in DSML

Figure 12.15: Database Server description in DOORS

12.3.2 Change Model

In this example, we will consider that security designer would to change the Database
Server in DSML. Designer must open in first a Context Change Request inside the
Change Model and afterwards includes it on Context Model. The Detailed Change
Management process is described in [Del10a].

A Change Model is composed by several Change Lines which represent major release
of the system (e.g. version 2.0). Inside each Change Line, Changes are represented by
states linked by a transition. Transition enables to preserve postponed Change
Requests and related constraints defined in context model. Transition grants
consistency between successive changes which compose a Change Line.

In accordance to section 12.2.3.2, Change Requests are represented inside Changes.
A Change corresponds to minor release of the system (e.g. version 2.1). For each

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 162/182

!

change we define the related Change Requests defined in this release. As shown by
Figure 12.16, Change Request contains an identifier and a status which represent to
current state of Change Request inside Change Management Process (for further
detail about Change Management Process see [Del10a].

In current example, we consider that a designer would to change Web Sever Oracle to
Web Server IIS, first of all he open a new Context Change Request (“Context Change
Request 101” in Figure 12.16). This change request is evaluated during a CCB and the
corresponding status is set on Postponed. The change and its impact will be taken into
account in the next minor release.

Figure 12.16: DSML Change Model - preview

In order to ensure traceability of change, Context Change Request is also represented
in Context Model with a textual description, as show by Figure 12.17. In this case, Web
Server description is not changed in the targeted component because the current
status of context change request is set up to “Postponed”, it could be changed when
the status will be set to “In progress”. The Detailed Change Management process is
described in [Del10a].

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 163/182

!

!

Figure 12.17: Connection between Context Change Request and Context Model - preview

12.4 From Thales Security DSML to UMLseCh

12.4.1 UMLseCh vs DSML in Thales Architecture
Framework

The Thales architecture Framework (TAF) is organized around three distinct modelling
spaces:

• The Business space addresses the computation-independent analysis of the
operational context: organisation, processes, information flows and interaction
between logical business entities.

• The System space captures the system solution to realise the business
capabilities, defined at a technology-independent level (such as Platform
Independent Model).

• The ICT4 space (equivalent to Technical space) captures the system solution at
a technology-specific level, with focus on the definition of the platform-specific
design for integration. It allows generating implementation code.

!!
4 Information Communication Technologies

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 164/182

!

"#$%&'()!*+,-% .*"/ /'(01 2"/1%34

561'(%11!*+,-%
*%-67'89!:'10!!

*%-67'89!;<=%-8'>%1
!

918%?!+,-%
*%-67'89!:%@6'7%?%(8

A7-4'8%-867%!*+%-'B'-,8'#(
C#7?,&!*%-67'89!D7#+%78'%1

C#7?,&!*+%-'B'-,8'#(
EA7-4'8%-867%!F!5%4,>'#67G

H3I!*+,-%
A7-4'8%-867%!:%,&'J,8'#(A7-4'8%-867%!:%,&'J,8'#(!F!

5%4,>'#67!:%,&'J,8'#(

Figure 12.18: Comparison between Security DSML and UMLseCh profile in Modelling Spaces

Figure12.18 compares Security DSML and UMLseCh profile in the TAF modeling
spaces. Security DSML is in higher space than UMLseCh which is positioned in
System Space and ICT Space. Moreover Security DSML doesn’t have behavior
representation: these languages are complementary. Note that Change Model doesn’t
appear explicitly in TAF description: this process is considered as transverse process
in TAF.

12.4.2 How to map Security DSML and UMLseCh?

Figure 12.19 shows the possible mapping between Thales Security DSML and
UMLseCh profile, to do this we must consider two kinds of relations:

• Traceability relation between Security Requirement of Security DSML and
Formal Security Properties of UMLseCh (e.g. Secrecy, Integrity …). This
relation enables to connect results of Formal Verification with Security
Requirements which are expressed by UMLseCh Formal Properties.
Requirements are stored in a common requirement Database (DOORS TREK
[Rat09]) which contains other kinds of requirements (safety, maintainability,
etc).

• Consistency relation between Architecture Specification and Realization. This
relation relies on Model Driven Viewpoint Engineering approach [BX09]. This
approach consists to build a common architecture repository and several
viewpoints5 of this repository (e.g. DSML view and UMLseCh view are shared in
the same architecture description). To ensure and prove consistency between
those models, it’s necessary to define consistency rules expressed by
Conjunctive Normal Form6 (CNF) Formulas [JP05], for further details see next
section.

!!
5 In Model Driven Viewpoint Engineering approach, a view is an instance of a viewpoint.
6 In boolean logic, a formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, where a

clause is a disjunction of literals. As a normal form, it is useful in automated theorem proving.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 165/182

!

Figure 12.19: Mapping between Thales Security DSML and UMLseCh profile

12.4.3 Focus on Consistency Relations

As suggested by Figure 12.19, consistency relation between DSML and UMLseCh are
only defined for architectural model, DSML doesn’t include behavioural representation
of the system. It’s also possible to define consistency relations between Change Model
of DSML and UMLseCh Change Diagram.

12.4.3.1 Consistency analysis with the Praxis Tool

To check consistency between models, we have opted for the Praxis tool [BX08].
Based on building events of model, Praxis is an approach that deals with the detection
and the diagnosis of inconsistencies. Praxis represents models as sequences of
unitary model editing operations [BX08]. The formalism doesn’t require the use of a
unique metamodel, it allows for many models with many metamodels to be used at the
same time.

In Praxis, inconsistencies are specified using first order logic over the sequence of
unitary model editing operations. Moreover, Praxis allows for static analysis of the
inconsistency rules that allow determining for each unitary modification the rules for
which the consistency value can change.

The entire approach is integrated in the UML modeling tool from IBM, Eclipse Modeling
Framework. This integration is based on the SWI-Prolog engine. Editing operations are

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 166/182

!

represented by Prolog facts and inconsistency rules by Prolog query. The validation of
Praxis has shown the following advantages and drawbacks:

• Performances: Praxis is quite fast. The use of static information making the
detection incremental speeds up inconsistency detection during model
evolution.

• Completeness: Praxis can be used to detect and to diagnosis both for structural
and methodological inconsistencies.

Conjunctive Normal Form is represented in Praxis by EMF Text. Consistency Rules are
expressed by a set of methods, for each rule correspond a specific method which is the
conjunction of several properties. Figure 12.20 shows an elementary consistency rule
between two classes (C1 and C2) of two different models ({1} and {2}). In this rule, C1
and C2 must have the same name.

Figure 12.20: Example of CNF properties

12.4.3.2 Consistency relations between DSML and UMLseCh

Figure 12.21 summarizes the set of DSML elements and UMLseCh elements whose
are taken in account for consistency rules. Note that the relation between security
requirements of the DSML and formal properties of UMLseCh are based on traceability
and are not described in this table.

As suggested by Figure 12.21, consistency relations between DSML and UMLseCh
are only defined for system representation and Change representation: Risk and
Requirement Models of the security DSML are not defined in UMLseCh. DSML doesn’t
include behavioral representation (Statechart Diagram, Sequence Diagram) of the
system. Theses languages are so complementary.

Inside Change representation, the Change Model defined in DSML is equivalent to
UMLseCh Statechart Diagram. The Type of Change attribute of Change Request
correspond to Change annotation in Class Diagram (the behavioral description of the

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 167/182

!

system is not defined in the security DSML). This is why we define the application of
this Consistency relation as partial.

.*"/!"#$%&1 .*"/!%&%?%(81 2"/1%34!.',)7,?1 2"/1%34!%&%?%(8 A++&'-,<&%K :%&,8'#(!<,1%$!#(!K

:'10 :'10!"#$%& L ! ! M# M#8!A++&'-,<&%

:%@6'7%?%(8
:%@6'7%?%(8!

"#$%&
L ! ! M# M#8!A++&'-,<&%

N11%(8',&!N&%?%(8 21%!3,1%!.',)7,? 3&,11'B'%7!E21%!3,1%G O%1 M,?%

I,7)%8 3&,11'B'%7!E3&,11P!M#$%G O%1 M,?%P!A887'<68%P!"%84#$1

3#??6('-,8'#(!
34,((%&

A11#-',8'#(!F!
A11#-',8'#(3&,11!

EH(8%7B,-%G
O%1

*#67-%!,($!I,7)%8!#B!
,11#-',8'#(P!&'18!#B!1')(,&1!

'(!H(8%7B,-%
NQ-4,()%$!.,8, *')(,& O%1 M,?%P!A887'<68%

3#(187,'(8 3#(187,'(8 O%1 3#(87,-8!%Q+7%11%$!'(!3MC!

! ! *8,8%-4,78!.',)7,? L M# M#8!A++&'-,<&%
! ! *%@6%(-%!.',)7,? L M# M#8!A++&'-,<&%

34,()% *8,8% O%1 M,?%

I7,(1'8'#(I7,(1'8'#(O%1
*#67-%RI,7)%8!#B!

I7,(1'8'#(P!S6,7$!#B!
I7,(1'8'#(1!

34,()%!:%@6%18 3&,11!.',)7,? 34,()%!A((#8,8'#(D,78',&
I9+%!#B!34,()%!'(!.*"/!
34,()%!:%@6%18!,($!0'($!
#B!,((#8,8'#(!'(!2"/1%34

%-67'89!."/ 2"/1%34 3#(1'18%(-9!:%&,8'#(

*8,8%-4,78!.',)7,?

34,()% 34,()%!"#$%&

:%+7%1%(8,8'#(

3&,11R.%+	?%(8!
.',)7,?

3#(8%Q8!"#$%&
*918%?

Table 12.21: Consistency relations between Security DSML and UMLseCh profile

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 168/182

!

13 From UMLseCh Design Models to
Model-based Testing

The aim of Model-Based Testing (MBT) is to use a model in order to compute test
cases that will then be executed on a concrete system. This kind of approach is
complementary to the verification step (in UMLsec, the security analysis) that is
supposed to be done before using the model for test generation. Usually, the test
model that is considered is different from the model supposed to design the system.
While the design model is generally very abstract, the test model is more concrete,
closer to the implementation, which eases the concretization of the tests to be run on
the system under test. Unfortunately, in a large majority of cases, the test model is a
refinement of a design model, and design models can very rarely be used as they are
to produce tests that aim at being run on the implementation.

In this section, we study the possible reuse of UMLseCh design models for model-
based test generation, in the objective of gathering both verification and validation
steps in a single model.

The Model-Based Testing approach, in the context of the SecureChange project, aims
at two main objectives that can be related to the UMLseCh design models. The first
objective is to automatically generate test suites dedicated to the validation of the
software evolutions (see Deliverable 7.2 for more details). The second objective is to
produce security-oriented tests that will be in charge of ensuring the conformance of
the system under test to the security policy. These two aspects are complementary but
independent. We focus in this section on the use of UMLseCh models for model based
security testing.

This section first recalls the test generation principles used in our automated test
generation Smartesting’s Test Designer (TD) technology, used as a basis for the
mode-based testing activity in Secure Change. We then compare the existing
UMLseCh elements and discuss their reuse/adaptation to be employed with TD. We
expose a forward-looking use of UMLseCh models for generating security-oriented
tests. Finally, we discuss the UMLseCh notation for secured evolution and its possible
use in a model-based testing process.

13.1 Current Model-Based Testing approach with
Smartesting’s Test Designer technology

Test Designer is a model based test generation technology, industrialized by the
Smartesting Company. In the context of model based testing, a formal behavioural
model (called the Test Model) is used to automatically compute the test cases that will
later on be concretized to be run on the system under test (offline testing). The model

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 169/182

!

also provides the oracle, namely the expected results of the tests, in terms of return
values of operations and successive states reached by the test case.

The current Model-Based Testing approach with Smartesting’s Test Designer is given
in Figure 13.1.

The process starts by the analysis of the informal specification and requirement
documents. A first modelling step consists in designing a test model that will be used
for test generation. The test generation process covers the formal model, and
generated test cases are made of sequences of operations calls. To produce the test
cases, two strategies are possible. The first one consists in employing a model
coverage criterion, namely a transition coverage, which is automatically applied by the
tool. The second option is to manually design a test scenario as a regular expression
combining sequences of operations and intermediate states that have to be reached by
the tests. This latter technique makes it possible to relate the test scenario to high level
properties that one may want to exercise on the system. Abstract test cases are then
concretized to be run on the system under test (SUT). !

In its current version, the Test Designer technology takes as input three UML
diagrams, a subset of UML 2.1 (the latest version of UML) for model-based testing
purposes. This subset allows formal behaviour models of the SUT to be designed,
which can be mechanically interpreted to generate test suites. The subset uses class,
instance and state diagrams, plus OCL expressions.

The class diagram describes the data model, organised in classes, containing
attributes and operations, and relations between classes. The operations of the class
diagram have to contain OCL constraints that describe their pre- and post-conditions.
The post-conditions are expressed using classical OCL, but are interpreted as an
action language, meaning that logical “and”s between predicates may represent a
compound condition (if present in a decision – IF … THEN … ELSE … END) or a
sequential assignment (when present in the THEN or ELSE parts). Finally, notice that
TD class diagram forbid the use of inheritance between classes, and not object
instance may be dynamically created. In practice, the validation engineer has to
provide a special object, representing the system under test, which carries operations
representing its API.

The object diagrams are used to specify the object instances existing in the system at
the initial state. As dynamic object creation is not supported by the tool, this diagram
provides all the test data that will be used during the execution of the system. In
particular, the dynamic creation of objects can be simulated by isolated instances of
objects that are not related to any other instance.

!

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 170/182

!

 Figure 13.1:!MBT with Smartesting's Test Designer

Third, and finally, Test Designer supports the use of layered Statechart diagrams that
describes the evolution of the SUT object. The guard and effect of transitions are
defined using the OCL language.

13.1.1 Example of diagrams used for TestDesigner

Figure 13.2 represents a class diagram used in TestDesigner. The diagram represents
a SmartCard that contains a hierarchy of Security Domains (that can be assimilated to
directories on a file system. Each security domain has a parent SD and possibly
children. Also, security domains contain applications that are installed on the smart
card.

The diagram contains a main entity that represents the System Under Test. This entity
is supposed to carry all the operations that can be invoked when testing the system
(a.k.a. control points).

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 171/182

!

Figure 13.2 : Class diagram used in TestDesigner

In order to represent the dynamics of the system, OCL constraints have to be added to
describe the behaviours of the SUT operations. Figure 13.3 gives the pre- and
postconditions of the block() operation carried by the SmartCard. This operation
contains specific tags (prefixed by ---@REQ) that mark the requirements that are
expressed in the operation’s behaviours. When employed, TestDesigner will produce
tests that exercise these behaviours.

!!
Figure 13.3: OCL constraints describing the Block() operation!

if in_app.applicationState = APPLICATION_STATE::BLOCKED then
 ---@REQ: BLOCK_ERROR_ALREADY_BLOCKED

 self.error = ERRNO::ALREADY_BLOCKED and

 result = -1

else

 if in_sd.applications->exists(app | app=in_app) then

 ---@REQ: BLOCK_OK_SD_CONT_APP

 in_app.applicationState = APPLICATION_STATE::BLOCKED and

 result = 0

 else

 ---@REQ: BLOCK_ERROR_NOT_OWNER

 self.error = ERRNO::NOT_OWNER and

 result = -1

 endif

endif

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 172/182

!

Figure 13.4 gives a screenshot of the TestDesigner tool, in which the tests are
classified according to the requirements they cover.

Figure 13.4: Screenshot of the TestDesigner tool

13.2 Relationship between UMLseCh design models
and TestDesigner models

In order to map UMLseCh design models into Test Designer, we can reason on the
UMLseCh diagrams.

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 173/182

!

UMLseCh class diagrams can be used in TD. However, it is mandatory that these
diagrams contain OCL constraints that will describe the behaviors of the operations.
OCL is not exploited in UMLseCh, their addition to UMLseCh class diagrams can be
done transparently and is thus not a problem at all.

UMLseCh sequence diagrams are used at two purposes, either to specify the
behaviour of security mechanisms, in general, and, in particular, they can be used to
describe cryptographic protocols, involving pre-defined functions, such as encryption,
decryption, signature, hashing, etc.

At the current time, the use of UMLseCh sequence diagrams for protocol testing in TD
is not possible. Nevertheless, test generation for UMLseCh sequence diagrams when
describing security mechanisms is possible and discussed in the following part.

13.2.1 New security-oriented test generation techniques
based on UMLseCh elements

The UMLseCh toolset works using an intermediate format named XMI (XML Metadata
Interchange) that describes the content of a set of UML diagrams. Such a file can be
exploited in order to extract security-relevant informations that would have been
modelled by UMLseCh.

13.2.1.1 Use of UMLseCh stereotypes

For the diagrams that can be reused in Test Designer without modifications, it is
possible to take into account the following UMLseCh stereotypes, so as to produce
new testing strategies:

- critical data with tags “integrity”, “secrecy” or “authenticity”: describe the fact that the
considered data is somehow a critical data, that have to be protected. When verified
with UMLseCh tools, the process will check that the security properties attached to this
data is preserved on the model and though the possible evolutions. Nevertheless,
there is no guarantee that these properties also exist on the System Under Test.
Testing scenarios may try to exercise the model with the objective to exercise the
property for these protected data. For example, testing scenarios involving the
coverage of definitions and uses of a secret data may possibly reveal security faults on
the SUT. This kind of approach necessary needs to be coupled with security monitors
that will evaluate the preservation of security properties at test execution-time,
revealing an error is the test cases leads the system to a state in which the secret data
is read.

- rbac with tags “role”, “right” and “protected”: makes it possible to describe Role-Based
Access control rules, in order to check that the model of the system enforces this

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 174/182

!

access control policy. Such formalism can be used to derive testing strategies in which
attempts will be made to access a private data in various unacceptable conditions.

13.2.1.2 Use of UMLseCh models

In this section, we present how UMLseCh models can be exploited for test generation
purposes.

Under certain conditions depending on their content, UMLseCh activity diagrams can
be seen as labelled (guarded) transition systems, which can be explored, from its initial
state to one of the final states, so as to produce test cases representing high-level
interactions of objects. This graph can be covered using the “classical” graph coverage
criteria such as all-nodes (producing a set of tests that goes through each node), all
transitions (producing a set of tests that goes through each transition), all k-paths
(producing a set of tests that covers all the transitions and iterates each loop k times),
all paths (producing a set of tests that covers all the paths that can be explored). The
latter criterion being very explosive and not realistic on large systems, its choice is
questionable.

When sequence diagrams describe the behaviour of security mechanisms, they can
be exploited similarly to activity diagrams, in order to extract test scenarios from the
message sequence chart that is given.

13.3 Model-Based Testing for Changes

The UMLseCh extension describes the possible evolutions that may occur from a given
version of a model to another. By analyzing the possible changes, the UMLseCh tool
suite makes it possible to ensure that the security properties that applied on the initial
model are preserved for any of the changes described in the UMLseCh model.

Model-based testing works on using models for generating tests. The test generation
solution that we propose in SecureChange (Deliverable 7.2) consists in considering
two models, one for version N, the other for version N+1. In this context, the use of a
single UMLseCh model is not feasible, since we need to have an instantiation of the
changes for our technique to work. Once again, we face the problem of the level of
abstraction that differs between the two approaches.

Nevertheless, from a methodological point of view, it is not a problem. First, a model is
designed using UMLseCh, it contains security properties that are verified using the
UMLseCh tool set. This model may consider the description of possible changes,
whose effects are checked as secure (also by the UMLseCh tool set). In the end, a
possible instantiation of these changes is concretely done, it is thus assumed to also
satisfy the initial security properties as long as the changes that were concretely made
correspond to changes that were expected at the design level. The only verification
necessary here is to check that the instantiation fits the evolution model. Once the two
models exist and are both checked as secured, the test generation process (testing the

!
!

 D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 175/182

!

evolutions on the system under test) takes place, considering the two models so as to
derive the tests cases that are relevant w.r.t. the evolutions that happened.

Conclusion

This document defines an extension (UMLseCh) to the selected security modelling
notation (UMLsec) which allows to model secure system evolution in general, and
that also includes a specific notation for modelling systems based on smart cards.
Hints about how an analysis tool could implement this notation are given (first step
towards Task 4.3 “Extend existing security analysis tools with adaptive security”).

To illustrate the use of the notation the GlobalPlatform and the ePurse application are
modelled. This also shows how the methodologies presented in this deliverable can
be applied in the context of the industrial application scenario POPS.

A formal analysis of the preservation of secrecy under composition is also included.
This is a starting point for Task 4.2 “Provide formal foundation for evolutive security
extension”: component modification is a common form of evolution, therefore results
involving component composition are desirable.

Connections with the SecureChange lifecycle process, Security Requirements and
Model-Based Testing are shown. This are all topics under development by other Work
Packages in the SecureChange project. A comparison between UMLseCh and the
Security DSML modelling tool used by the industrial partner Thales is also highlighted.

Deliverable 4.1 provides thus not only the expected results as specified in the De-
scription of Work, but also includes several starting points towards Deliverable 4.2
(“Formally founded automated security analysis tools for this notation with a link to
code-level verification”).

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 176/182

Glossary

Abstract Design

change This stereotype can be attached to any elements in a model, are used
across all UML diagrams and specifies that the modelling element and all its
sub-elements has or is ready to undergo change.

current_change This stereotype can be attached to a subsystem, are used across
all UML diagrams and specifies that one or more of the subsystem’s sub-ele-
ments have been changed.

future_change This stereotype can be attached to a subsystem, are used across all
UML diagrams and specifies that one or more of the subsystem’s sub-elements
are ready to undergo change.

new This stereotype can be attached to any elements in a model, are used across
all UML diagrams and specifies that a new modelling element has been added
to the model.

modified This stereotype can be attached to any elements in a model, are used
across all UML diagrams and specifies that the modelling element have been
changed.

deleted This stereotype can be attached to any elements in a model, are used across
all UML diagrams and specifies that a modelling element have been deleted.

allowed_addition This stereotype can be attached to any elements in a model, are
used across all UML diagrams and specifies that adding a new element to the
model is an allowed kind of change.

allowed_modify This stereotype can be attached to any elements in a model, are
used across all UML diagrams and specifies that modifying an existing element
in the model is an allowed kind of change.

allowed_delete This stereotype can be attached to any elements in a model, are
used across all UML diagrams and specifies that deleting an existing element
in the model is an allowed kind of change.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 177/182

Concrete Design

substitute This stereotype can be attached to any model element and specifies a list

of possible substitutive elements and a condition formulated in first order logic

relative to other stereotypes and model elements in order to make the evolution

coherent with the new elements.

substitute-all This stereotype can be attached to any subsystem and specifies a list

of elements to be substituted and a list of substitutions. As in the stereotype

« substitute » it allows a condition in FOL to control change. The use of a meta

variable to better specify the changing model elements and the substitution is

allowed.

add This stereotype is syntactic sugar for a substitution which preserves the model

element as it is and adds some new element/stereotype to it.

add-all This stereotype is syntactic sugar for « substitute-all » which preserves a list

of model element as they are and adds some new element/stereotype to them.

del This stereotype is syntactic sugar for a substitution which deletes a model ele-

ment.

del-all This stereotype is syntactic sugar for « substitute-all » which deletes a list of

model elements in a subsystem.

Smart-cards

secure runtime env. This stereotype can be attached to subsystem or node through

several UMLMsec diagrams to ensure proper memory management of the data

and code of the applications and user data within Smart-card.

secure interface For proper implementation of the security mechanism(protect from

bypass, deactivated, corrupted and circumvented), this stereotype would be

added to node and link that represents the smart card components along with

relevant security mechanism.

legitimate process This is a high level stereotype that specifies the enforcement of

the required legal constraints and security policies under smart card compo-

nents within the UMLsec diagrams.

data filter To enforce availability of data and service, the stereotype specifies the

necessity to monitor and if require to filter the data by the node and throughout

the established communication channel.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 178/182

References

[Bre10] R. Breu. Ten principles for living models - a manifesto for change-driven

software engineering. In 4th International Conference on Complex, Intelli-

gent and Software Intensive Systems (CISIS-2010). IEEE Computer Society

Conference Proceedings., 2010.

[Bro99] Manfred Broy. A logical basis for component-based systems engineering. In

Calculational System Design. IOS. Press, 1999.

[BS01a] M. Broy and K. Stølen. Specification and Development of Interactive Sys-

tems. Springer-Verlag, 2001.

[BS01b] Manfred Broy and Gheorghe Stefănescu. The algebra of stream processing

functions. Theor. Comput. Sci., 258(1-2):99–129, 2001.

[BS01c] Manfred Broy and Ketil Stølen. Specification and development of interactive

systems: focus on stream. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2001.

[BX08] Mounier I et al. Blanc X, Mougenot A. Detecting model inconsistency

through operation-based model construction. In In Proc. Int’l Conf. Software

engineering (ICSE’08), volume 1, pages 511–520, 2008.

[BX09] Barais O. Labreuche C. Blanc X., Mougenot A. Model driven viewpoint en-

gineering: State of the art., 2009.

[Com07] ISO 15408:2007 Common Criteria for Information Technology Security Eval-

uation, Version 3.1, Revision 2: Part 2; Security Functional Components,

CCMB-2007-09-002, September 2007.

[Del10a] Deliverable 2.1: An architectural blueprint and a software development pro-

cess for security-critical lifelong systems, 2010. Unpublished Draft Report

ICT-FET-231101 D2.1, SecureChange (EU ICT-FET-231101).

[Del10b] Deliverable 3.2: Methodology for evolutionary requirements, 2010. Un-

published Draft Report ICT-FET-231101 D3.2, SecureChange (EU ICT-FET-

231101).

[Dor02] C. J. Dorofee. Managing information security risks: The OCTAVE approach.

Pearson Education, 2002.

[EBI] Ebios method. http://www.ssi.gouv.fr/en/confidence/
ebiospresentation.html.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 179/182

[GPS06] Globalplatform card specification version 2.2, March 2006.

[GPS08] Global platform uicc configuration version 1.0, October 2008.

[HD09] M. S. H. Dahl. Deliverable 5.2: Documentation of forecasts of future
evolvement., 2009. Unpublished Draft Report ICT-FET-231101 D5.2, Se-
cureChange (EU ICT-FET-231101).

[Inc03a] Sun Microsystems Inc. Application programming interface java card plat-
form, version 2.2.1, June 2003.

[Inc03b] Sun Microsystems Inc. Runtime environment specification java card plat-
form, version 2.2.1., June 2003.

[Inc03c] Sun Microsystems Inc. Virtual machine specification java card platform, ver-
sion 2.2.1, June 2003.

[IR008] ISO/IEC 27005:2008 Information technology - Security techniques - Infor-
mation security risk management. , 2008.

[IR09] Dániel Varró István Ráth, Gergely Varró. Change-driven model transforma-
tion. In in Proc. of Int. Conf. on Model Driven Engineering Languages and

Systems(MODELS), Denver, USA, 2009.

[Isl09] Software development risk management model: a goal driven approach,
New York, NY, USA, 2009. ACM.

[JM92] Brian A. Nixon: John Mylopoulos, Lawrence Chung. Representing and us-
ing nonfunctional requirements: A process-oriented approach. IEEE Trans.

Software Eng., 1992.

[JP05] Sheridan D. Jackson P. Clause form conversions for boolean circuits. Lec-

ture Notes in Computer Science 3542, pages 183–198, 2005.

[Jür05a] J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2005.

[Jür05b] J. Jürjens. Sound methods and effective tools for model-based security en-
gineering with uml. ICSE 2005,ACM, pages 322–331, 2005.

[Jür06] J. Jürjens. Security analysis of crypto-based java programs using automated
theorem provers. ASE 2006, IEEE Computer Security, pages 167–176,
2006.

[Jür09] Jan Jürjens. A domain-specific language for cryptographic protocols based
on streams. J. Log. Algebr. Program., 78(2):54–73, 2009.

D4.1 Security Modelling Notation for Evolving Systems
version 1.9 | page 180/182

[McG08] M. McGrath. Propositions. In Edward N. Zalta, editor, The Stanford Ency-

clopedia of Phylosophy. 2008.

[MEH] Mehari method. https://www.clusif.asso.fr/fr/production/
ouvrages/type.asp?id=METHODES.

[MF09] A. Tedeschi M. Felici, V. Meduri. Secure Change - Review Story, Version

1.2, September 2009.

[NV09] Jitia C. Normand V., Felix E. A dsml for security analysis. IST MODELPLEX

project restricted deliverable 3.3.g., 2009.

[Rat09] Rational doors homepage, 2009. http://www-01.ibm.com/software/
awdtools/doors/.

[Too09] UMLsec tool, 2001-09. http://mcs.open.ac.uk/jj2924/umlsectool.

[WSH
+

07] C. Weidenbach, R.A. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic.

System description: Spassversion 3.0. In CADE, volume 4603 of Lecture

Notes in Computer Science, pages 514–520. Springer-Verlag, 2007.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 181/182

Appendix

In this appendix we include the following peer reviewed articles:

1). A. Bauer, J. Jürjens

Run-time Verification of Cryptographic Protocols
Accepted at the Journal for Computers & Security, to be published in 2010

Provides a foundation for the security monitors delivered in deliverable 4.3 (white-box

approach).

2). A. Pironti, J. Jürjens

Formally Based Black Box Monitoring of Security Protocols
Accepted at International Symposium on Engineering Secure Software and Systems

(ESSOS 2010). To be published in the Lecture Notes for Computer Science, Springer-

Verlag, 2010.

Provides foundation for the security monitors delivered in deliverable 4.3 (black-box

approach).

3). A. Bauer, J. Jürjens, Y. Yu

Run-time Security Traceability for Evolving Systems (submitted)

Provides a foundation for the security monitors delivered in deliverable 4.3. Explains

how the white-box approach introduced in the earlier paper is adapted to the case of

system evolution.

D4.1 Security Modelling Notation for Evolving Systems

version 1.9 | page 182/182

RuntimeVerification of Cryptographic Protocols
Andreas Bauer a and Jan Jürjens b,∗

aNICTA, and Australian National University
bDepartment of Computer Science, TU Dortmund (Germany)

Abstract

There has been a significant amount of work devoted to the static verification of security protocol designs. Virtually all of these results, when
applied to an actual implementation of a security protocol, rely on certain implicit assumptions on the implementation (for example, that the
cryptographic checks that according to the design have to be performed by the protocol participants are carried out correctly). So far there
seems to be no approach that would enforce these implicit assumptions for a given implementation of a security protocol (in particular regarding
legacy implementations which have not been developed with formal verification in mind).
In this paper, we use a code assurance technique called “runtime verification” to solve this open problem. Runtime verification determines

whether or not the behaviour observed during the execution of a system matches a given formal specification of a “reference behaviour”. By
applying runtime verification to an implementation of any of the participants of a security protocol, we can make sure during the execution of
that implementation that the implicit assumptions that had to be made to ensure the security of the overall protocol will be fulfilled. The overall
assurance process then proceeds in two steps: First, a design model of the security protocol in UML is verified against security properties such
as secrecy of data. Second, the implicit assumptions on the protocol participants are derived from the design model, formalised in linear-time
temporal logic, and the validity of these formulae at runtime is monitored using runtime verification. The aim is to increase one’s confidence
that statically verified properties are satisfied not only by a model of the system, but also by the actual running system itself. We demonstrate
the approach at the hand of the open source implementation Jessie of the de-facto Internet security protocol standard SSL. We also briefly
explain how to transfer the results to the SSL-implementation within the Java Secure Sockets Extension (JSSE) recently made open source by
Sun Microsystems.

Key words: Security protocols, SSL, Java, temporal logic, static verification, runtime verification, security automata.

1. Introduction

With respect to cryptographic protocols (or short, crypto-
protocols), a lot of successful work has been done to formally
analyse abstract specifications of these protocols for security
design weaknesses [26, 19, 40, 1, 14, 47, 7, 6]. What is still
largely missing is an approach which provides assurance for im-
plementations of crypto-protocols against security weaknesses.
This is necessitated by the fact that so far, crypto-protocols are
usually not generated automatically from formal specifications.
So even where the corresponding specifications are formally
verified, the implementations may still contain vulnerabilities
related to the insecure use of cryptographic algorithms, or by
some underlying assumptions in the abstract models that are
invalidated by reality.

∗ Corresponding author. Partially supported by the EU project and Se-
cureChange (ICT-FET-231101).
Email addresses: baueran@rsise.anu.edu.au (Andreas Bauer),

http://jurjens.de/jan/ (Jan Jürjens).

For example, recently a security bug was discovered in
OpenSSL where several functions inside OpenSSL incorrectly
checked the result from calling a signature verification func-
tion, thereby allowing a malformed signature to be (wrongly)
treated as a good signature 1 . This was a serious vulnerability
because it would enable an attacker in a “man in the middle”
attack scenario (which is generally realistic on the Internet,
which is why security protocols are needed in the first place)
to present a malformed SSL/TLS signature to a client suffering
from this vulnerability, who would wrongly accept it as valid.
The above vulnerability thus gives a motivating example for

a scenario where checks performed at runtime can be indis-
pensable for the secure functioning of a given crypto-protocol
implementation. The goal of our work is to offer a formally
based approach which is integrated with existing design mod-
els of the system (e. g., in UML), and which would allow the
runtime assurance of properties supporting general security re-
quirements (such as secrecy and authenticity), rather than being

1 Cf. http://www.openssl.org/news/secadv 20090107.txt.

Preprint submitted to Computers & Security 17 November 2009

a quick fix for a particular known vulnerability. More specifi-
cally, the approach is based on the combination of:
– static security verification of UML specifications of crypto-
protocols against security requirements using the UMLsec
tool-support [48], which implements a Dolev-Yao style se-
curity analysis [26] 2 and

– a technique called runtime verification (cf. [25, 13]) which
monitors assumptions that had to be made during the model-
level analysis, on the implementation level at runtime, using
monitors that can be automatically generated from linear-
time temporal logic (LTL, [42]) formulae (cf. Section 4) us-
ing the open source LTL3TOOLS [49].

The combination of the two verification approaches thus allows
us to ensure that Dolev-Yao type security properties will be
enforced by the implementation at runtime.
We discuss runtime verification in detail in Section 4, but in

a nutshell it works like this: we are given a formal specifica-
tion of desired or undesired system behaviour. From this, a so
called monitor is automatically generated, which is a software
component that, at runtime, compares an observed behaviour
of a system with the specified reference behaviour. If a mis-
match is detected, the monitor signals an alarm. If at a certain
point it becomes clear that the observed behaviour from then
on will always satisfy the given reference behaviour, the moni-
tor signals confirmation. Otherwise, it continues monitoring the
system until one of the two situations mentioned above occurs
(if ever).
Note that we are not concerned with the correct implemen-

tation of low-level crypto-algorithms (such as key generation
or encryption). Instead, we would like to make sure that cer-
tain assumptions on the correct use of these algorithms within a
protocol (e. g., that the validity of a signature is indeed checked
at a certain point in the protocol), that have to be made when
performing a static security analysis at the model level, are sat-
isfied at runtime at the implementation level. In particular, our
aim is not to verify the implementation against low-level weak-
nesses that cannot be detected using Dolev-Yao style verifica-
tion (such as buffer overflows), for which other tools already
exist that can be applied in addition to ours.
The goal of the proposed process is thus to ensure that the

implementation of a crypto-protocol is conformant to its spec-
ification as far as the Dolev-Yao style security properties are
concerned which have been verified against some security prop-
erties at the specification-level. To check conformance with re-
spect to the security properties of the implementation against
the specification, we have to ensure in particular that the imple-
mentation will only send out those (security-relevant) message
parts that are permitted by the protocol specification, and only
whenever they are permitted by the specification (e. g. after
a certain signature check has been performed). Our approach
allows us to enforce this conformance separately for each of

2 A Dolev-Yao style security analysis of a cryptographic protocol is a security
analysis of the interaction of the protocol participants with a man-in-the-
middle attacker, at a relatively high level of abstraction which does not
consider low-level properties (such as bit-level properties of cryptographic
algorithms, or traffic analysis) but focusses on the correctness of the use of
cryptography in the protocol.

the distributed participants in a protocol (such as client and
server), by generating a security monitor for each of the parts
that should be monitored in a distributed way. In particular, it
allows the user to apply our runtime assurance approach only to
some participants in the protocol: For example, those for which
one has access to the source code, which is the level at which
we will apply the approach in this paper (although in principle
run-time verification can also be applied to system components
available as a black box only, without access to the code).
For example, our approach can in particular enforce that the

secret is only sent out on the network whenever specified by the
protocol design, and only after encrypting it appropriately. As
another example, the protocol specification may require that a
session key may only be sent out encrypted under a public key
that was received before, and after checking that the certificate
for that public key is valid. In this paper, we will focus on ex-
amples of the latter kind that concern the kind of cryptographic
checks that according to the protocol specification need to have
been performed correctly before the next message in a protocol
can be sent out.
It is interesting to note that our approach bears some sim-

ilarities with the work of Schneider [43], who introduced se-
curity automata to detect violations of so called safety proper-
ties at runtime at the implementation level. Note, however, that
safety properties form only a strict subset of those properties
relevant to runtime verification of crypto-protocols, as demon-
strated by our case study of the widely used SSL-protocol for
Internet communication encryption. In particular, our approach
to runtime verification strictly exceeds Schneider’s security au-
tomata, as we will demonstrate in this paper, and allows one
to generate monitors for properties that go beyond the “safety
spectrum”, as was necessary in our application to SSL. Also,
this work seems to be the first application of runtime verifica-
tion to crypto-protocol implementations.
Specifically, we explain our approach at the hand of JESSIE,

an open source implementation of the Java Secure Socket Ex-
tension (JSSE), which includes the SSL-protocol. We first gen-
erate finite state machines as acceptors for the relevant prop-
erties defined at the specification-level, and then generate Java
code from these state machines. The outcome then constitutes
the executable monitor which watches over our implementa-
tion of Jessie. In addition to that, we also briefly explain how
to transfer these results to Sun’s own implementation of the
JSSE, which was recently made open source.
Note that it is not in scope of the current paper to explain

how the LTL formulas used in the run-time verification could
be generated automatically from a UMLsec specification.

Outline. This article is a significantly extended version of
our previous paper [11]. Additions in comparison to that paper
include:
– the first part of the methodology, which performs the auto-
mated, static security verification on the model level, in a
way that is tightly integrated with the later runtime verifica-
tion part,

2

– the integration of the overall approach including the two
phases (static model verification and runtime implementation
verification)

– the implementation of automated, formally based tool-
support for both phases of the approach and detailed de-
scription of this tool-support, and

– an explanation of how the application of our approach was
transferred to other libraries such as Sun’s own JSSE imple-
mentation.
The remaining parts of this article are structured as follows.

In the next section, we first outline related work. In Section 3,
we introduce the SSL-protocol and identify relevant security
properties. We then explain how protocol models in the security
extension UMLsec of the Unified Modeling Language (UML)
can be automatically verified against these security properties.
In Section 4, we provide more details on runtime verification,
and discuss how the approach we employ in our work exceeds
Schneider’s security automata in its formal expressiveness. Sec-
tion 5 then identifies what we call runtime security properties,
which we have derived from our specification used for static
verification. We formalise these properties in the widely used
temporal logic LTL [42], and discuss how to automatically de-
rive a monitor from these formalised properties. Specifically,
we provide details on the finite state machines that are gener-
ated first, and subsequently on the generated code. Moreover,
we state briefly how our results developed at the hand of an
application to the open source library Jessie, can be transferred
to Sun’s own SSL-implementation as part of the JSSE, which
was recently made open source as well. Finally, in Section 6,
we conclude.

2. Related work

2.1. Monitoring, runtime verification & security automata

Monitoring systems is a widely used means to verify that
the behaviour of a running system, i. e., a stream of isolated
events, adheres to its intended behaviour. Many examples are
described in different areas much older than the emerging field
of runtime verification; for instance, [33, 51] describe the use
of synchronous observers to dynamically verify control soft-
ware, and one may even count classic debugging as a form of
monitoring (where the system is a “glass-box system” as com-
pared to a “black-box system”, where only the outside visi-
ble behaviour can be observed). However, such approaches are
typically less rigorous, and less structured than runtime veri-
fication, which is formally based on temporal logics, or other
forms of regular languages to specify the properties one is in-
terested in, formally. As a scientific discipline, runtime veri-
fication was pioneered by works of Havelund and Rosu [34]
(see also [35, 36]), who described how to obtain efficient moni-
tors for specifications given in (past-time) linear-time temporal
logic (LTL, [42]). Note that for different “flavours” of tempo-
ral logic, different approaches to runtime verification exist (cf.
[12, 31, 41, 13, 9] for an overview).
Moreover, via the Property Specification Language (PSL),

there exists nowadays an IEEE industry standard, IEEE1850,
for temporal logic which subsumes LTL as well. There exists a
considerable amount of tool support for creating and verifying
PSL specifications, in particular, with respect to chip design
and integrated circuits. We believe that the adoption of PSL and
temporal logic by industry is also beneficial for the adoption
of our approach in security-critical environments in general.
The techniques used in runtime verification also bear a re-

semblance with the well-known security automata as intro-
duced by Schneider [43], and already mentioned in the intro-
duction. Formally, Schneider’s work is based on temporal logic
as well, however, imposes restrictions on the types of speci-
fications which can be monitored (or “enforced” to put it in
Schneider’s own terms). Security automata are restricted to the
so-called safety fragment (of LTL). For a formula which is from
the safety fragment, the corresponding (possibly empty) set of
words satisfying the formula (the so-called language) is of such
a form that any word not in this set can be recognised by an
automaton using a prefix of that formula only. Note that this
is not always possible for LTL formulae in general, e. g., there
exist formulae formalising so-called liveness properties, or co-
safety properties, that are not safety properties. Because the
properties we consider go beyond the pure safety fragment of
LTL, our approach is strictly more expressive than Schneider’s
original work, and this also explains why in our case study (see
Section 5), we could not simply use security automata in the
first place.
There also exists work by Clarkson and Schneider [24], in

which the scope of properties from describing merely a set of
words to sets of sets of words is extended, i.e., to so-called
hyperproperties. Although Clarkson and Schneider have been
able to describe some important security policies using hyper-
properties that cannot be described using the types of properties
used in this paper, it is not clear to us whether hyperproperties
can be also be operationalized in the same efficient way as non-
hyperproperties. We therefore do not use hyperproperties as a
specification formalism for our method in this paper, although
this could indeed be interesting future work.
Another application of monitoring to security was presented

in [50]. The paper proposes a caller-side rewriting algorithm
for the byte-code of the .NET virtual machine where security
checks are inserted around calls to security-relevant methods.
The work is different from ours in that it has not been applied
to the security verification of cryptographic protocols, which
pose specific challenges (such as the correct use of crypto-
graphic functions and checks). In another approach, [45] pro-
poses to use formal patterns of LTL formulae that formalise
frequently reoccurring system requirements as security moni-
toring patterns. Again, this does not seem to have been applied
to cryptographic protocols so far.

2.2. Code-level security hardening

Approaches for code-level security hardening based on ap-
proaches other than runtime verification exist as well, includ-
ing the following examples. Again, they differ from the work

3

Fig. 1. The cryptographic protocol implemented in SSLSocket.java

we present here in that they have not been applied to crypto
protocol implementations and their specific requirements. [28]
describes an approach for retrofitting legacy code with secu-
rity functionality, specifically applied to authorisation policy
enforcement. It can be used to identify security-sensitive loca-
tions in legacy servers in order to place reference monitor calls
to mediate these locations. [53] shows how to apply aspect-
oriented programming to implement security functionality such
as access control and logging on the method level.
More recently, there has been a growing interest in for-

mally verifying implementations of crypto-protocols against
high-level security requirements such as secrecy with respect to
Dolev-Yao attacker models (cf. [39, 32, 38, 15]). These works
so far have aimed to verify implementations which were con-
structed with verification in mind (and in particular fulfil signif-
icant expectations on the way they are programmed) [32, 15],
or deal only with simplified versions of legacy implementations
[39, 38]. Our use of runtime verification is motivated by the ob-
servation that so far it has not seemed to be feasible to statically
and formally verify legacy implementations of practically rele-
vant complexity against high-level security requirements such
as secrecy.
Other work on security verification on the code level includes

[22, 18, 29, 8, 17, 20, 21]. Again, these approaches so far do not
seem to have been applied to crypto-protocol implementations.
Other approaches to the model-based development of

security-critical software include [10, 3, 54, 30, 37, 16]. These
do not seem to have been used in connection with runtime
verification so far.

3. Security properties of the SSL-protocol

SSL is the de-facto standard for securing http-connections
and is therefore an interesting target for a security analysis. It
may be interesting to note that early versions of SSL (before
becoming a “standard” renamed as TLS in RFC 2246) had
been the source of several significant security vulnerabilities in
the past [2]. In this paper, we concentrate on the fragment of
SSL that uses RSA as the cryptographic algorithm and provides
server authentication (cf. Figure 1).
As usual in the formal analysis of crypto-based software, the

crypto-algorithms are viewed as abstract functions. In our appli-
cation, these abstract functions represent the implementations
from the Java Cryptography Architecture (JCA). The messages
that can be created from these algorithms are then as usual for-
mally defined as a term algebra generated from ground data,
such as variables, keys, nonces, and other data using symbolic
operations. These symbolic operations are the abstract versions
of the crypto-algorithms.
We assume a set Keys of encryption keys disjointly parti-

tioned in sets of symmetric and asymmetric keys. We fix a set
Var of variables and a set Data of data values (which may

4

include nonces and other secrets). The algebra of expressions
Exp is the term algebra generated from the set Var∪Keys∪
Data with the operations given in Figure 2. There, the sym-
bols E, E′, and E′′ denote terms inductively constructed in this
way. Note that, as syntactic sugar, encryption enc(E,E′) is of-
ten written more shortly as {E}E′ , sign(E,E′) as SignE′(E),
conc(E,E′) as E :: E′, and inv(E) as E−1. In that term al-
gebra, one defines the equations dec(enc(E,K),inv(K))=E and
ver(sign(E,inv(K)),K,E)=true for all terms E,K, and the usual
laws regarding concatenation, head(), and tail().

enc(E,E′) (encryption)
dec(E,E′) (decryption)
hash(E) (hashing)
sign(E,E’) (signing)
ver(E,E’,E”) (verification of signature)
kgen(E) (key generation)
inv(E) (inverse key)
conc(E,E’) (concatenation)
head(E) and tail(E) (head and tail of concat.)

Fig. 2. Abstract Cryptographic Operations

Note that the cryptographic functions in the JCA are imple-
mented as several methods, including an object creation and
possibly initialisation. Relevant for our analysis are the actual
cryptographic computations performed by the digest(), sign(),
verify(), generatePublic(), generatePrivate(), nextBytes(),
and doFinal() methods (together with the arguments that are
given beforehand, possibly using the update() method), so the
others are essentially abstracted away. Note also that the key and
random generation methods generatePublic(), generatePri-
vate(), and nextBytes() are not part of the crypto-term-algebra
but are formalised implicitly in the logical formula by intro-
ducing new constants representing the keys and random values
(and making use of the inv(E) operation in the case of gener-
ateKeyPair()).
In our particular protocol, setting up the connection is done

by two methods: doClientHandshake() on the client side and
doServerHandshake() on the server side, which are part of
the SSL socket class in jessie-1.0.1/org/metastatic/jessie/
provider. After some initialisations and parameter checking,
both methods perform the interaction between client and server
that is specified in Figure 1. Each of the messages is imple-
mented by a class, whose main methods are called by the do-
ClientHandshake() rp. doServerHandshake()methods. The
associated data is given in Figure 3.

Message name Class of Message Type Message Type

ClientHello ClientHello CLIENT HELLO

ServerHello ServerHello SERVER HELLO

Certificate* Certificate CERTIFICATE

ClientKeyExchange ClientKeyExchange CLIENT KEY EXCHANGE

Finished Finished FINISHED

Fig. 3. Data for the Handshake message

We must now determine for the individual data how it is
implemented on the code level, to then be able to verify that
this is done correctly. We explain this exemplarily for the vari-
able randomBytes written by the method ClientHello to the
message buffer. By inspecting the location at which the vari-
able is written (the method write(randomBytes) in the class
Random), we can see that the value of randomBytes is deter-
mined by the second parameter of the constructor of this class
(see Figure 4).

1 Random (i n t gmtUnixTime , byte [] randomBytes)
{

3 t h i s . gmtUnixTime = gmtUnixTime ;
t h i s . randomBytes = (byte []) randomBytes . c l o n e () ;

5 }

Fig. 4. Constructor for random

Fig. 5. Data in ClientHello message

Therefore the contents of the variable depends on the ini-
tialisation of the current random object and thus also on the
program state. Thus we need to trace back the initialisation of
the object. In the current program state, the random object was
passed on to the ClientHello object by the constructor. This
again was delivered at the initialisation of the Handshake ob-
ject in SSLSocket. doClientHandshake() to the constructor
of Handshake. Here (within doClientHandshake()), we can
find the initialisation of the Random object that was passed
on. The second parameter is generateSeed() of the class Se-
cureRandom from the package java.security. This call deter-
mines the value of randomBytes in the current program state.
Thus the value randomBytes is mapped to the model element
RC in the message ClientHello on the model level. For this,
java.security.SecureRandom.generateSeed() must be cor-
rectly implemented. To increase our confidence in this assump-
tion of an agreement of the implementation with the model (al-
though a full formal verification is not the goal of this paper),

5

∀E1, E2.
(

knows(E1) ∧ knows(E2) ⇒ knows(E1 :: E2) ∧ knows({E1}E2
) ∧ knows(SignE2

(E1))
)

∧
(

knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)
)

∧
(

knows({E1}E2
) ∧ knows(E−1

2
) ⇒ knows(E1)

)

∧
(

knows(SignE−1

2

(E1)) ∧ knows(E2) ⇒ knows(E1)
)

Fig. 6. Structural formulae

all data that is sent and received must be investigated. In Fig-
ure 5, the elements of the message ClientHello of the model
are listed. Here it is shown which data elements of the first
message communication are assigned to which elements in the
doClientHandshake() method.
A crypto-protocol like the one specified in Figure 1 can then

be verified at the specification level for the relevant security re-
quirement such as secrecy and authenticity. This can be done
using one of the tools available for this purpose, such as the
UMLsec tool [48], which is based on the well-known Dolev-
Yao adversary model for security analysis. The idea is here that
an adversary can read messages sent over the network and col-
lect them in her knowledge set. The adversary can merge and
extract messages in the knowledge set and can delete or insert
messages on the communication links. The security require-
ments can then be formalised using this adversary model. For
example, a data value remains secret from the adversary if it
never appears in the knowledge set of the adversary.
We explain our translation from crypto-protocols specified

as UML sequence diagrams to first-order logic formulae which
can be processed by the automated theorem prover e-SETHEO
[46]. The formalisation automatically derives an upper bound
for the set of knowledge the adversary can gain.
The idea is to use a predicate knows(E) meaning that the

adversary may get to know E during the execution of the pro-
tocol. For any data value s supposed to remain secret as speci-
fied in the UMLsec model, one thus has to check whether one
can derive knows(s). The set of predicates defined to hold for
a given UMLsec specification is defined as follows.
For each publicly known expression E, one defines

knows(E) to hold. The fact that the adversary may enlarge
her set of knowledge by constructing new expressions from
the ones she knows (including the use of encryption and
decryption) is captured by the formula in Figure 6.
For each object O a given sequence diagram, our analysis

defines a predicate PRED(O) which captures the behaviour of
the object O as relevant from the point of view of the attacker.
Thus, for our purposes, a sequence diagram provides, for each
object O, a sequence of command schemata of the form await
event e – check condition g – output event e’ represented as
connections in the sequence diagrams. Connections are the ar-
rows from the life-line of the source object O to the life-line
of a target object which are labelled with a message to be sent
from the source to the target and a guard condition that has to
be fulfilled.
Suppose we are given an object O in the sequence diagram

and a connection l = (source(l), guard(l),msg(l), target(l))
with:

– source(l) = O,
– guard(l) ≡ cond(arg1, . . . , argn), and
– msg(l) ≡ exp(arg1 , . . . , argn),
where the parameters arg i of the guard and the message are
variables which store the data values exchanged during the
course of the protocol. Suppose that the connection l′ is the next
connection in the sequence diagram with source(l′) = O (i.e.
sent out by the same object O as the message l). For each such
connection l, we define a predicate PRED(l) as in Figure 7.
If such a connection l′ does not exist, PRED(l) is defined by
substituting PRED(l′) with true in this formula.

PRED(l) =

∀exp1, . . . , expn.
(

knows(exp1) ∧ . . . ∧ knows(expn)

∧ cond(exp1, . . . , expn)

⇒ knows(exp(exp1 , . . . , expn)

∧ PRED(l′))
)

Fig. 7. Connection predicate

The formula formalises the fact that, if the adversary
knows expressions exp1, . . . , expn validating the condition
cond(exp1, . . . , expn), then she can send them to one of the
protocol participants to receive the message exp(exp1 , . . . ,
expn) in exchange, and then the protocol continues. With this
formalisation, a data value s is said to be kept secret if it is
not possible to derive knows(s) from the formulae defined by
a protocol. This way, the adversary knowledge set is approx-
imated from above (because one abstracts away for example
from the message sender and receiver identities and the mes-
sage order). This means, that one will find all possible attacks,
but one may also encounter “false positives”, although this has
not happened yet with any real examples. The advantage is
that this approach is rather efficient.
For each object O in the sequence diagram, this gives a pred-

icate PRED(O) = PRED(l) where l is the first connection
in the sequence diagram with source(l) = O. The axioms in
the overall first-order logic formula for a given sequence di-
agram are then the conjunction of the formulae representing
the publicly known expressions, the formula in Figure 6, and
the conjunction of the formulae PRED(O) for each object O
in the diagram. The conjecture, for which the automated theo-
rem prover (ATP) will check whether it is derivable from the
axioms, depends on the security requirements contained in the
class diagram. For the requirement that the data value s is to
be kept secret, the conjecture is knows(s).

6

4. Runtime verification for systems monitoring

Verification on the specification level checks whether or not
an abstract model satisfies predetermined security properties.
Monitoring, on the other hand, checks whether or not the im-
plementation of this model correctly and securely realises the
specification. More generally, monitoring systems subsumes all
techniques that help verify that the behaviour of a running sys-
tem, i. e., a stream of isolated events, adheres to its intended
behaviour. The approaches to monitoring range from ad-hoc to
formal methods based on inference and logic (cf. Section 2).
The latter are often referred to as runtime verification. In run-
time verification, a reference behaviour is specified, typically in
terms of a temporal logic language, such as linear time tempo-
ral logic (LTL, [42]), and then a so called monitor is generated
which compares a system’s observable behaviour against this
specification. As such, it operates in parallel to the system and
is intended not to influence its behaviour.

4.1. Notions and notation

In this section, we briefly recall some basic definitions re-
garding LTL and runtime verification thereof, and introduce the
necessary notation. First, let AP be a non-empty set of atomic
propositions, and Σ = 2AP be an alphabet. Then infinite words
over Σ are elements from Σω and are abbreviated usually as
w,w′, Finite words over Σ are elements from Σ∗ and are
usually abbreviated as u, u′, As is common, we set Σ∞ =
Σω ∪ Σ∗ as the set of all infinite and finite words over Σ.
Wewill adopt the following terminology with respect to mon-

itoring LTL formulae. We will use the propositions in AP to
represent atomic system actions, which is what will be directly
observed by the monitors introduced further below. Note that,
by making use of dedicated actions that notify the monitor of
changes in the system state, one can also indirectly use them
to monitor whether properties of the system state hold. Thus,
we can use the terms “action occurring” and “proposition hold-
ing” synonymously. An event will denote a set of propositions
and a word will denote a sequence of events (i. e., a system’s
behaviour over time). The idea is that a monitor observes a
stream of system events and that multiple actions can occur
simultaneously.
To specify a system’s behaviour (in order to define a mon-

itor), we employ the temporal logic LTL which is defined as
follows.
Definition 1 (LTL syntax and semantics, [42]) The set of
LTL formulae over Σ, written LTL(Σ), is inductively defined
by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | X ϕ, p ∈ AP.

The semantics of LTL formulae is defined inductively over
its syntax via the satisfaction relation “|=” as follows. Let
ϕ,ϕ1,ϕ2 ∈ LTL(Σ) be LTL formulae, p ∈ AP an atomic
proposition, w ∈ Σω an infinite word, and i ∈ N a position
in w. Let w(i) denote the ith element in w (which is a set of
propositions):

w, i |= true

w, i |= ¬ϕ ⇔ w, i %|= ϕ

w, i |= p ⇔ p ∈ w(i)

w, i |= ϕ1 ∨ ϕ2 ⇔ w, i |= ϕ1 ∨ w, i |= ϕ2

w, i |= ϕ1 U ϕ2 ⇔ ∃k ≥ i. w, k |= ϕ2∧

∀i ≤ l < k. w, l |= ϕ1

(“ϕ1 until ϕ2”)

w, i |= X ϕ ⇔ w, i + 1 |= ϕ (“next ϕ”)

where w, i denotes the ith position of w. We use w(i) to denote
the ith element in w which is a set of propositions. Notice
the difference between w, i and w(i), i.e., the former marks a
position in the trace, whereas the latter denotes a set.
When w |= ϕ holds, we also say that w is a model for the

formula ϕ in the logical sense of the word, , meaning that w
is a word which satisfies the formula. Intuitively, the statement
w, i |= ϕ is supposed to formalise the situation that the event
sequence w satisfies the formula ϕ at the point when the first
i events in the event sequence w have happened. In particular,
defining w, i |= true for all w and i means that true holds at
any point of any sequence of events. We also write w |= ϕ, if
and only if w, 0 |= ϕ.
Further, as is common, we use F ϕ as short notation for

true U ϕ (intuitively interpreted as “eventually ϕ”), G ϕ short
for ¬F ¬ϕ (“always ϕ”), and ϕ1 W ϕ2 short for G ϕ1 ∨
(ϕ1 U ϕ2), which is thus a weaker version of the U -operator.
For brevity, whenever Σ is clear from the context or whenever a
concrete alphabet is of no importance, we will use LTL instead
of LTL(Σ). Moreover, we make use of the standard Boolean
operators⇒,∧, . . . that can easily be defined via the above set
of operators.
Example 1 We give some examples of LTL specifications. Let
p ∈ AP be an action (formally represented as a proposition).
Then G F p asserts that at each point of the execution of any of
the event sequences produced by the system, p will afterwards
eventually occur. In particular, it will occur infinitely often in
any infinite system run.
For another example, let ϕ1,ϕ2 ∈ LTL be formulae. Then

the formula ϕ1 U ϕ2 states that ϕ1 holds until ϕ2 holds and,
moreover, that ϕ2 will eventually hold. On the other hand, G p
asserts that the proposition p always holds on a given trace
(or, depending on the interpretation of this formula, that the
corresponding action occurs at each system update).
It is worth emphasising the point that the “Until-operator”

as defined above can be somewhat counterintuitive to the way
that the word “until” is used in natural language; that is, the
formula a U b is satisfied if and only if b happens at some
point in time in the future, and a held until then. In the case of
the weaker until, W , we do not demand occurrence of b, and
the formula would be satisfied also by observing an infinitely
recurring action a. Hence, when formalising natural language
specifications in terms of LTL, the word “until” in the natural
language will very often be translated to “weak until” in LTL.

7

4.2. Monitorable languages

An LTL formula gives rise to a set of infinite words, L ⊆ Σω ,
i. e., a language whose elements satisfy the formula according
to the entailment relation of Definition 1. L also naturally gives
rise to another set, defined as Σω −L, i. e., the set of all words
not contained in L. Let us now examine some properties of the
languages (i.e. sets of words) that can be specified this way.
We first introduce the notion of bad and good prefixes.
Definition 2 Let L ⊆ Σω be a language of infinite words over
alphabet Σ. A finite word u ∈ Σ∗ is called a bad prefix (with
respect to L) iff there exists no infinite extension w ∈ Σω , such
that uw ∈ L (where uw is the concatenation of the words u
and w). In contrast, the finite word u is called a good prefix
(with respect to L) iff for any infinite extension w ∈ Σω it holds
that uw ∈ L.
We say that u is a good (resp. bad) prefix ofw wrt. a language

L if u is a prefix of w and if u is a good (resp. bad) prefix wrt. L
as defined above. Note that a word w may have neither a good
nor a bad prefix with respect to a language L associated with a
given formula ϕ. In this case, when monitoring this sequence
of events, it will at no finite point in time be clear whether
all extensions of the sequence of events monitored so far will
satisfy the formula ϕ, or not.
Definition 3 L is called a safety language iff all words w ∈
Σω − L have a bad prefix.
When we refer to the formula ϕ ∈ LTL giving rise to a

safety language, we will also use the term safety property to
say that the logical models of ϕ adhere to Definition 3.
Definition 4 L is called a co-safety language iff all words w ∈
L have a good prefix.
Note that the complements of safety languages (i. e. the lan-

guage Σω − L where L is a safety language) are exactly the
co-safety languages. The proof of this fact is straightforward,
by making use of the central observation that a word w is a
bad prefix with respect to the language Σω − L exactly if it
is a good prefix with respect to the language L, which follows
directly from the definitions for good resp. bad prefixes.
Note that there exist languages which are both safety and

co-safety languages, such as the empty set ∅, and the set of all
infinite words, Σω . Similarly, there also exist languages that
are neither safety nor co-safety languages. In fact, some such
languages will play a crucial role for our application of mon-
itoring security properties of the SSL-protocol, which cannot
be specified using only safety or co-safety properties alone.
Some typical languages that are neither safety nor co-safety

languages fall into a third class of languages, the liveness lan-
guages, introduced as follows.
Definition 5 L is called a liveness language iff for every prefix
u ∈ Σ∗ there exists an infinite extension w ∈ Σω , such that
uw ∈ L.
Note however that not all languages outside safety and co-

safety are liveness languages, and that there are liveness lan-
guages that are at the same time co-safety languages. We revisit
the examples given above to shed more light on the relation-
ship between these three different classes of formal properties.

Note further that there are other definitions of liveness found
in the literature. We have adopted here the one given originally
by [4].
Example 2 The formula G F p from above (for a given p ∈
AP) asserts that at each point of a given event sequence pro-
duced by the system, p will afterwards eventually occur. It does
not assert a frequency of the occurrence but demands that p
occurs infinitely often. In particular, every observed behaviour,
even if it does not contain an observation of p yet, can be ex-
tended such that G F p is satisfied. This means in particular
that G F p is not a safety property: there exist words that are
not in the language L defined by G F p, which do not have a
bad prefix, because every of their prefixes can be extended to a
word in L. In fact, this even holds for all words not in L, and
indeed also for all words in L as well, which proves that G F p
is a liveness property. It is not a co-safety property, because
there exist words in L which do not have a good prefix (in fact,
none of the words in L has a good prefix).
For given formulae ϕ1,ϕ2 ∈ LTL, the formula ϕ1 U ϕ2 is a

co-safety property as every word that satisfies this formula has
a good prefix, i. e., can be detected via a finite word. This word
is of a form such that it satisfies ϕ1 finitely often, and then it
indeed satisfies ϕ2. The formula is not a safety property: One
infinite counterexample is the word that satisfies ϕ1, but not ϕ2.
Hence, not all counterexamples have a bad prefix as required
by Definition 3. ϕ1 U ϕ2 is also not a liveness property: a word
that does not satisfy ϕ1 at its first position cannot be extended
to a word that satisfies ϕ1 U ϕ2.
Finally, for a given p ∈ AP , the formula G p is a safety

property as all counterexamples have a bad prefix. It is not a
co-safety property: Intuitively speaking, one can never be sure
that a given event sequence that satisfies p up to a given finite
point in time will always satisfy p. It is also not a liveness
property because again, a word that does not satisfy p at its
first position cannot be extended to a word that satisfies G p.
The above three examples demonstrate that each of the

classes of safety, co-safety resp. liveness properties contain
properties not contained in any of the other two classes. One
should also note that there exist properties that are not con-
tained in any of the three classes.
In particular, there are properties which we believe to be

security-relevant and which cannot be monitored using Schnei-
der’s security automata [43], which however can be monitored
using our approach, as we will discuss in Section 4.3. For exam-
ple, these can be properties of the form “an event will eventu-
ally happen” (as in the second example above). For this kind of
property, the monitor cannot only just confirm that the relevant
event has happened when it has happened. It can potentially
also confirm at a given point in the execution of the system, that
the event will not eventually happen (i.e. it will never happen
from this point onwards). There are indeed security-relevant
uses for such properties. One particularly important class is
denial-of-service properties. Although this paper is not specif-
ically concerned with denial of service, this kind of property
does become relevant in our application here (cf. Section 3),
where some properties aim to establish that a certain message
in the protocol will, under certain conditions, eventually be sent

8

out. If an adversary could detect conditions under which this is
not the case, this might enable him to launch a denial of service
attack against the protocol.
We will now briefly explain the approach for runtime verifi-

cation used in this paper. Let ϕ ∈ LTL be the specification we
wish to monitor. The monitors generated by our approach mon-
itor this formula by interpreting it using a 3-valued semantics
that is defined with respect to a finite event sequence as follows.
Definition 6 Let ϕ ∈ LTL, and u ∈ Σ∗. Then, a monitor for
ϕ realises the following entailment relation:

[u |= ϕ] :=



















" if u is a good prefix wrt. L(ϕ)

⊥ if u is a bad prefix wrt. L(ϕ)

? otherwise.

The [·] is used to separate the 3-valued monitor semantics for
ϕ from the classical, 2-valued LTL semantics introduced in
Definition 1.
Note that monitoring only makes sense if there is hope that a

conclusive answer (i. e., $= ?) is obtainable at all. If the language
does not allow for such an answer, then it makes little sense
to monitor it, as all verdicts by such a monitor would yield ?.
Therefore, we define the set of languages that are monitorable
using our approach as follows:
Definition 7 Let MON be the set of all languages over an
alphabet Σ, for which there exists some u ∈ Σ∗, such that
[u |= ϕ] $= ?.
Thus, MON is the set of all languages for which there ex-

ists a good or bad prefix. Note that not all words need to be
recognisable for such a language via a good, resp. bad prefix—
just some, such that the monitor can detect such a prefix should
it occur. For such languages, our approach to runtime verifica-
tion will produce a monitor that outputs " in case of a good
prefix and ⊥ in case of a bad prefix observed. While neither is
observed, such a monitor will output ?, meaning that the pre-
fix seen so far does not allow a more conclusive answer as to
whether the monitored language will be satisfied or violated
when extending the prefix.
Notably, the generated monitors are able to detect good resp.

bad prefixes of the monitored property ϕ, should they exist and
occur, as early as possible. That is, if the observed trace u ∈ Σ∗

is a good resp. bad prefix for ϕ, then the monitor will not return
? as verdict. As such it detects minimal good resp. bad prefixes.
To provide a more precise comparison with Schneider’s se-

curity automata in the next subsection, we also define the fol-
lowing notion of syntactically monitorable properties.
Definition 8 LetMONsyn be the set of all languages that cor-
respond to properties defined as conjunctions or disjunctions of
safety and co-safety properties (i.e. properties φ1 ∧ . . .∧φn or
φ1 ∨ . . . ∨ φn where the φi are safety or co-safety properties).
Note thatMONsyn includes all safety and co-safety properties
because true is both a safety and a co-safety property, and recall
that co-safety properties are exactly the negations of safety
properties.
Proposition 9 We have MONsyn ⊆ MON .

PROOF. [44, Th. 3.1] shows that the class of safety properties
is closed under combination using ∨, and ∧ (and by duality the
same holds for co-safety properties). It is therefore sufficient
to consider the case φ ∧ ψ where φ is a safety property and ψ
is a co-safety property (the case for ∨ again works by duality).
By definition of safety properties, we know that all words that
do not satisfy φ have a bad prefix. If there is no word that does
not satisfy φ, then φ∧ψ = ψ. Otherwise, there is a word with
a bad prefix for φ, which is also a bad prefix for φ ∧ ψ. !

4.3. Expressiveness in comparison to security automata

Schneider’s security automata [43] which he proposes for the
“enforcement” of system properties, accept exactly elements
of the safety fragment of ω-regular languages. ω-regular lan-
guages, in contrast to regular languages (i.e., the languages
which can be defined via commonly used regular expressions
or finite automata), are those which can be defined via infinite
automata, such as nondeterministic Büchi automata (cf. [23]).
Moreover, the languages definable in LTL are ω-regular, al-
though not every ω-regular language is definable in LTL. From
the discussion in the previous subsection it then follows that,
using complementation of a given system property (specified
in LTL), security automata could also be used to “enforce” co-
safety properties. That is, if ϕ ∈ LTL is a safety property cor-
responding to desired system behaviour, then its negation, ϕ,
is a co-safety property corresponding to undesired system be-
haviour. The result of the automaton/monitor would then have
to be inverted, accordingly.
As we have seen in the previous subsection, however, some-

times we may want to specify properties which may not fall
into either category of safety or co-safety languages (cf. also
our application in Section 5.1). Notably as such they also ex-
ceed the expressiveness of security automata, although we have
managed to successfully create monitors for those. Let us there-
fore formally establish in what sense our approach to runtime
verification exceeds the expressiveness of security automata.
Schneider abbreviates the set of languages accepted by security
automata as EM , which as pointed out above, coincides with
the safety fragment of ω-languages. For EM he observes:
Proposition 10 ([43]) If the set of executions for a security
policy ϕ is not a safety language, then an enforcement mecha-
nism from EM does not exist for ϕ.
Let us now relate this class MON of properties which are

monitorable in our approach with the class EM of properties
“enforceable” by security automata:
Theorem 11 It holds that EM ⊂ MONsyn ⊆ MON .

PROOF. The statement EM ⊆ MONsyn follows from the
facts that EM is contained in the class of safety properties
(which was shown in Proposition 10 above), and thatMONsyn

includes the class of safety properties, as noted above. (Note
that the statement is still true if we use the “trick” explained
above which would allow us to enforce co-safety properties
using EM , sinceMONsyn also includes the class of co-safety
properties.)

9

To show thatMONsyn is strictly larger than EM , it suffices
to exhibit a language in MONsyn which is demonstrably not
contained in EM . Consider the property ¬F a ∨ F b where
a and b are distinct atomic propositions. The corresponding
language is in MONsyn since ¬F a is a safety property and
F b a co-safety property. ¬F a∨F b is not in EM because it is
not a safety property (nor a co-safety property): Infinite event
sequences containing a but not b do not satisfy¬F a∨F b, but do
not have a bad prefix (and infinite event sequences containing
neither a nor b satisfy ¬F a ∨ F b, but do not have a good
prefix). !

Note that Property 2 of Section 5 is an example which is
contained inMON but not in EM : it is neither safety, nor co-
safety as there exists a model without good prefix as well as a
counterexample without bad prefix for it (as explained in detail
there). On the other hand, using our approach, there exists a
monitor for it, which is depicted in Figure 10. Therefore, this
property is indeed in MON .

5. Monitoring runtime security properties of SSL

In order to monitor properties of the SSL-protocol, we first
need to determine how important elements at the model level
are implemented at the implementation level. Basically, this
can be done in the following three steps:
– Step 1: Identification of the data transmitted in the sending
and receiving procedures at the implementation level.

– Step 2: Interpretation of the data that is transferred and com-
parison with the sequence diagram.

– Step 3: Identification and analysis of the cryptographic
guards at the implementation level.

In Step 1, the communication at the implementation level is
examined and it is determined how the data that is sent and
received can be identified in the source code. Afterwards, in
Step 2, a meaning is assigned to this data. The interpreted data
elements of the individual messages are then compared with
the appropriate elements in the model. In Step 3, it is described
how one can identify the guards from the model in the source
code.
To this aim, we first identify where in the implementation

messages are received and sent out, and which messages ex-
actly. In doing so, we exploit the fact that in most imple-
mentations of cryptographic protocols, message communica-
tion is implemented in a standardised way (which can be used
to recognise exactly where messages are sent and received).
The common implementation of sending and receiving mes-
sages in cryptographic protocols is through message buffers,
by writing the data into type-free streams (i. e., ordered byte
sequences), which are sent across the communication link, and
which can be read at the receiving end. The receiver is re-
sponsible for reading out the messages from the buffer in the
correct order and storing it into variables of the appropriate
types. Accordingly, in case of the Java implementation JESSIE
of the SSL-protocol, this is done by using the methods write()
from the class java.io.OutputStream to write the data to be

sent into the buffer and the method read() from the class
java.io.InputStream to read out the received data from the
buffer. Also note that the messages themselves are usually rep-
resented by message classes that offer custom write and read
methods, and in which the write and read methods from the
java.io are called, subsequently.
Moreover, according to the information that is contained in a

sequence diagram specification of a cryptographic protocol, the
monitor which is generated for performing runtime verification
needs to keep track of the following information:
– Which data is sent out?, and
– Which data is received?
This, in turn, depends on where the monitor will be placed
in the actual and possibly distributed implementation; that is,
certain properties (of the SSL-protocol) are to be monitored at
the client-side while others are to be monitored at the server-
side. While our approach is not restricted to either point of view,
server or client, the users have to make this decision based on
the properties they would like to monitor, the available system
resources, accessibility, and so forth.
The monitors, once in place, will then generally enforce that

the relevant part of the implementation conforms to the speci-
fication in the following sense:
– The code should only send out messages that are specified to
be sent out according to the specification and in the correct
order, and

– these messages should only be sent out if the conditions that
have to be checked first according to the specification are
met.

In the next section, we give some example properties which
highlight these two points wrt. the SSL-protocol. Note that it
may depend on a given application and on the requirements to
be monitored whether or not it may be possible to find moni-
torable properties whose violation at runtime indeed prevents
the leaking of data (i.e. the detection occurs before the undesir-
able situation occurs). While this should be generally possible
in many real-world applications where runtime monitoring is
applicable, there may also be undesirable events that cannot be
detected prior to their occurrence, i.e. there does not exist a suit-
able property that could be specified by the user or monitored
by the system, such that its violation would help anticipate or
prevent the undesirable event from happening.

5.1. Example runtime security properties

In this section, we consider the examples listed below for
properties that should be enforced using runtime verification
in the case of the SSL-protocol specified in Figure 1 in more
detail. Each of these properties enforces on the implementation
level the implicit assumption that had to be made for the model
level security analysis that any of the messages in the protocol
specified in Figure 1 is only sent out after the relevant protocol
participant has satisfactorily performed the required checks on
the message that was received just before.
(i) ClientKeyExchange(encK , (PMS)) is not sent by the

client until it has received the Certificate(X509Cers)

10

message from the server, has performed the validity check
for the certificate as specified in Figure 1, and this check
turned out to be positive.

(ii) Finished(HashMD5(md5s,ms, PAD1, PAD2))
is not sent by the server to the client before the
MD5 hash received from the client in the message
Finished(HashMD5(md5c,ms, PAD1, PAD2)) has
been checked to be equal to the MD5 created by the
server, and correspondingly for the SHA hash, but will
send it out eventually after that has been established.

(iii) The client will not send any transport data to the
server before the MD5 hash received from the server in
the Finished(HashMD5(md5s,ms, PAD1, PAD2))
message has been checked to be equal to the MD5 cre-
ated by the client, and correspondingly for the SHA
hash.

Below we consider each of the three properties in detail.

Property 1. Step 1 and 2 of the above procedure, yield the
two abstract messages ClientKeyExchange and Certificate.
Moreover, once we have identified in the source code where
these messages are sent respectively received and evaluated,
we can add at this point custom code that sets or unsets two
“flags”: the flag ClientKeyExchange(encK , (PMS)) is set
by the code if and only if the message ClientKeyExchange is
sent by the client, and the flag Certificate(X509CerS) is set if
and only if the certificate was received and positively checked.
Otherwise, both flags are unset. Coming back to our formal
model of LTL runtime verification (see Section 4), this yields
the following set of atomic propositions:

AP = {ClientKeyExchange(encK , (PMS)),

Certificate(X509CerS)},

whose names correlate with the ones displayed in Figure 1.
Notice that LTL as introduced in Section 4 does not cater for
parameters, and parameters in an action’s name are therefore
not a semantic concept.
Based on AP we can now formalise the required property

in LTL as follows, using the “weak until” operator, which in
particular allows for the fact that if the certificate is never re-
ceived, then the formula is satisfied if in turn the message
ClientKeyExchange(encK , (PMS)) is never sent.

ϕ1 = ¬ClientKeyExchange(encK , (PMS))

W Certificate(X509CerS).

This meets our intuitive interpretation of the “until” in
the natural language requirement because if, for example,
a man-in-the-middle attacker deletes any certificate mes-
sage sent by the server, we cannot possibly demand that
ClientKeyExchange(encK , (PMS)) should be eventually
sent by the client.
We can then use the approach to runtime verification de-

scribed in detail in [13] and realised in the open source tool
LTL3TOOLS to automatically generate a finite state machine
for monitoring this formula. From this finite state machine, we

subsequently generate Java code, i. e., the executable monitor
(for details of this process, see Section 5.2), which watches
over the protocol implementation while our client participates
in an SSL-session. The executable monitor signals the value
! (“property satisfied”) once the certificate was received
and checked, ⊥ (“property violated”) if the client sends the
key without successful check, and it will signal the value
? (“inconclusive”) as long as neither of the two conditions
holds. Recall that the stream of events that is processed by
the monitor consists of elements from 2AP (i. e., the pow-
erset of all possible system actions). That is, at each point
in time, the monitor keeps track of both events: the sending
of ClientKeyExchange(encK , (PMS)) and the receiving of
Certificate(X509CerS). Hence, as long as none of the events
is observed, the monitor basically processes the empty event.
Moreover, ϕ1 is a classical safety property, because all coun-
terexamples have a finite bad prefix, i. e., can be recognised as
such after finitely many observations. As such, this property is
also recognisable by a security automaton.

Property 2. In order to monitor the second requirement as
given above, we now take the point of view of the server rather
than that of the client. Let

AP = {Finished(HashMD5(md5s,ms, PAD1, PAD2)),

Arrayequal(md5s,md5c)}

Notice, how we have not added Arrayequal(shas, shac) to
AP . The reason for this is that we will be actually creating two
monitors both operating over their own respective alphabets.
We can now formalise the corresponding LTL property with
respect to AP as we did before:

ϕ2 = (¬Finished(HashMD5(md5s,ms, PAD1, PAD2))

W Arrayequal(md5s,md5c))

∧(F Arrayequal(md5s,md5c)

⇒ F Finished(HashMD5(md5s,ms, . . .))).

To monitor the analogous statement for the SHA rather than
the MD5, we define an additional formula, ϕ′

2, where all oc-
currences of the proposition Arrayequal(md5s,md5c) are
replaced by the proposition Arrayequal(shas, shac), respec-
tively. Neither of the two formulae are actually safety or
co-safety properties, although there exist finite traces which vi-
olate, respectively, satisfy the formula: For instance, consider a
trace u = ∅; {Finished(HashMD5(md5s,ms, PAD1, PAD2))},
which violates the first part of our conjunction since this im-
plies Finished(HashMD5(md5s,ms, PAD1, PAD2)) =
!, but Arrayequal(md5s,md5c)) = ⊥. On the other hand,
the trace v = ∅; {Arrayequal(md5s,md5c)} is a model
for ϕ2, since our second observation in v shows that the
MD5 checksum was successfully compared, and until then,
Finished(HashMD5(md5s,ms, PAD1, PAD2)) did not
hold. Note that ∅ means that all propositions in AP are in-
terpreted as ⊥ (i.e. that none of the monitored events oc-
curs at that point in time), and we use the symbol “;” to

11

denote the concatenation of events. However, as pointed
out above, ϕ2 is not a co-safety property since, besides
the trace v which has a good prefix, there also exists the
infinite model v′ = ∅; ∅; . . . without a good prefix, i. e.,
Finished(HashMD5(md5s,ms, PAD1, PAD2)) never
holds. Recall, the concept of co-safety asserts that all models
possess a finite good prefix (Definition 4). Moreover, it is not
a safety property since there exists the infinite counterexample
u′ = {Arrayequal(md5s,md5c))}; ∅; ∅; . . . without a bad
prefix. Recall, the concept of safety asserts that all counterex-
amples can be recognised via a finite bad prefix (Definition 3),
and u′, if infinitely extended with ∅ is, indeed, a counterex-
ample, although it cannot be recognised as such after finitely
many observations. Note that a monitor for this property is
given in Section 5.2, although there exists no corresponding
Schneider security automaton for it.

Property 3. Lastly, the above requirement 3. can be for-
malised as follows:

ϕ3 = ¬Data W Arrayequal(md5s,md5c),

where AP is similar as in the previous example, but contains a
proposition indicating the sending of data, Data. Here we have
a real safety property again since all traces of violating be-
haviour forϕ3 are recognisable after finitely many observations.
It is not co-safety since the infinite trace w = ∅; ∅; . . . satisfies
ϕ3, which would be the case if an intruder has intercepted and
kept the Finished(HashMD5(md5s,ms, PAD1, PAD2))
message, such that it is never received at the server-side.
Again, as in the previous example, we create a second monitor
to check the outcome of the SHA-comparison.
Monitoring a property likeG pmeans that the corresponding

monitor would output ? as long as no violation occurred, but
never ", since all models are infinite traces without good pre-
fixes. However, ϕ2 and ϕ3 are such that they do have models
with good prefixes, hence the corresponding monitor can output
all three values of {",⊥, ?}, depending on the observed system
behaviour. The same holds for ϕ1, which is actually a safety
property. Note that, had we used the “strong until” operator U
in ϕ1 and ϕ2, then both properties would be classical co-safety
properties. Co-safety properties would be monitorable using se-
curity automata, however, only via the detour of complement-
ing them and checking that the complements do not hold (i. e.,
one has to “invert” the semantics). Using LTL3TOOLS, this de-
tour is not necessary. We can directly generate a monitor for ϕ1

and ϕ2 (also for the variants using the “strong until” operator).

5.2. Implementation

Once we have formalised the natural language requirements
in terms of LTL formulae as above, we can then use our
LTL3TOOLS [49] to automatically generate finite state ma-
chines (FSM) from which we derive the actual (Java) monitor
code. The FSMs obtained from LTL3TOOLS are of type Moore,
which means that, in each state that is reached, they output
a symbol (i. e., ?, " (TOP), or ⊥ (BOT)). States are changed

as new system actions become visible to the monitor. The
FSM generated for the runtime security property ϕ1 is given in
Figure 9. The initial state is (0, 0) whose output is ?. If event
{cert} occurs, short for {Certificate(X509CerS)}, then the
monitor takes a transition into state (1,−1) and outputs" to in-
dicate that the property is satisfied. On the other hand, if neither
cert nor cke, short for ClientKeyExchange(encK , (PMS)),
occurs, then the automaton remains in (0, 0) and outputs ?, in-
dicating that so far ϕ1 has not been violated, but also not been
satisfied. A violation would be the reaching of (−1, 1), if event
{cke} occurs (before cert), such that the monitor would out-
put ⊥. Generating code from this state machine is a straight-
forward exercise, which we only outline by giving a code ex-
ample of the generated code (see Figure 8). This code in turn
is embedded into an event loop, such that new events can en-
force the triggering of transitions, and changing of states. The
current state information is stored inside the variable m state,
whereas the events are abbreviated by definitions.

1 c l a s s Moni to rPh i1
{

3 . . .

5 void p r o c e s s e v e n t (Event e)
{

7 i f (m s t a t e . e q u a l s ("(0, 0)"))
{

9 System . e r r . p r i n t l n ("?") ;

11 i f (t ype ID (e) == EMPTY)
{

13 m s t a t e = "(0, 0)" ;
re turn ;

15 }
e l s e i f (t ype ID (e) == CERT)

17 {
m s t a t e = "(1, -1)" ;

19 re turn ;
}

21 . . . / / process remaining events
}

23 e l s e i f (m s t a t e . e q u a l s ("(1, -1)"))
{

25 System . e r r . p r i n t l n ("TOP") ;
. . . / / process remaining s ta tes

27 }
}

29 }

Fig. 8. Fragment of the generated monitor code for ϕ1

In order to determine which event has occurred, we use a set
of program flags (i. e., Boolean variables) which are initially
set to false. We set these to true as soon as an identified action
has taken place. The combination of flags then determines the
current event to process by themonitor. Hence, once themonitor
code is generated, the only code that needs to be added to
the main application is the code to set the flags, and the code
to communicate them in terms of events to the monitor class.
According to our experiences, an LTL property of the size
that usually occurs in these kinds of application results into a
monitor of 150 LOC in Java, including communication code
between application and monitor.

12

The remaining two properties, ϕ2 and ϕ3 are implemented in
the same manner. For brevity, we do not discuss their internals
in detail, but give the automatically generated FSMs in Fig-
ures 10 and 11, respectively. Note that these monitors are good
examples to demonstrate that it is, indeed, feasible to monitor
properties beyond the “safety spectrum” that Schneider’s secu-
rity automata capture: All FSMs cover all the three different
truth values, and not all of them are safety (or co-safety) for-
mulae (as discussed above in detail).
Notice that other comprehensive Java programs but Jessie

are often developed in parallel with an event logging library
such as log4j 3 , which can then directly be used for capturing
all relevant system events that the monitors require. If no such
library is used, as in the case of JESSIE, then the set of relevant
events needs to be identified first, and all occurrences in the
code instrumented accordingly.

5.3. Application to Sun’s JSSE implementation

Let us also briefly explain how one can apply the runtime
verification approach which we discussed above in terms of the
open source implementation Jessie of the JSSE to Sun’s very
own implementation as a library in the standard JDK (since
version 1.4), which was recently made open source. The source
code of this library (after version 1.6) can be checked out
from the OpenJDK repository 4 . To perform the runtime ver-
ification as explained above on this implementation, one only
needs to modify the mappings between the specification ele-
ments and their implementations that provide the traceability
of the model to the implementation level. For example, in the
Jessie implementation, the doHandshake protocol is mainly
implemented in the class SSLSocket of the Jessie (v. 1.0.1)
library, whereas in the library implementation in the OpenJDK
1.6 (hereafter called JSSE 1.6), the protocol is mainly imple-
mented in the class sun.security.ssl.HandshakeMessage.
Nevertheless, the naming of the symbols can be traced to the
implementation. Table 1 lists some mapping from the symbols
in Figure 1 to their naming in the JSSE 1.6 library.

6. Conclusions

In this article, we successfully address the open problem of
how to enforce that certain assumptions implicit in the Dolev-
Yao style verification of crypto-protocol specifications are sat-
isfied on the implementation level. Towards this goal, run-
time verification allows us to monitor even complex, history-
dependent specifications as they arise for security protocols.
We have seen, in particular, that some crucial runtime correct-
ness properties of our SSL-implementation could not be mon-
itored using prior formal approaches to monitoring security-
critical systems, since they exceed the expressiveness of the
safety fragment (of LTL), which is the fragment monitorable

3 http://logging.apache.org/
4 https://openjdk.dev.java.net/svn/openjdk/jdk/
trunk/j2se/src/share/classes/sun/security/ssl

Table 1
Traceability mappings in JSSE 1.6

Symbols JSSE 1.6

1. C HandshakeMessage.ClientHello

2. S HandshakeMessage.ServerHello

3. Pver protocolVersion

4. RC clnt random

RS svr random

5. Sid sessionId

6. Ciph[] cipherSuites

7. Comp[] compression methods

8. Veri CertificateVerify.verify()

9. DnotBefore cert.getNotBefore()

DnotAfter cert.getNotAfter()

by Schneider’s security automata. As an example for a security
weakness that can be found using our approach, the approach
helped us detecting a missing signature check in the Jessie im-
plementation of the SSL protocol.
However, as can also be seen by some of our properties,

it is often difficult to decide whether or not a formula is a
safety property, whether it is co-safety, or neither—even for
the trained eye. In fact, it is known that given some formula
ϕ ∈ LTL, deciding whether L(ϕ) is safety (co-safety) is a
PSPACE-complete problem [5, 44]. Hence, there are theoretical
limitations to our approach, whenever it is not clear to the
designer of a system whether or not some imposed security
property is monitorable at all. However, due to the completeness
result, we cannot hope to provide a more efficient or convenient
way for performing this check. Also, from the practical point
of view, the user can simply attempt to generate the monitor
using the LTL3TOOLS. If that should fail, then the user has the
option to syntactically simplify the input formula, or perhaps
to generate multiple smaller monitors for the subformulae of
the original input that will later operate in parallel.
Once the monitors are generated, then the resulting overhead

from using monitors is minimal, in the sense that one can show
that other approaches for generating monitors from LTL formu-
lae cannot be any more efficient: For example, the particular ap-
proach described in [13] and realised by the LTL3TOOLS [49]
creates monitors with (near to) optimal space complexity with
respect to the property to be monitored. It should be pointed
out, however, that the intermediate steps in generating a moni-
tor involve a double exponential “blow up” in the length of the
specification, but this does not necessarily affect runtime effi-
ciency, when the monitors are minimised as a final step. On the
other hand, sophisticated event logging libraries such as log4j
can create a considerable space and time overhead, which is an-
other reason why we have chosen to instrument our application
manually in a more lightweight fashion by setting or unsetting
a number of flags.
Although comprehensive performance tests in terms of the

exact overhead of the instrumentation are yet to be carried

13

(-1, 1)/BOT (< e m p t y >) (cert&&cke)(cert)(cke)

(0, 0)/?

(cke)

(< e m p t y >)

(1, -1)/TOP

(cert&&cke) (cert)

(cert)(cke)(< e m p t y >)(cert&&cke)

Fig. 9. Automatically generated FSM for ϕ1 = ¬cke W cert

(-1, 1)/BOT (< e m p t y >) (equal&&finished)(equal)(finished)

(0, 0)/?

(finished)

(< e m p t y >)

(1, -1)/TOP

(equal&&finished) (2, 2)/?

(equal)

(equal)(finished)(< e m p t y >) (equal&&finished)

(equal&&finished) (finished)

(< e m p t y >) (equal)

Fig. 10. Automatically generated FSM for ϕ2 = (¬finished W equal ∧ (F equal ⇒ F finished))

(-1, 1)/BOT (< e m p t y >) (data&&equal) (data)(equal)

(0, 0)/?

(data)

(< e m p t y >)

(1, -1)/TOP

(data&&equal) (equal)

(data) (equal)(< e m p t y >) (data&&equal)

Fig. 11. Automatically generated FSM for ϕ3 = data W equal

out, we have collected some preliminary performance indica-
tors using the comprehensive collection of LTL formulae 5 that
is underlying Dwyer et al.’s commonly used Software Speci-
fication Patterns (cf. [27]). This collection of formulae, taken
from real-world applications that employ formal specification
using temporal logic, consists of a total of 447 formal speci-
fications, of which 97 were given in terms of LTL. Although
the 97 formulae were between 2 and 44 token in length, none
of the generated (and minimised) monitors consisted of more
than 6 states, which is at least an indication that the expected
performance overhead for practical specifications, such as rep-
resented by Dwyer et al.’s formulae, is manageable, or even
negligible as it was the case with our example properties.

Moreover, for the purposes of this paper, we could only
demonstrate how to monitor a selected set of properties. Many
more properties would be important to monitor, such as, for
example, monitoring that the data stream in an SSL transaction
is indeed encrypted.

Acknowledgements We thank the reviewers for constructive
feedback which led to a significant improvement of this paper.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The Spi Calculus. In Fourth ACM Conference

5 cf. http://patterns.projects.cis.ksu.edu/documentation/specifications/ALL.raw

on Computer and Communications Security (CCS 1997),
pages 36–47, 1997.

[2] M. Abadi and R. Needham. Prudent engineering practice
for cryptographic protocols. IEEE Transactions on Soft-
ware Engineering, 22(1):6–15, Jan. 1996.

[3] M. Alam, M. Hafner, and R. Breu. Model-driven security
engineering for trust management in SECTET. Journal
of Software, 2(1), Feb. 2007.

[4] B. Alpern and F. B. Schneider. Defining liveness. Tech-
nical report, Ithaca, NY, USA, 1984.

[5] B. Alpern and F. B. Schneider. Recognizing safety and
liveness. Distributed Computing, 2(3):117–126, 1987.

[6] S. Andova, C. J. F. Cremers, K. Gjøsteen, S. Mauw, S. F.
Mjølsnes, and S. Radomirovic. A framework for compo-
sitional verification of security protocols. Inf. Comput.,
206(2-4):425–459, 2008.

[7] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuéllar, P. Drielsma, P.-C. Héam,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vi-
ganò, and L. Vigneron. The AVISPA tool for the au-
tomated validation of internet security protocols and ap-
plications. In CAV 2005, volume 3576 of Lecture Notes
in Computer Science, pages 281–285. Springer-Verlag,
2005.

[8] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
static and dynamic analysis to validate sanitization in web
applications. In IEEE Symposium on Security and Pri-

14

vacy, pages 387–401. IEEE Computer Society, 2008.
[9] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for

composed services. In M. Aiello, M. Aoyama, F. Curbera,
and M. P. Papazoglou, editors, ICSOC, pages 193–202.
ACM, 2004.

[10] D. Basin, J. Doser, and T. Lodderstedt. Model driven secu-
rity: From UML models to access control infrastructures.
ACM Trans. Softw. Eng. Methodol., 15(1):39–91, 2006.

[11] A. Bauer and J. Jürjens. Security protocols, properties, and
their monitoring. In B. D. Win, S.-W. Lee, and M. Monga,
editors, Proceedings of the Fourth International Work-
shop on Software Engineering for Secure Systems (SESS),
pages 33–40, New York, NY, May 2008. ACM Press.

[12] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL
semantics for runtime verification. Journal of Logic and
Computation. Accepted for publication.

[13] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of
real-time properties. In Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS), volume
4337 of LNCS. Springer, Dec. 2006.

[14] G. Bella, L. C. Paulson, and F. Massacci. The verification
of an industrial payment protocol: the set purchase phase.
In V. Atluri, editor, ACM Conference on Computer and
Communications Security, pages 12–20. ACM, 2002.

[15] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Ver-
ified interoperable implementations of security protocols.
In CSFW, pages 139–152. IEEE Computer Society, 2006.

[16] S. Braghin, A. Coen-Porisini, P. Colombo, S. Sicari, and
A. Trombetta. Introducing privacy in a hospital informa-
tion system. In Win et al. [52], pages 9–16.

[17] B. Braun. Save: static analysis on versioning entities. In
Win et al. [52], pages 25–32.

[18] D. Bruschi, L. Martignoni, and M. Monga. Detecting self-
mutating malware using control-flow graph matching. In
R. Büschkes and P. Laskov, editors, DIMVA, volume 4064
of Lecture Notes in Computer Science, pages 129–143.
Springer, 2006.

[19] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Proceedings of the Royal Society, Series
A, 426(1871):233–271, December 1989. Also appeared
as SRC Research Report 39 and, in a shortened form,
in ACM Transactions on Computer Systems 8, 1:18–36
(February 1990).

[20] L. Cavallaro, A. Lanzi, L. Mayer, and M. Monga. Lis-
abeth: automated content-based signature generator for
zero-day polymorphic worms. In Win et al. [52], pages
41–48.

[21] I. Chowdhury, B. Chan, and M. Zulkernine. Security met-
rics for source code structures. In Win et al. [52], pages
57–64.

[22] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and
R. E. Bryant. Semantics-aware malware detection. In
IEEE Symposium on Security and Privacy, pages 32–46.
IEEE Computer Society, 2005.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[24] M. R. Clarkson and F. B. Schneider. Hyperproperties. In

CSF ’08: Proceedings of the 2008 21st IEEE Computer
Security Foundations Symposium, pages 51–65, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[25] S. Colin and L. Mariani. Run-time verification. In
M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors, Model-Based Testing of Reactive
Systems, volume 3472 of Lecture Notes in Computer Sci-
ence, pages 525–555. Springer, 2004.

[26] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, IT-
29(2):198–208, 1983.

[27] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property
specification patterns for finite-state verification. In Proc.
2nd WS. on Formal methods in software practice, pages
7–15. ACM, 1998.

[28] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy
code for authorization policy enforcement. In IEEE Sym-
posium on Security and Privacy, pages 214–229. IEEE
Computer Society, 2006.

[29] V. Ganapathy, D. King, T. Jaeger, and S. Jha. Mining
security-sensitive operations in legacy code using concept
analysis. In ICSE, pages 458–467. IEEE Computer Soci-
ety, 2007.

[30] M. Gegick and L. Williams. On the design of more secure
software-intensive systems by use of attack patterns. In-
formation & Software Technology, 49(4):381–397, 2007.

[31] M. Geilen. On the construction of monitors for temporal
logic properties. ENTCS, 55(2), 2001.

[32] J. Goubault-Larrecq and F. Parrennes. Cryptographic pro-
tocol analysis on real C code. In VMCAI’05, Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[33] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous
observers and the verification of reactive systems. In
AMAST ’93: Proceedings of the Third International Con-
ference on Methodology and Software Technology, pages
83–96, London, UK, 1994. Springer-Verlag.

[34] K. Havelund and G. Rosu. Monitoring Java Programs
with Java PathExplorer. Electronic Notes in Theoretical
Computer Science, 55(2), 2001.

[35] K. Havelund and G. Rosu. Synthesizing Monitors for
Safety Properties. In Tools and Algorithms for Construc-
tion and Analysis of Systems, pages 342–356, 2002.

[36] K. Havelund and G. Rosu. Efficient monitoring of safety
properties. Journal on Software Tools for Technology
Transfer, 2004.

[37] V. Horvath and T. Dörges. From security patterns to im-
plementation using petri nets. In Win et al. [52], pages
17–24.

[38] J. Jürjens. Security analysis of crypto-based Java pro-
grams using automated theorem provers. In S. Easter-
brook and S. Uchitel, editors, 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE 2006). ACM, 2006.

[39] J. Jürjens and M. Yampolskiy. Code security analysis
with assertions. In D. Redmiles, T. Ellman, and A. Zis-
man, editors, 20th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2005), pages

15

392–395. ACM, 2005.
[40] R. Kemmerer, C. Meadows, and J. Millen. Three systems

for cryptographic protocol analysis. Journal of Cryptol-
ogy, 7(2):79–130, Spring 1994.

[41] K. Krukow, M. Nielsen, and V. Sassone. A framework for
concrete reputation-systems with applications to history-
based access control. In CCS, pages 260–269. ACM,
2005.

[42] A. Pnueli. The temporal logic of programs. In FOCS,
pages 46–57. IEEE, 1977.

[43] F. B. Schneider. Enforceable security policies. ACM
Trans. Inf. Syst. Secur., 3(1):30–50, 2000.

[44] A. P. Sistla. Safety, liveness and fairness in temporal logic.
Formal Asp. Comput., 6(5):495–512, 1994.

[45] G. Spanoudakis, C. Kloukinas, and K. Androutsopou-
los. Towards security monitoring patterns. In SAC, pages
1518–1525. ACM, 2007.

[46] G. Stenz and A. Wolf. E-SETHEO: An automated3 theo-
rem prover. In R. Dyckhoff, editor, Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX
2000), volume 1847 of Lecture Notes in Computer Sci-
ence, pages 436–440. Springer-Verlag, 2000.

[47] S. G. Stubblebine and R. N. Wright. An authentica-
tion logic with formal semantics supporting synchroniza-
tion, revocation, and recency. IEEE Trans. Software Eng.,
28(3):256–285, 2002.

[48] UMLsec tool, 2001-08.
http://mcs.open.ac.uk/jj2924/umlsectool.

[49] LTL3 Tools, 2008. http://ltl3tools.SourceForge.Net/.
[50] D. Vanoverberghe and F. Piessens. A caller-side inline

reference monitor for an object-oriented intermediate lan-
guage. In G. Barthe and F. S. de Boer, editors, FMOODS,
volume 5051 of Lecture Notes in Computer Science, pages
240–258. Springer, 2008.

[51] M. Westhead and S. Nadjm-Tehrani. Verification of em-
bedded systems using synchronous observers. In FTRTFT
’96: Proceedings of the 4th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 405–419, London, UK, 1996. Springer-
Verlag.

[52] B. D. Win, S.-W. Lee, and M. Monga, editors. Proceed-
ings of the Fourth International Workshop on Software
Engineering for Secure Systems, SESS 2008, Leipzig, Ger-
many, May 17-18, 2008. ACM, 2008.

[53] B. D. Win, B. Vanhaute, and B. D. Decker. How aspect-
oriented programming can help to build secure software.
Informatica (Slovenia), 26(2), 2002.

[54] L. Yu, R. B. France, I. Ray, and K. Lano. A light-weight
static approach to analyzing UML behavioral properties.
In ICECCS, pages 56–63. IEEE Computer Society, 2007.

16

Formally-Based Black-Box Monitoring of
Security Protocols∗

Alfredo Pironti1 and Jan Jürjens2

1
Politecnico di Torino

Turin, Italy

http://alfredo.pironti.eu/research
2

TU Dortmund and Fraunhofer ISST

Dortmund, Germany

http://jurjens.de/jan

Abstract. In the challenge of ensuring the correct behaviour of legacy

implementations of security protocols, a formally-based approach is pre-

sented to design and implement monitors that stop insecure protocol

runs executed by such legacy implementations, without the need of their

source code. We validate the approach at a case study about monitoring

several SSL legacy implementations. Recently, a security bug has been

found in the widely deployed OpenSSL client; our case study shows that

our monitor correctly stops the protocol runs otherwise allowed by the

faulty OpenSSL client. Moreover, our monitoring approach allowed us to

detect a new flaw in another open source SSL client implementation.

1 Introduction

Despite being very concise, cryptographic protocols are quite difficult to get
right, because of the concurrent nature of the distributed environment and the
presence of an active, non-deterministic attacker. Increasing the confidence in
the correctness of security protocol implementations is thus important for the
dependability of software systems. In general exhaustive testing is infeasible,
and for a motivated attacker one remaining vulnerability may be enough to
successfully attack a system. In this paper, we focus in particular on assessing
the correctness of legacy implementations, rather than on the development of
correct new implementations. Indeed, it is often the case in practice that a legacy
implementation is already in use which cannot be substituted by a new one: for
example, when the legacy implementation is strictly coupled with the rest of the
information system, making a switch very costly.

In this context, our proposed approach is based on black-box monitoring of
legacy security protocols implementations. Using the Dolev-Yao [6] model, we
assume cryptographic functions to be correct, and concentrate on their usage
within the cryptographic protocols. Moreover, we concentrate on implementa-
tions of security protocol actors, rather than on the high level specifications of
∗

This research was partially supported by the EU project SecureChange (ICT-FET-

231101).

Fig. 1: Monitor design and development methodology.

such security protocols. That is, we assume that a given protocol specification is

secure (which can be proven using existing tools); instead, by monitoring it, we

want to asses that a given implementation of one protocol’s role is correct with

respect to its specification, and it is resilient to Dolev-Yao attacks.

The overall methodology is depicted in figure 1. Given the protocol definition,

a specification for one agent is manually derived. By using the “agent to monitor”

(a2m) function introduced in this paper, a monitor specification for that protocol

role is automatically generated. Then the monitor implementation is obtained by

using the model driven development framework called spi2java [13], represented

by the dashed box in the figure. The spi2java internals will be discussed later on

in the paper. The monitor application is finally ran together with the monitored

protocol role implementation (not shown in the picture).

A monitor implementation differs from a fresh implementation of a security

protocol, because it does not execute protocol sessions on behalf of its users.

The monitor instead observes protocol sessions started by the legacy implemen-

tations, in order to recognize and stop incorrect sessions, in circumstances where

the legacy implementations cannot be replaced.

For performance trade-offs, monitoring can be performed either “online” or

“offline”. In the first case, all messages are first checked by the monitor, and then

forwarded to the intended recipient only if they are safe. In the second case, all

messages exchanged by the monitored application are logged, and then fed to the

monitor for later inspection. The online paradigm prevents a security property to

be violated, because protocol executions are stopped as soon as an unexpected

message is detected by the monitor, before it reaches the intended recipient.

However, online monitoring may introduce some latency. The offline paradigm

does not introduce any latency and is still useful to recognize compromised

protocol sessions later, which can limit the damage of an attack. For example,

if a credit card number is stolen due to an e-commerce protocol attack, and if

offline monitoring is run overnight, one can discover the issue at most one day
later, thus limiting the time span of the fraud.

In this paper, the main goal of monitors is to detect, stop and report incorrect
protocol runs. Monitors are not designed for example to assist one in forensic
diagnosis after an attack has been found.

The monitoring is “black-box” in that the source code of the monitored
application is not needed; only its observable behaviour (data transmitted over
the medium, or traces) and locally accessed data are required. Thus any legacy
implementation can still be used in production as is, while being monitored.
The correctness of this approach depends on the correctness of the generated
monitor. Our approach leverages formal methods in the derivation of the monitor
implementation, so that a trustworthy monitor is obtained.

Note that this approach can be exploited during the testing phase as well:
One can run an arbitrary number of simulated protocol sessions in a testing
environment, and use the monitor to check for the correct behaviour.

In order to validate the proposed approach, a monitor for the SSL proto-
col is presented. The generated monitor stops incorrect sessions that could, for
example, exploit a recently found flaw in the OpenSSL implementation.

The rest of the paper is organized as follows. Section 2 describes related
work. Section 3 illustrates the formal background used in the paper. Section 4
describes the function translating a Spi Calculus protocol agent’s specification
into a monitor specification for that agent. Then section 5 shows the SSL protocol
case study. Finally section 6 concludes.

For brevity, this paper mainly concentrates on the description of the proposed
approach and on its validation by means of a real-life size case study. An extended
version of this paper that includes all the formal definitions and the source code
of the presented case study and other case studies can be found in [12].

2 Related Work

Several attempts have been made to check that a protocol role implementation is
correct w.r.t. its specification which can be grouped in four main categories: (1)
Model Driven Development (MDD); (2) Static Code Verification; (3) Refinement
Types; (4) Online Monitoring and Intrusion Detection Systems (IDSs).

The first approach consists of designing and verifying a formal, high-level
model of a security protocol and to semi-automatically derive an implementation
that satisfies the same security properties of the formal model [8,9,13]. However,
it has the drawback of not handling legacy implementations of security protocols.

The second approach starts from the source code of an existing implemen-
tation, and extracts a formal model which is verified for the desired security
properties [5, 11]. In principle, this approach can deal with legacy implementa-
tions, but their source code must be available, which is not always the case.

The third approach proves security properties of an implementation by means
of a special kind of type checking on its source code [4]. Working on the source
code, it shares the same advantages and drawbacks of the second approach.

The fourth approach comes in two versions. With online monitoring, the

source code of an existing implementation is instrumented with assertions: pro-

gram execution is stopped if any assertion fails at runtime [3]. Besides requiring

the source code, the legacy implementation must be substituted with the instru-

mented one, which may not always be the case. IDSs are systems that monitor

network traffic and compare it against known attack patterns, or expected av-

erage network traffic. By working on averages, in order not to miss real attacks,

IDSs often report false positive warnings. In order to reduce them, sometimes the

source code of the monitored implementation is also instrumented [10], sharing

the same advantages and drawback of online monitoring.

Another branch of research focused on security wrappers for legacy imple-

mentations. In [1], a formal approach that uses security wrappers as firewalls with

an encrypting tunnel is described. Any communication that crosses some security

boundary is automatically and transparently encrypted by the wrappers. That

is, the wrappers add security to a distributed legacy system. In our approach,

the monitor enforces the security already present in the system. Technically, our

approach derives a monitor based on the security requirements already present

in the legacy system, instead of adding a boilerplate layer of security.

Analogously, in [7] wrappers are used, among other things, to transparently

encrypt local files accessed by library calls. However, distributed environments

are not taken into account. Finally, in [17] wrappers are used to harden software

libraries. However, cryptography and distributed systems are not considered,

and the approach is test-driven, rather than formally based.

3 Formal Background

3.1 Network Model

Many network models have been proposed in the Dolev-Yao setting. For example,

sometimes the network is represented as a separate process [16]; the attacker

is connected to this network, and can eavesdrop, drop and modify messages, or

forge new ones. In other cases, the attacker is the medium [15], and honest agents

can only communicate through the attacker. Even more detailed network models

have been developed [19], where some nodes may have direct, private secured

communication with other nodes, while still also being able to communicate

through insecure channels, controlled by the attacker.

In general, it is not trivial to show that all of these models are equivalent in a

Dolev-Yao setting, furthermore different network models and agents granularity

justify different positions of the monitor with respect to the monitored agent,

affecting the way the monitor is actually implemented. In this paper, we focus on

a simple scenario that is usually found in practice, and is depicted in figure 2(a):

the attacker is the medium, and every protocol agent communicates over a single

insecure channel c, and private channels are not allowed. Moreover, agents are

sequential and non-recursive.

Let us define A as the (correct) model of the agent to be monitored, and

MA as the model of its monitor. When the monitor is present, A communicates

(a) Agents A and B with the attacker. (b) Agent A monitored by MA and the
attacker.

Fig. 2: The network model.

L, M, N ::= terms
n name
(M, N) pair
0 zero
suc(M) successor
x variable
M
∼ shared-key

{M}N shared-key encryption
H (M) hashing
M

+ public part
M
− private part

{[M]}N public-key encryption
[{M}]N private-key signature

(a) Spi Calculus terms.

P, Q, R ::= processes

M �N� .P output
M (x) .P input
P |Q composition
!P replication
(νn) P restriction
[M is N] P match
0 nil
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case
case L of {x}N in P shared-key decryption
case L of {[x]}N in P decryption
case L of [{x}]N in P signature check

(b) Spi Calculus processes.

Table 1: Spi Calculus grammar.

with MA only, through the use of a private channel cAM , while MA is directly
connected to the attacker by channel c, as depicted in figure 2(b). The dashed
box denotes that A and MA run in the same environment, for example they run
on the same system with same privileges. Note that in A channel c is in fact
renamed to cAM .

3.2 The Spi Calculus

In this paper, the formal models are expressed in Spi Calculus [2]. Spi Calculus
is amenable for our approach because it is a domain specific language tailored
at expressing the behaviour of single security protocol agents, where checks on
received data must be explicitly specified. Thus, from the Spi Calculus speci-
fications of protocol agents, the a2m function can derive precise and complete
specifications of their monitors.

Briefly, a Spi Calculus specification is a system of concurrent processes that
operate on untyped data, called terms. Terms can be exchanged between pro-
cesses by means of input/output operations. Table 1(a) contains the terms de-
fined by the Spi Calculus, while table 1(b) shows the processes.

A name n is an atomic value, and a pair (M,N) is a compound term, com-
posed of the terms M and N . The 0 and suc(M) terms represent the value of
zero and the logical successor of some term M , respectively. A variable x rep-
resents any term, and it can be bound once to the value of another term. If

a variable or a name is not bound, then it is free. The M
∼ term represents a

symmetric key built from key material M , and {M}N represents the encryption
of the plaintext M with the symmetric key N , while H(M) represents the result
of hashing M . The M

+ and M
− terms represent the public and private part of

the keypair M respectively, while {[M]}N and [{M}]N represent public key and
private key asymmetric encryptions respectively.

Informally, the M �N� .P process sends message N on channel M , and then
behaves like P , while the M (x) .P process receives a message from channel M ,
and then behaves like P , with x bound to the received term in P . A process P

can perform an input or output operation iff there is a reacting process Q that
is ready to perform the dual output or input operation. Note, however, that pro-
cesses run within an environment (the Dolev-Yao attacker) that is always ready
to perform input or output operations. Composition P |Q means parallel execu-
tion of processes P and Q, while replication !P means an unbounded number
of instances of P run in parallel. The restriction process (νn)P indicates that
n is a fresh name (i.e. not previously used, and unknown to the attacker) in P .
The match process executes like P , if M equals N , otherwise is stuck. The nil
process does nothing. The pair splitting process binds the variables x and y to
the components of the pair M , otherwise, if M is not a pair, the process is stuck.
The integer case process executes like P if M is 0, else it executes like Q if M is
suc(N) and x is bound to N , otherwise the process is stuck. If L is {M}N , then
the shared-key decryption process executes like P , with x bound to M , else it
is stuck, and analogous reasoning holds for the decryption and signature check
processes.

The assumption that A is a sequential process, means that composition and
replication are never used in its specification.

4 The Monitor Generation Function

The a2m function translates a sequential protocol role specification into a mon-
itor specification for that role; formally, MA � a2m(A). For brevity, a2m is only
informally presented here, by means of a running example. Formal definitions
can be found in [12].

Before introducing the function, the concepts of known and reconstructed
terms are given. For any Spi Calculus state, a term T is said to be known by the
monitor through variable T , iff T is bound to T . This can happen either because
the implementation of MA has access to the agent’s memory location where T is
stored; or because T can be read from a communication channel, and MA stores
T in variable T . A compound term T (that is not a name or a variable) is said
to be reconstructed, if all its subterms are known or reconstructed. For example,
suppose M is known through M and H(N) is known through H(N). It is
the case that (H(N), M) is reconstructed by (H(N), M). Note that, as terms
become known, other terms may become reconstructed too. In the example given
above, if M was not known, then it was not possible to reconstruct (H(N), M);

1a: A(M,k) :=

2a: cAM<{M}k>.

3a: cAM(x).

4a: [x is H(M)]

5a: 0

(a) Agent A specification.

1m: MA(k,_H(M)) :=

2m: cAM(_{M}k).

3m: case _{M}k of {_M}k in

4m: [_H(M) is H(_M)]

5m: c<_{M}k>.

6m: c(x).

7m: [x is _H(M)]

8m: cAM<x>.

9m: 0

(b) Monitor specification derived from agent A one.

Fig. 3: Example specification of agent A along with its derived monitor MA.

however, if later M became known (for example, because it was sent over a

channel), then (H(N), M) would become reconstructed.

Note that the monitor implementation presented in this paper does not en-

force that nonces are actually different for each protocol run. To enable this,

the monitor should track all previously used values, in order to ensure that no

value is used twice. Especially in the online mode, this overhead may not be

acceptable. In order to drop this check, it is needed to assume that the random

value generator in the monitored agent is correctly implemented. Also note that

there may be cases where the monitor has not enough information to properly

check protocol execution. These cases are recognised by the a2m function, so

that an error state is reached, and no unsound monitor is generated.

The a2m function behaviour is now described by means of a running exam-

ple. Agent A sends some data M encrypted by the key k to the other party, and

expects to receive the hash of the plaintext, that is H(M). Note that the exam-

ple focuses on the way the a2m function operates, rather than on monitoring a

security protocol, so no security claim is meant to be made on this protocol. Fig-

ure 3(a) shows the specification for agent A, and figure 3(b) its derived monitor

specification MA. Here, an ASCII syntax of Spi Calculus is used: the ‘ν’ symbol

is replaced by the ‘@’ symbol, and the overline in the output process is omitted

(input and output processes can still be distinguished by the different brackets).

At line 1a the agent A process is declared: it has two free variables, a message

M and a symmetric key k. At line 2a A sends the encryption of M with key k.

Then, at line 3a it receives a message that is stored into variable x, and, at line

4a, the received message is checked to be equal to the hashing of M : if this is

the case, the process correctly terminates.

At line 1m, the monitor MA is declared: to make this example significant,

it is assumed that in the initial state the key k used by A is known by the

monitor (through the variable k), while M is not known (for example, because

the monitor cannot access those data); however H(M) is known through H(M),

that is the monitor has access to the memory location where H(M) is stored,

and this value is bound to the variable H(M) in the monitor.

When line 2a is translated by a2m, lines 2m–5m are produced. The data
sent by A are received by the monitor at line 2m, and stored in variable {M}k.
Afterwards, some checks on the received value are added by the a2m function. In
general, each time a new message is received from the monitored application, it
or its parts are checked against their expected (known or reconstructed) values.
In this case, since {M}k is not known (by hypothesis) or reconstructed (because
M is not known or reconstructed), it cannot be directly compared against the
known or reconstructed value, so it is exploded into its components. As {M}k

is an encryption and k is known, the decryption case process is generated at
line 3m, binding M to the value of the plaintext, that should be M . Since M

is not known or reconstructed, and it is a name, M cannot be dissected any
more; instead, M becomes known through M , in other words, the term stored
in M is assumed by the monitor to be the correct term for M . Note that, before
M was known through M , H(M) was known through H(M), but it was not
reconstructed. After the assignment of M , H(M) becomes reconstructed by
H(M) too. The match process at line 4m ensures that known and reconstructed
values for the same term are actually the same.

After all the possible checks are performed on the received data, they are
forwarded to the attacker at line 5m. Then, line 3a is translated into line 6m.
When translating an input process, the monitor receives message x from the
attacker on behalf of the agent and buffers it; x is said to be known through
x itself. Then the monitor behaves according to what is done by the agent
(usually checks on the received data, as it is the case in the running example).
The received message stored in x is not forwarded to A immediately, because
this could lead A to receive some malicious data, that could for example enable
some denial of service attack. Instead, the received data are buffered, and will
be forwarded to A only when necessary: that is when the process should end (0
case), or when some output data from A are expected.

Line 4a is then translated into line 7m, and finally, line 5a is translated into
lines 8m and 9m. First, all buffered data (x in this case) are forwarded to A,
then the monitor correctly ends.

5 An SSL Server Monitor Example

5.1 Monitor Specification

As shown in figure 1, in order to get the monitor specification, a Spi Calculus
specification of the server role for the SSL protocol is needed. The full SSL
protocol is rather complex: many scenarios are possible, and different sets of
cryptographic algorithms (called ciphersuites) can be negotiated. For simplicity,
this example considers only one scenario of the SSL protocol version 3.0, where
the same cipher suite is always negotiated. Despite these simplifications, we
believe that the considered SSL fragment is still significant, and that adding full
SSL support would increase the example complexity more than its significance.

In this paper, the chosen scenario requires the server to use a DSA certificate
for authentication and data signature. Although RSA certificates are more com-

Fig. 4: Typical SSL scenario.

mon in SSL, using a DSA certificate allowed us to stress a bug in the OpenSSL
implementation, showing that the monitor can actively drop malicious sessions
that would be otherwise accepted as genuine by the flawed OpenSSL implemen-
tation. The more common RSA scenario has been validated through a dedicated
case-study. However, it is not reported here for brevity; it can be found in [12].

The SSL scenario considered in this example is depicted informally in figure 4,
while figure 5 shows a possible Spi Calculus specification of a server for the
chosen scenario. The ASCII syntax of Spi Calculus is used in figure 5. Also, in
order to model the Diffie-Hellman (DH) key exchange, the EXP (L, M, N) term
is added, which expresses the modular exponentiation LM mod N , along with
the equation EXP (EXP (g, a, p), b, p) = EXP (EXP (g, b, p), a, p).

To make the specification more readable, lists of terms like (A, B,C) are
added as syntactic sugar, and they are translated into left associated nested
pairs, like ((A, B), C); a rename n = M in P process is introduced too, that
renames the term M to n and then behaves like P .

The first message is the ClientHello, sent from the client to the server. It
contains the highest protocol version supported by the client, a random value,
a session ID for session resuming, and the set of supported cipher suites and
compression methods. In the server specification, the ClientHello message is
received and split into its parts at line 2S. In the chosen scenario, the client
should send at least 3.0 as the highest supported protocol version, and it should
send 0 as session ID, so that no session resuming will be performed. Moreover,
the client should at least support the always-negotiated cipher suite, namely
SSL DHE DSS 3DES EDE CBC SHA, with no compression enabled. All these con-
straints are checked at lines 3S–4S.

In the second message the server replies by sending its ServerHello message,
that contains the chosen protocol version, a random value, a fresh session ID
and the chosen cipher suite and compression method. The server random value

1S Server() :=
2S c(c_hello). let (c_version,c_rand,c_SID,c_ciph_suite,c_comp_method) = c_hello in
3S [c_version is THREE_DOT_ZERO] [c_SID is ZERO]
4S [c_ciph_suite is SSL_DHE_DSS_3DES_EDE_CBC_SHA] [c_comp_method is comp_NULL]
5S (@s_rand) (@SID)
6S rename S_HELLO = (THREE_DOT_ZERO,s_rand,SID,SSL_DHE_DSS_3DES_EDE_CBC_SHA,comp_NULL) in
7S (@DH_s_pri) rename DH_s_pub = EXP(DH_Q,DH_s_pri,DH_P) in
8S rename S_KEX = ((DH_P,DH_Q,DH_s_pub),[{H(c_rand,s_rand,(DH_P,DH_Q,DH_s_pub))}]s_PriKey) in
9S c<S_HELLO,S_CERT,S_KEX,S_HELLO_DONE>.

10S c(c_kex). let (c_kexHead,DH_c_pub) = c_kex in rename PMS = EXP(DH_c_pub,DH_s_pri,DH_P) in
11S rename MS = H(PMS,c_rand,s_rand) in rename KM = H(MS,c_rand,s_rand) in
12S rename c_w_IV = H(KM,C_WRITE_IV) in rename s_w_IV = H(KM,S_WRITE_IV) in
13S c(c_ChgCipherSpec). [c_ChgCipherSpec is CHG_CIPH_SPEC]
14S c(c_encrypted_Finish). case c_encrypted_Finish of {c_Finish_and_MAC}(KM,C_WRITE_KEY)~ in
15S let (c_Finish,c_MAC) = c_Finish_and_MAC in [c_MAC is H((KM,C_MAC_SEC)~,c_Finish)]
16S let (final_Hash_MD5, final_Hash_SHA) = c_Finish in
17S [final_Hash_MD5 is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,MD5)]
18S [final_Hash_SHA is H((c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex),C_ROLE,MS,SHA)]
19S c<CHG_CIPH_SPEC>.
20S rename DATA = (c_hello,S_HELLO,S_CERT,S_KEX,S_HELLO_DONE,c_kex,c_Finish) in
21S rename S_FINISH = (H(DATA,S_ROLE,MS,MD5),H(DATA,S_ROLE,MS,SHA)) in
22S (@pad) c<{S_FINISH,H((KM,S_MAC_SEC)~,S_FINISH),pad}(KM,S_WRITE_KEY)~>.
23S 0

Fig. 5: A possible Spi Calculus specification of an SSL server.

and the fresh session ID are generated at line 5S, then the ServerHello message

is declared at line 6S. Again, in the chosen scenario, the server chooses protocol

version 3.0, and always selects the SSL DHE DSS 3DES EDE CBC SHA cipher suite,

with no compression enabled. Then the server sends the Certificate message to

the client: in the chosen scenario, this message contains a DSA certificate chain

for the server’s public key, that authenticates the server.

In the fourth message, named ServerKeyExchange, the server sends the DH

key exchange parameters to the client, and digitally signs them with its public

key. In the server specification, the DH server secret value DH s pri and the cor-

responding public value DH s pub are computed at line 7S. Then, at line 8S, the

ServerKeyExchange message is declared: it consists of the server DH parameters,

along with a digital signature of the DH parameters and the client and server

random values, in order to ensure signature freshness.

The fifth message is the ServerHelloDone. It contains no data, but signals

the client that the server ended its negotiation part, so the client can move to

the next protocol stage. In the server specification, these four messages are sent

all at once at line 9S.

In the sixth message, the client replies with the ClientKeyExchange message,

that contains the client’s DH public value. Note that there is no digital signature

in this message, since the client is not authenticated. In the server specification

the ClientKeyExchange is received at line 10S, where the payload is split from

the message header too. Both client and server derive a shared secret from the

DH key exchange. This shared secret is called Premaster Secret (PMS), and

it is used by both parties to derive some shared secrets used for symmetric

encryption of application data. The PMS is computed by the server at line 10S.

By applying an SSL custom hashing function to the PMS and the client and

server random data, both client and server can compute the same Master Secret
(MS). The bytes of the MS are then extended (again by using a custom SSL
hashing algorithm) to as many byte as required by the negotiated ciphersuite,
obtaining the Key Material (KM) (line 11S). Finally, different subsets of bytes of
the KM are used as shared secrets and as initialization vectors (IVs). Note that
IVs, that are extracted at line 12S, are never referenced in the specification. They
will be used as cryptographic parameters for subsequent encryptions, during the
code generation step, explained in section 5.2.

The seventh message is the ChangeCipherSpec, received and checked at
line 13S. This message contains no data, but signals the server that the client
will start using the negotiated cipher suite from the next message on.

The client then sends its Finished message. Message Authentication Code
(MAC) and encryption are applied to the Finished message sent by the client, as
the client already sent its ChangeCipherSpec message. The client Finished mes-
sage is received and decrypted at line 14S. The decryption key used (KM,C WRITE KEY)~

is obtained by creating a shared key, starting from the key material KM and a
marker C WRITE KEY that indicates which portion of the KM to use. At line 15S
the MAC is extracted from the plaintext, and verified. The unencrypted con-
tent of the Finished message contains the final hash, that hashes all relevant
session information: all exchanged messages (excluding the ChangeCipherSpec
ones) and the MS are included in the final hash, plus some constant data iden-
tifying the protocol role (client or server) that sent the final hash. In fact, the
Finished message includes two versions of the same final hash, one using the
MD5 algorithm, and one using the SHA-1 algorithm. Both versions of the final
hash are extracted and checked at lines 16S–18S. As Spi Calculus does not sup-
port different algorithms for the same hash, they are distinguished by a marker
(MD5 and SHA respectively) as the last hash argument, making them syntactically
different.

Then the server sends its ChangeCipherSpec message to client (line 19S),
and its Finished message, that comes with MAC and encryption too (lines 20S–
22S). Encryption requires random padding to align the plaintext length to the
cipher block size. This random padding must be explicitly represented in the
server specification, so that the monitor can recognise and discard it, and only
check the real plaintext. Otherwise the monitor would try to locally reconstruct
the encryption, but it would always fail, because it could not guess the padding.
The protocol handshake is now complete, and next messages will contain secured
application data.

In order to verify any security property on this specification, the full SSL
specification, including the client and protocol sessions instantiations is required.
However, this is outside the scope of this paper; SSL security properties have
already been verified, for example, by the AVISPA project [18]. Here it is assumed
instead that the specification of the server is correct, and thus secure, so that
the monitoring approach can be shown.

The a2m function described in section 4 is applied on the server specification,
in order to obtain the online monitor specification for the server role. For brevity,

the resulting specification is not shown here. It can be found, along with more
implementation details, in [12]. It is assumed that the monitor has access to
the server private DH value, which is then known, while it is not able to read
the freshly generated server random value s rand, the session ID SID and the
random padding which are then not known nor reconstructed at generation time.
Often, the server will generate a fresh DH private value for each session, and it
will usually only store it in memory. In general, with some effort the monitor will
be able to directly read this secret from the legacy application memory, without
the need of the source code. Nevertheless, in a testing environment, if the source
code of the monitored application happens to be available, it is possible to patch
the monitored application, so that it explicitly communicates the DH private
value to the monitor. Indeed, this is reasonable because the monitor is part of
the trusted system, and is actually more trusted than the monitored application.

5.2 Monitor Implementation

The source code of the monitor implementation can be found in [12]. In order to
generate the monitor implementation, the spi2java MDD framework is used [13].
Briefly, spi2java is a toolchain that, starting from the formal Spi Calculus speci-
fication of a security protocol, semi-automatically derives an interoperable Java
implementation of the protocol actors. In the first place, spi2java was designed
to generate security protocol actors, rather than monitors. In this paper, we
originally reuse spi2java to generate a monitor.

In order to generate an executable Java implementation of a Spi Calculus
specification, some details that are not contained in the Spi Calculus specifi-
cation must be added. That is, the Spi Calculus specification must be refined,
before it can be translated into a Java application.

As shown in figure 1, the spi2java framework assists the developer during the
refinement and code generation steps. The spi2java refiner is used to automati-
cally infer some refinement information from the given specification. All inferred
information is stored into an eSpi (extended Spi Calculus) document, which is
coupled with the Spi Calculus specification. The developer can manually refine
the generated eSpi document; the manually refined eSpi document is passed back
to the spi2java refiner, that checks its coherence against the original Spi Calculus
specification, and possibly infers new information from the user given one. This
iterative refinement step can be repeated until the developer is satisfied with the
obtained eSpi document, but usually one iteration is enough.

The obtained eSpi document and the original Spi Calculus specification are
passed to the spi2java code generator that automatically outputs the Java code
implementing the given specification. The generated code implements the “pro-
tocol logic”, that is the code that simulates the Spi Calculus specification by
coordinating input/output operations, cryptographic primitives and checks on
received data. Dealing with Java sockets or the Java Cryptographic Architec-
ture (JCA) is delegated to the SpiWrapper library, which is part of the spi2java
framework. The SpiWrapper library allows the generated code to be compact

and readable, so that it can be easily mapped back to the Spi Calculus speci-

fication. For example, the monitor specification corresponding to line 2S of the

server specification in figure 5 is translated as

/* c_0(c_hello_1). */

Pair c_hello_1 = (Pair) c_0.receive(new PairRecvClHello());

(each Spi Calculus term name is mangled to make sure there is a unique Java

identifier for that term). To improve readability, the spi2java code generator

outputs the translated Spi Calculus process as a Java comment too. In this

example, the Java variable c 0 has type TcpIpChannel, which is a Java class

included in the SpiWrapper library implementing a Spi Calculus channel using

TCP/IP as transport layer. This class offers the receive method that allows the

Spi Calculus input process to be easily implemented, by internally dealing with

the Java sockets. The c hello 1 Java variable has type Pair, which implements

the Spi Calculus pair. The Pair class offers the getLeft and getRight methods,

allowing a straightforward implementation of the pair splitting process. The

spi2java translation function is proven sound in [14].

In order to get interoperable implementations, the SpiWrapper library classes

only deal with the internal representation of data. By extending the SpiWrapper

classes, the developer can provide custom marshalling functions that transform

the internal representation of data into the external one.

In the SSL monitor case study, a two-tier marshalling layer has been imple-

mented. Tier 1 handles the Record Layer protocol of SSL, while tier 2 handles

the upper layer protocols. When receiving a message from another agent, tier 1

parses one Record Layer message from the input stream, and its contained up-

per layer protocol messages are made available to tier 2. The latter implements

the real marshalling functions, for example converting US-ASCII strings to and

from Java String objects. Analogous reasoning applies when sending a message.

The marshalling layer functions only check that the packet format is correct.

No control on the payload is needed: it will be checked by the automatically

generated protocol logic.

The SSL protocol defines custom hashing algorithms, for instance to com-

pute the MS from the PMS, or to compute the MAC value. For each of them,

a corresponding SpiWrapper class has been created, implementing the custom

algorithm. Moreover, the spi2java framework has been extended to support the

modular exponentiation, so that DH key exchange can be supported.

Finally, it is worth pointing out some details about the IVs used by cryp-

tographic operations (declared in the server specification at line 12S). For each

term of the form {M}K , the eSpi document allows its cryptographic algorithm

(such as DES, 3DES, AES) and its IV to be specified. However, the IV is only

known at run time. The spi2java framework allows cryptographic algorithms

and parameters to be resolved either at compile time or at run time. If the

parameter is to be resolved at compile time, the value of the parameter must

be provided (e.g. AES for the symmetric encryption algorithm, or a constant

value for the IV). If the parameter is to be resolved at run time, the iden-

tifier of another term of the Spi Calculus specification must be provided: the

parameter value will be obtained by the content of the referred term, during ex-
ecution. In the SSL case study, this feature is used for the IVs. For example, the
{c Finish and MAC}(KM,C WRITE KEY)~ term uses the H(KM,C WRITE IV) term
as IV. Technically, this feature enables support for cipher suite negotiation. How-
ever, as stated above, this would increase the specification complexity more than
it would increase its significance, and is left for future work.

5.3 Experimental Results

The monitor has been coupled in turn with three different SSL server implemen-
tations, namely OpenSSL3 version 0.9.8j, GnuTLS4 version 2.4.2 and JESSIE5

version 1.0.1.
Since the online monitoring paradigm is used in this case study, the monitor

is accepting connections on the standard SSL port (443), while the real server
is started on another port (4433). Each time a client connects to the monitor,
the latter opens a connection to the real server, starting data checking and
forwarding, as explained above.

It is worth noting that switching the server implementation is straightfor-
ward. In the testing scenario, assuming that the server communicates its private
DH value to the monitor, it is enough to shut down the running server imple-
mentation, and to start the other one; the monitor implementation remains the
same, and no action on the monitor is required. Otherwise, it is enough to restart
the monitor too, enabling the correct plugin that gathers the private DH value
from the legacy application memory. In other words, in a production scenario,
the same monitor implementation can handle several different legacy server im-
plementations; in the monitor, the only server-dependent part is the plugin that
reads the DH secret value from the server application memory.

In order to generate protocol sessions, three SSL clients have been used with
each server; namely the OpenSSL, GnuTLS, and JESSIE clients. During exper-
iments, the monitor helped in spotting a bug in the JESSIE client: This client
always sends packet of the SSL 3.1 version (better known as TLS 1.0), regardless
of the negotiated version, that is SSL 3.0 in our scenario. The monitor correctly
rejected all JESSIE client sessions, reporting the wrong protocol version.

When the OpenSSL or GnuTLS clients are used, the monitor correctly op-
erates with all the three servers. In particular, safe sessions are successfully
handled; conversely, when exchanged data are manually corrupted, they are rec-
ognized by the monitor and the session is aborted: corrupted data are never
forwarded to the intended recipient.

In order to estimate the impact on performances of the online monitoring
approach, execution times of correctly ended protocol sessions with and with-
out the monitor have been measured. Thus, performances regarding the JESSIE
client are not reported, as no correct session could be completed, due to the
3 Available at: http://www.openssl.org/
4 Available at: http://www.gnu.org/software/gnutls/
5 Available at: http://www.nongnu.org/jessie/

Client Server No Monitor [s] Monitor [s] Overhead [s] Overhead [%]

OpenSSL OpenSSL 0.032 0.113 0.081 253.125

GnuTLS OpenSSL 0.108 0.132 0.024 22.253

OpenSSL GnuTLS 0.073 0.128 0.056 76.552

GnuTLS GnuTLS 0.109 0.120 0.011 10.313

OpenSSL JESSIE 0.158 0.172 0.014 8.986

GnuTLS JESSIE 0.144 0.148 0.004 2.788

Table 2: Average execution times for protocol runs with and without monitoring.

discovered bug. That is, the measured performances all correspond to valid exe-

cutions of the protocol only. Communication between client, server and monitor

happened over local sockets, so that no random network delays could be intro-

duced; moreover system load was constant during test execution. Table 2 shows

the average execution times for different client-server pairs, with and without

monitor enabled. For each client-server pair, the average execution times have

been computed over ten protocol runs. Columns “No Monitor” and “Monitor”

report the average execution times, in seconds, without and with monitoring

enabled respectively. When monitoring is not enabled, the clients directly con-

nect to the server on port 4433. The “Overhead” columns show the overhead

introduced by the monitor, in seconds and in percentage respectively. In four

cases out of six, the monitor overhead is under 25 milliseconds. From a practical

point of view, a client communicating through a real distributed network could

hardly tell whether a monitor is present or not, since network times are orders

of magnitude higher. On the other hand, in the worst cases online monitoring

can slow down the server machine up to 2.5 times. Whether this overhead is

acceptable on the server side depends on the number of sessions per seconds

that must be handled. If the overhead is not acceptable, the offline monitoring

paradigm can still be used.

The OpenSSL security flaw. Recently, the client side of the OpenSSL library

prior to version 0.9.8j has been discovered flawed, such that in principle it could

treat a malformed DSA certificate as a good one rather than as an error.6 By

inspecting the flawed code, we were able to forge such malformed certificate that

exploited the affected versions. This malformed DSA certificate must have the q
parameter one byte longer than expected. Up to our knowledge, this is the first

documented and repeatable exploit for this flaw.

Without monitoring enabled, we generated protocol sessions between an SSL

server sending the offending certificate, and both OpenSSL clients version 0.9.8i

(flawed) and 0.9.8j (fixed). By using the -state command line argument, it is

possible to conclude that the 0.9.8i version completes the handshake by reaching

the “read finished A” state (after message 10 in figure 4); while the 0.9.8j version

correctly reports an “handshake failure” error at state “read server certificate

A”, that is immediately after message 3 in figure 4.

6
http://www.openssl.org/news/secadv 20090107.txt

When monitoring is enabled, the malformed server certificate is passed to
the monitor as an input parameter, that is, the server certificate is known by
the monitor. In this case the monitor actually refuses to start. Indeed, when
loading the server certificate, the monitor spots that it is malformed, and does
not allow any session to be even started. If we drop the assumption that the
monitor knows the server certificate, then the monitor starts, and checks the
server certificate when it is received over the network. During these checks, the
malformed certificate is found, and the session is dropped, before the server
Certificate message is forwarded to the client. This prevents the aforecited flaw
to be exploited on OpenSSL version 0.9.8i.

6 Conclusion

The paper shows a formally-based yet practical methodology to design, develop
and deploy monitors for legacy implementations of security protocols, without
the need to modify the legacy implementations or to analyse their source code.
To our knowledge, this is the first work that allows legacy implementations of
security protocol agents to be black-box monitored.

This paper introduces a function that, given the specification of a security
protocol actor, automatically generates the specification of a monitor that stops
incorrect sessions, without rising false positive alarms. From the obtained mon-
itor specification, an MDD approach is used to generate a monitor implemen-
tation; for this purpose, the spi2java framework has been originally reused, and
some of its parts enhanced.

Finally, the proposed methodology has been validated by implementing a
monitor starting from the server role of the widely used SSL protocol. Core
insights gained from conducting the SSL case study include that the same gen-
erated monitor implementation can in fact monitor several different SSL server
implementations against different clients, in a black-box way. The only needed
information is the private Diffie-Hellman key used by the server, in order to check
message contents. Moreover, by reporting session errors, the monitor effectively
helped us in finding a bug in an open source SSL client implementation.

The “online” monitoring paradigm proved useful in avoiding protocol vi-
olations, for example by stopping malicious data that would have otherwise
exploited a known flaw of the widely deployed OpenSSL client. The overhead
introduced by the monitor to check and forward messages is usually negligible. If
the overhead is not acceptable, this paper also proposes an “offline” monitoring
strategy that has no overhead and can still be useful to timely discover protocol
attacks.

As future work, a general result about soundness of the monitor specification
generating function would be useful. The soundness property should show that
the generated monitor specification actually forwards only (and all) the protocol
sessions that would be accepted by the agent’s verified specification. Together
with the soundness proofs of the spi2java framework, this would produce a sound
monitor implementation, directly from the monitored agent’s specification.

References

1. Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstrac-
tions. Information and Computation 174(1), 37–83 (2002)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi Calculus.
Digital Research Report 149 (1998)

3. Bauer, A., Jürjens, J.: Security protocols, properties, and their monitoring. In:
International Workshop on Software Engineering for Secure Systems. pp. 33–40
(2008)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. In: Computer Security Foundations Symposium,
IEEE. pp. 17–32 (2008)

5. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified interoperable imple-
mentations of security protocols. In: Computer Security Foundations Workshop.
pp. 139–152 (2006)

6. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

7. Fraser, T., Badger, L., Feldman, M.: Hardening COTS software with generic soft-
ware wrappers. In: IEEE Symposium on Security and Privacy. pp. 2–16 (1999)

8. Hubbers, E., Oostdijk, M., Poll, E.: Implementing a formally verifiable security
protocol in Java Card. In: Security in Pervasive Computing. Lecture Notes in
Computer Science, vol. 2802, pp. 213–226 (2003)

9. Jeon, C.W., Kim, I.G., Choi, J.Y.: Automatic generation of the C# code for secu-
rity protocols verified with Casper/FDR. In: International Conference on Advanced
Information Networking and Applications. pp. 507–510 (2005)

10. Joglekar, S.P., Tate, S.R.: ProtoMon: Embedded monitors for cryptographic pro-
tocol intrusion detection and prevention. Journal of Universal Computer Science
11(1), 83–103 (2005)

11. Jürjens, J., Yampolskiy, M.: Code security analysis with assertions. In: IEEE/ACM
International Conference on Automated Software Engineering. pp. 392–395 (2005)

12. Pironti, A., Jürjens, J.: Online resources about black-box monitoring, available at:
http://alfredo.pironti.eu/research/projects/monitoring/

13. Pironti, A., Sisto, R.: An experiment in interoperable cryptographic protocol imple-
mentation using automatic code generation. In: IEEE Symposium on Computers
and Communications. pp. 839–844 (2007)

14. Pironti, A., Sisto, R.: Provably correct Java implementations of Spi Calculus se-
curity protocols specifications. Computers & Security (2009), in Press

15. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR (1997)

16. Schneider, S.: Security properties and CSP. In: IEEE Symposium on Security and
Privacy. pp. 174–187 (1996)

17. Süßkraut, M., Fetzer, C.: Robustness and security hardening of COTS software
libraries. In: IEEE/IFIP International Conference on Dependable Systems and
Networks. pp. 61–71 (2007)

18. Viganò, L.: Automated security protocol analysis with the AVISPA tool. Electronic
Notes on Theoretical Computer Science 155, 61–86 (2006)

19. Voydock, V.L., Kent, S.T.: Security mechanisms in high-level network protocols.
ACM Computing Surveys 15(2), 135–171 (1983)

c� The Author 2008. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

doi:10.1093/comjnl/bxh000

Run-Time Security Traceability for
Evolving Systems∗

ANDREAS BAUER1,4, JAN JÜRJENS2,3, YIJUN YU2

1
National ICT Australia (NICTA)

2
Computing Department, The Open University, UK

3
Microsoft Research (Cambridge)

4
School of Computer Science, The Australian National University

Email: baueran@rsise.anu.edu.au, {j.jurjens,y.yu}@open.ac.uk

Security-critical systems are challenging to design and implement correctly and securely. A lot

of vulnerabilities have been found in current software systems both at the specification and the

implementation levels. This paper presents a comprehensive approach for model-based security

assurance. Initially, it allows one to formally verify the design models against high-level security

requirements such as secrecy and authentication on the specification level, and helps to ensure that

their implementation adheres to these properties, if they express a system’s run-time behaviour.

As such, it provides a traceability link from the design model to its implementation by which the

actual system can then be verified against the model while it executes. This part of our approach

relies on a technique also known as run-time verification. The extra effort for it is small as most

of the computation is automated, however, additional resources at run-time may be required. If

during run-time verification a security weakness is uncovered, it can be removed using aspect-

oriented security hardening transformations. Therefore, this approach also supports the evolution

of software since the traceability mapping is updated when refactoring operations are regressively

performed using our tool-supported refactoring technique. The proposed method has been applied

to the Java-based implementation JESSIE of the Internet security protocol SSL, in which a security

weakness was detected and fixed using our approach. We also explain how the traceability link can

be transformed to the official implementation of the Java Secure Sockets Extension (JSSE) that was

recently made open source by Sun.

Keywords: run-time verification, monitoring, IT security, cryptographic protocols, formal verification,

security analysis, software evolution, requirements traceability

Received 08 November 2008; revised 31 March 2009 and 12 September 2009

1. INTRODUCTION

There has been successful research over the last years to
provide security assurance tools for the lower abstraction
levels of software systems. However, these tools usually
search for specific security weaknesses, such as buffer
overflow vulnerabilities. What is so far largely missing
is automated tool support which would support security
assurance throughout the software development process,
starting from the analysis of software design models (e.g.,
in UML) against abstract security requirements (such as
secrecy and authentication), and tracing the requirements to
the code level to make sure that the implementation is still
secure.

∗This work was partly supported by the Royal Society Industrial
Fellowship on Automated Verification of Security-Critical Software

(VeriSec) and the EU FP7 Integrated Project Security Engineering for

Lifelong Evolvable Systems. A preliminary version of this paper was
presented at the BCS08 Visions of Computer Science Conference, held on
September 22-24, 2008.

This article presents a tool-supported approach that
supports such a software security assurance, which can be
used in the context of an approach for Model-based Security
Engineering (MBSE) that has been developed in recent years
(see e.g., [42, 43] for details and Figure 1 for a visual
overview). In this approach, recurring security requirements
(such as secrecy, integrity, authentication and others) and
security assumptions on the system environment, can be
specified either within a UML specification (using the UML
extension UMLsec [42]), or within the source code (Java
or C) as annotations. One can then formally analyse the
UMLsec models against the security requirements using the
UMLsec tool suite which makes use of model checkers and
automated theorem provers for first-order logic (see Figure 2
and [47, 66]). The approach has been used successfully in a
number of industrial applications (e.g., at BMW [13] and O2
(Germany) [44]).

However, it is not enough that the specification is secure:
we must also ensure that the implemented system is secure

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

2 BAUER, JÜRJENS, YU

as well. There are at least two ways to approach this
problem: static code verification, or a technique called
run-time verification [22, 10, 53] (see Section 3.1 for
an introduction). In this paper, we focus on using
(online) run-time verification for our purposes. It has
an important advantage over static verification: In static
verification, one can only verify the implementation on
the basis of predefined assumptions. For example, these
include assumptions on the behavioural semantics of the
programming language, the compiler that will compile the
source code to byte code, and/or byte code to machine code,
the execution environment (operating system, hardware,
physical environment), etc. When trying to apply static
verification to complex implementations, one usually needs
to make additional simplifying abstractions in order to make
an automated formal verification of such implementations
feasible in the first place, and one thus needs to make the
additional assumption that these abstractions do not limit
the scope of the verification. The verification procedure
is then only known to be sound where these assumptions
are fulfilled, and it is usually not feasible to verify
formally whether they are fulfilled for a given execution
environment. The advantage of run-time verification is
now that the targeted execution environment itself is part
of the verification environment (since verification is done
at run-time anyway), so by construction the verification
will be sound for the execution environment at hand. For
this reason, run-time verification also does not suffer from
the same scalability issues that static verification does as
systems or system models become more complex: run-
time verification always considers one concrete behaviour
produced by the running system rather than the overall state-
space of all the possible states it can be in.

Since run-time verification is a formal yet also dynamic
technique (i.e., it operates on the running system as
compared to a system model) there exist, besides similarities
to other formal verification techniques such as model
checking, some similarities to testing; however, the
context and goals are different: Testing for complex
implementations can usually not be applied exhaustively.
In contrast to that, run-time verification ensures, by
construction, that every system trace that will ever be
executed will be verified—while it is executed. In the
case of the cryptographic protocols that we consider, it is
indeed sufficient to notice attempted security violations at
run-time to still be able to maintain the security of the
system: The monitor is constructed in such a way that, if
it detects a violation, the current execution of the security
protocol will be terminated before any secret information
is leaked out on the network. Therefore, despite the
similarities between testing and run-time verification, run-
time verification can provide a level of assurance that goes
beyond what testing can usually achieve when applied to
highly complex security-critical software.

In practice, however, systems do not remain the same
after they are deployed. On the contrary, many systems
evolve over their life-time, and usually their life-time
is significantly longer than expected when they were

FIGURE 1. Model-based Security Engineering

implemented (this became very apparent with the year 2000
bug). Manually re-establishing the verified traceability link
for a new version of an implementation would be time-
intensive. It would therefore be preferable if we enable our
security assurance approach to cope automatically with the
fact that systems will evolve at run-time, and still provide
valid run-time security assurance. This is non-trivial to
achieve: As the implementation or the used libraries evolve,
the instrumentation may no longer guarantee the correct link
to the protocol design. It is therefore important to have a
way to perform refactoring steps in a traceable way.

In addition, we explain how to achieve security hardening
through systematic instrumentations. As security vulnera-
bilities are often scattered throughout the implementation,
we choose aspect-oriented programming (AOP) for security
hardening.

One goal of our work is thus to maintain traceability
between the design and the implementation of a crypto-
based software through dedicated software refactoring
approach which supports system evolution.

Note that an alternative approach could aim to generate
complete implementations out of cryptographic protocol
specifications, rather than establishing a link between the
specification and an existing implementation, and hardening
that implementation if necessary. If that would be
possible, that would automatically also update the link
between the specification and the implementation whenever
the specification is changed, by just generating a new
implementation. However, this is not our goal here.
Rather, we would like the approach we develop here to
be applicable to existing legacy implementations, rather
than generating new implementations. The reason for
this is that, in practice, there is often a strong desire to
use a particular existing implementation. For example,
that implementation might be conformant with certain
standards or certifications, or satisfy stringent performance
requirements (which an implementation automatically
generated from a specification would usually not be able
to satisfy). Since legacy implementations are usually too
complex to verify statically, this again motivates the use of
run-time verification and our approach.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 3

One should note that our approach, at this point, focusses
on a certain class of attacks which can be detected when
observing the running implementation at a certain degree of
abstraction, namely those attacks that rely on an interaction
of the attacker with the protocol participants where the
passive or active (man-in-the-middle) attacker can read,
memorise, insert, change, and delete message parts into
the communication between the protocol participants. In
each case, we assume the actual cryptographic algorithms
and their implementations (such as encryption and digital
signature) to be secure, and we aim to detect insecurities
in the way they are used in the context of a cryptographic
protocol. We do not aim to detect attacks that rely on
breaking these assumptions, such as statistical attacks or
type confusion attacks.

1.1. A Brief Overview of the Approach

Let us briefly summarise the approach taken in this paper.
Our approach supports the following steps:

(1) security protocols are specified and verified using the
security extension UMLsec of UML,

(2) an implementation is linked to this UML model,

(3) temporal logic formulae are derived from the UML
model,

(4) a security monitor is generated automatically from the
temporal logic formulae created in step (3) in order to
verify the implementation at run-time,

(5) the relation between the UML model and the code is
maintained as the implementation evolves over time,

(6) errors in the implementation can be corrected using
AOP, and

(7) the security monitor is updated with respect to the
changes arising from step (6).

There are practical considerations why such a process is
not fully automated, but rather has to be semi-automated;
that is, some manual work is required and may be desired
to have full control over the system as it evolves over time.
However, steps (4) to (7) can be fully automated and are
thus repeatable, given that the specifications from (1) to (3)
are established manually. The time and effort spent on steps
(1) to (3) can be considered as an overhead to the normal
software development process, while steps (4) to (7) save
the effort to accommodate changes in the evolving system.
Moreover, it helps us in maintaining traceability links as this
happens.

Note that our approach is interesting to apply not only
to legacy systems (where there is often no alternative
to manually re-engineering a specification, and static
verification of the software is often not an option because
of its complexity). It is also useful to apply our approach
in a situation where model-based development techniques
are used to develop a system: Experiences from practice

indicate that, in such a context, changes are often done
on the code level after the development of the model has
been finished, which often means that the code becomes
inconsistent with the model, which makes it necessary to
monitor the code at run-time.

Our approach thus supports verified traceability that is
robust under evolution at various stages of the system life-
cycle:

• Verified traceability from security requirements to
design: one includes security requirements as annota-
tions into UML models and automatically verifies the
models against these requirements (see Section 2).

• Verified traceability of security requirements from
design to execution time: using run-time verification
(see Section 3).

• Verified traceability of security requirements from
one version of the implementation to another through
system evolution (see Section 4).

• Traceable security hardening for code-level security
vulnerabilities (see Section 5).

1.2. Advance over Prior State of the Art

In this section, we explain in which respect the work
presented in this paper constitutes an advance over the prior
state of the art in this field.

New methodology: We have developed a new integrated
methodology for run-time security run-time verification of
cryptographic protocol implementations that can handle
system evolution.

Prior to our work there existed, to the extent of our
knowledge no approach to security run-time verification of
cryptographic protocols, and even less an approach that
would be able to handle evolution. There exist other
approach for run-time verification of security properties but
to the extent of our knowledge they have not been applied
to implementations of cryptographic protocols, which pose
particular challenges for run-time verification that have thus
not been addressed by other approaches.

In particular, we developed a new approach for model-
based security assurance that covers properties from the
design level all the way down to the implementations.

Advance over prior work: Some but not all parts of the
methodology build on prior work, although that prior work
needed to be further developed significantly in order to be
applicable to run-time security monitoring of cryptographic
protocol implementations that can handle system evolution,
since neither of the prior work was able to deal with this task
on the whole.

With regards to run-time verification, because of the
particular challenges involved with run-time verification
of cryptographic protocols (as opposed to other security-
critical software), we have to develop a specialised approach
based on the 3-valued run-time verification approach
presented in [11]. Our discussion of which properties
are monitorable by this particular run-time verification

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

4 BAUER, JÜRJENS, YU

approach will demonstrate that this technique has significant
advantages when applied to run-time verification of
cryptographic protocol implementation. The approach has
been implemented in terms of [68] by the first author of this
paper. The implementation, which we also use in this paper,
is available as open source software via a SourceForge web
site.

Although refactoring and aspect-oriented programming
are two well-known subjects and are well-supported by the
integrated development environments, we are to the best
of our knowledge the first to use refactoring to create and
maintain traceability for secure software development that
enables the use of AOP techniques to fix a security bug due
to traceability mistakes.

The contribution of this work is then to show how these
techniques can be combined in an efficient manner, and how
they can be used in the context of developing security critical
systems.

In this paper, we focus specifically on cryptographic
protocols, since these are a compact yet highly security-
critical and non-trivial to design part of a secure system, and
thus serve as a particularly good example to demonstrate our
approach.

Significant practical applications We have applied this
new methodology in a significant new application to the
SSL protocol implementations JESSIE and JSSE, which are
industrial strength implementation with a large user base (in
particular in the case of JSSE which is part of the standard
Java security architecture).

More precisely, we demonstrate the approach by an
application to the Java-based implementation JESSIE of
the Internet security protocol SSL. We also explain how
the traceability link can be transformed to the official
implementation of the Java Secure Sockets Extension (JSSE)
that was recently made open source by Sun.

Again, run-time verification of widely used crypto-
protocol implementations such as JESSIE and JSSE have
to the extent of our knowledge not been attempted
so far, and they pose particular challenges since these
implementations are significantly complex. In particular,
this application allowed us to detect a previously unknown
security vulnerability in one of the implementations, which
was then hardened using our approach.

Comparison to previous work The work presented in this
paper is new: although there has been a lot of work on
formally verifying abstract specifications of cryptographic
protocols, the only prior work on run-time verification
for cryptographic protocols is (to our knowledge) the
precursory conference paper [48], which however did not
include support for automated security hardening, and for
maintaining the verification results when the system evolves.

From a broader point of view, the goal of this work is to
allow the use of formally based verification techniques (such
as automated theorem provers and run-time verification) in
practice by encapsulating them in an industrially accepted
development approach (based on UML models) and apply

FIGURE 2. MBSE tool framework

them to an industrially used programming language (Java).
We hope to thus contribute to dealing with the challenges
faced when trying to use formal methods in a practical
environment (cf. [35, 18, 65] for relevant discussions).

The approach presented here has to be seen in the context
of other approaches to model-based security based on UML
developed over the last few years (see [42] for a more
complete overview). There are also many other relevant
approaches to model-based assurance of security-critical
systems which are not based on UML, such as [58, 71].
The work presented here differs from that in that it is based
on a modelling notation routinely used in industry today to
facilitate uptake in practice, and that it includes a link to
implementation level security assurance. Also related are
several approaches to formally verifying implementations of
cryptographic protocols developed recently, such as [46, 31,
15]. The current work is different in that it does not verify
the implementation directly against security properties, but
verifies specification models against security properties, and
then verifies the implementation against the models with a
focus on the security properties, using techniques including
run-time security verification. The motivation for this
two-step verification process is to facilitate application to
complex legacy software.

See Section 6 for a more detailed comparison to previous
research.

1.3. Outline of the Rest of the Paper

The rest of this paper proceeds as follows. In Section 2,
we give an overview of model-based security engineering
as a means of analysing models of security-critical systems
in the UMLsec specification notation at design-time using
first-order logic (FOL) theorem proving. We also explain
how this technique was applied to the SSL protocol. Then,
in Section 3, we discuss run-time verification as a dynamic
verification technique in more detail, how to obtain run-time

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 5

security properties of a system, and apply this approach to
our case study, a Java implementation of the SSL protocol,
JESSIE. As such we discuss the link between model and
code of a system. In Section 4, we give a detailed account
on how to maintain the links between models and code,
in the face of system evolution, e.g., occurring program
changes due to fixing bugs, or extending the functionality
of a program. That is, we establish mappings between
elements of our system models and code, and use automated
refactoring techniques for changing an implementation.
Finally, in Section 5, we outline an AOP-based approach that
allows us to react upon security weaknesses detected in an
implementation by security hardening.

Related work is discussed Section 6 and we draw
conclusions from our work in Section 7.

2. MODEL-BASED SECURITY ANALYSIS

In this section, we give an overview of the part of
our approach that applies to the specification level of a
cryptographic protocol. We start by giving a general
overview of the approach we use there (called model-based
security engineering), then explain the relevant part of that
approach in technical detail, and finally apply it to our
running example, the SSL protocol.

2.1. Model-based Security Engineering

Model-based Security Engineering [42, 43, 17] provides
a soundly based approach for developing security-critical
software where recurring security requirements (such
as secrecy, integrity, authentication and others) and
security assumptions on the system environment can
be specified either within a UML specification, or
within the source code as annotations (cf. Figure 1).
Various analysis plug-ins in the associated UMLsec tool
framework [45, 66] (Figure 2) generate logical formulae
formalising the execution semantics and the annotated
security requirements. Automated theorem provers and
model checkers are used to try to automatically establish
whether the security requirements hold. (Note that
security requirements in general are undecidable, so there
may be worst-case examples which cannot be decided
automatically, although in our experience most practical
applications are unproblematic.) If not, a Prolog-based tool
automatically generates an attack sequence violating the
security requirement which can be examined to determine
and remove the weakness. Thus we encapsulate knowledge
on prudent security engineering and make it available to
developers who may not be security experts. Since the
analysis that is performed is too sophisticated to be done
manually, it is also valuable to security experts.

Note that some of the activities contained in Figure 1 are
done manually or supported with pre-existing tools outside
the UMLsec tool suite, and therefore the relevant workflows
do not appear in Figure 2. For example, to generate Java
code from UML models (or vice versa) one can use the
commercial tool suite Borland Together [67].

Part of the Model-based Security Engineering (MBSE)
approach is the UML extension UMLsec for secure
systems development which allows the evaluation of UML
specifications for vulnerabilities using a formal semantics of
a simplified fragment of the UML [40, 41, 42]. The UMLsec
extension is given in form of a UML profile using the
standard UML extension mechanisms. Stereotypes are used
together with tags to formulate the security requirements
and assumptions. Constraints give criteria that determine
whether the requirements are met by the system design,
by referring to a precise semantics of the used fragment
of UML. The security-relevant information added using
stereotypes includes security-relevant information covering
the following aspects:

• Security assumptions on the physical system level, for
example the stereotype �� encrypted ��, when applied to
a link in a UML deployment diagram, states that this
connection has to be encrypted.

• Security requirements on the logical level, for example
related to the secure handling and communication of
data, such as �� secrecy �� or �� integrity ��.

• Security policies that system parts are required to obey,
such as �� fair exchange �� or �� data security ��.

In each case, the assumptions, requirements, and policies
are defined formally and precisely in [42] on the basis of
a formal semantics for the used fragment of UML. We do
not repeat these definitions here, since in this paper we will
look at one specific security analysis scenario, where the
assumptions and requirements are defined precisely at the
level of the used formalisation in first-order logic.

The UMLsec tool-support (illustrated in Figure 2) can
then be used to check the constraints associated with
UMLsec stereotypes mechanically, based on XMI output
of the diagrams from the UML drawing tool in use
[66, 43]. There is also a framework for implementing
verification routines for the constraints associated with the
UMLsec stereotypes. Thus advanced users of the UMLsec
approach can use this framework to implement verification
routines for the constraints of self-defined stereotypes. The
semantics for the fragment of UML used for UMLsec is
defined in [42] using so-called UML Machines, which is
a kind of state machine with input/output interfaces and
UML-type communication mechanisms. On this basis,
important security requirements such as secrecy, integrity,
authentication, and secure information flow are defined.
To support stepwise development, one can show secrecy,
integrity, authentication, and secure information flow to
be preserved under refinement and the composition of
system components. The approach also supports the secure
development of layered security services (such as layered
security protocols). See [42] for more information on the
above.

2.2. Analysing Cryptographic Protocols

In the current paper, we concentrate on applying model-
based security engineering to the special case of crypto-
graphic protocols which are a particularly interesting target

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

6 BAUER, JÜRJENS, YU

encE �(E) (encryption)
decE �(E) (decryption)
hash(E) (hashing)
signE �(E) (signing)
verE �(E,E ��) (verification of signature)
kgen(E) (key generation)
inv(E) (inverse key)
conc(E,E’) (concatenation)
head(E) and tail(E) (head and tail of concat.)

FIGURE 3. Abstract Cryptographic Operations

since they are compact pieces of highly security-critical soft-
ware which are nevertheless highly non-trivial to design and
implement correctly.

Using UML sequence diagrams, each message in a
cryptographic protocol is specified by giving the sender,
the receiver, the message, and possibly a precondition (in
equational first-order logic (FOL)) which has to be fulfilled
so that the message is sent out.

As usual in the formal analysis of cryptographic software,
the cryptographic algorithms (such as encryption and
decryption) are viewed as abstract functions. Our aim in this
paper is not to verify the implementation of these algorithms,
but we work on the basis of the assumption that these are
correct, and aim to verify whether they are used correctly
within the cryptographic protocol implementation.

We assume a set Keys of encryption keys disjointly
partitioned in sets of symmetric and asymmetric keys.
We fix a set Var of variables and a set Data of data
values (which may include nonces and other secrets). The
algebra of expressions Exp is the term algebra generated
from the set Var ∪ Keys ∪ Data with the operations
given in Figure 3. There, the symbols E, E �, and E ��

denote terms inductively constructed in this way. Note
that encryption encE �(E) is often written more shortly as
{E}E � , and that we sometimes use a specific notation
symencE �(E) for symmetric encryption (although these
alternative notations are both “syntactic sugar” without
impact on the formalisation). In this term algebra, we
impose the following equations, formalising the fact that
decrypting with the correct key gives back the initial
plain-text, and similarly for verification of signatures:
decK−1(encK(E)) = E (for all E ∈ Exp and K ∈ Keys) and
verE �(E,E ��) = true (for all E ∈ Exp and K ∈ Keys). We
also assume the usual laws regarding concatenation, head(),
and tail(), and that K = K−1 for any symmetric encryption
key K.

A cryptographic protocol can then be verified for
the relevant security requirement such as secrecy and
authentication using the UMLsec tools presented above,
which rely on a translation from the UMLsec sequence
diagram to a security-sensitive interpretation in FOL-based
on the Dolev-Yao attacker model as explained in [43], which

is then verified using automated theorem provers for FOL.
The idea is here that an adversary can read messages sent
over the network and collect them in his knowledge set. The
adversary can merge and extract messages in the knowledge
set and can delete or insert messages on the communication
links. The security requirements can then be formalised
using this adversary model. For example, a data value
remains secret from the adversary if it never appears in the
knowledge set of the adversary.

We now explain how to analyse the UMLsec specification
by making use of our translation from cryptographic
protocols specified as UML sequence diagrams to FOL
formulae which can be processed by the automated theorem
prover e-SETHEO [63]. The formalisation automatically
derives an upper bound for the set of knowledge the
adversary can gain. The usage of the FOL generation
explained in the following is complementary to the model-
level security analysis mentioned above: Although using
the approach described earlier one can make sure that
the specification is secure, this does not imply that the
implementation is secure as well, since we cannot make
any assumptions on how it was constructed (as we would
like to deal in particular with legacy implementations such
as OpenSSL). The FOL-based approach described in the
following therefore has the goal to verify the UML sequence
diagram against the given security requirements such as
secrecy.

The idea is to use a predicate knows(E) meaning that the
adversary may get to know E during the execution of the
protocol. For any data value s supposed to remain secret as
specified in the UMLsec model, the FOL formalisation will
thus compute all scenarios which would lead the attacker to
derive knows(s).

The FOL rules generated for a given UMLsec
specification are defined as follows. For each
publicly known expression E, one defines
knows(E) to hold. The fact that the adversary may
enlarge his set of knowledge by constructing new expres-
sions from the ones he knows (including the use of
encryption and decryption) is captured by the formula in
Figure 4.

For our purposes, a sequence diagram is essentially a
sequence of command schemata of the form await event
e – check condition g – output event e’ represented as
connections in the sequence diagrams (where e is a variable
of the type Exp defined above and e� is a term which
evaluates to a value of type Exp). Connections are the
arrows from the life line of a source object to the life line
of a target object which are labelled with a message to be
sent from the source to the target and a guard condition that
has to be fulfilled.

Suppose we are given a connection l =
(source(l),guard(l),msg(l), target(l)) in a sequence
diagram with guard(l) ≡ cond(arg1, . . . ,argn), and
msg(l) ≡ exp(arg1, . . . ,argn), where the parameters argi
of the guard and the message are variables which store the
data values exchanged during the course of the protocol.
Suppose that the connection l� is the next connection in the

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 7

∀E1,E2.
�
knows(E1)∧knows(E2)⇒ knows(E1 :: E2)∧knows({E1}E2)∧ knows(signE2(E1))

�

∧
�
knows(E1 :: E2)⇒ knows(E1)∧knows(E2)

�
∧

�
knows({E1}E2)∧knows(E−1

2)⇒ knows(E1)
�

∧
�
knows(sign

E
−1
2

(E1))∧knows(E2)⇒ knows(E1)
�

FIGURE 4. FOL rules for attacker knowledge generation

PRED(l) = ∀exp1, . . . ,expn.
�
knows(exp1)∧ . . .∧knows(expn)∧ cond(exp1, . . . ,expn)
⇒ knows(exp(exp1, . . . ,expn)∧ PRED(l�))

�

FIGURE 5. FOL rule for attacker interaction

sequence diagram with source(l�) = source(l). For each
such connection l, we define a predicate PRED(l) as in
Figure 5. If such a connection l

� does not exist, PRED(l) is
defined by substituting PRED(l�) with true in Figure 5.

The formula formalises the fact that, if the adversary
knows expressions exp1, . . . ,expn validating the condition
cond(exp1, . . . ,expn), then he can send them to one of the
protocol participants to receive the message exp(exp1, . . . ,
expn) in exchange, and then the protocol continues. This
way, the adversary knowledge set is approximated from
above (e.g. one abstracts away from the message sender and
receiver identities and the message order). In particular,
one will find all possible Dolev-Yao type attacks on the
protocol, but execution traces may also be generated that are
not actually executable for a valid implementation. This has
however not been a problem in practical applications of the
approach.

For each object O in the sequence diagram, this gives
a predicate PRED(O) = PRED(l) where l is the first
connection in the sequence diagram with source(l) =
O. The axioms in the overall FOL formula for a given
sequence diagram are then the conjunction of the formulae
representing the publicly known expressions, the formula in
Figure 4, and the conjunction of the formulae PRED(O) for
each object O in the diagram. The conjecture, for which the
automated theorem prover will check whether it is derivable
from the axioms, depends on the security requirements
contained in the class diagram. For the requirement that the
data value s is to be kept secret, the conjecture is knows(s).
An example is given in the next section.

2.3. Application to SSL

We have applied the approach to the core part of
the SSL 3.0 handshake protocol given in Figure 6
together with the open source Java implementation JESSIE
(http://www.nongnu.org/jessie) of the Java Secure Socket
Extension as will be presented as a running example
throughout this paper. SSL is the de-facto standard for secur-
ing http-connections and is therefore an interesting target for
a security analysis. It may be interesting to note that early

versions of SSL (before becoming a “standard” renamed as
TLS in RFC 2246) had been the source of several significant
security vulnerabilities in the past [1]. In order to simplify
the exposition, we concentrate on the fragment of SSL that
uses RSA as the cryptographic algorithm and provides server
authentication (there is no specific reason why we chose this
particular fragment, and we concentrate on a fragment just
to simplify the explanations). The protocol participants (here
the instances C of class Client and S of class Server) are rep-
resented by vertical boxes, and the messages between them
are represented by arrows. A logical expression next to an
outgoing arrow is the guarding constraint that needs to be
checked by the relevant protocol participant before the mes-
sage is sent out. The assignments specified below the model
in Figure 6 describe how the data that is received should be
used by the receiving instance. Here the expression argi,n,p

corresponds to the pth element of the nth message sent by the
object instance i. For example, RS‘:=argS,1,1 means that the
random number RS, which was sent by the server in the mes-
sage ServerHello, is stored in the variable RS‘ at the Client,
after receiving the message. In the guards, the local designa-
tions are used. The guard [ver(certS)] means that the certifi-
cate X509Cert s previously received from the server must
be verified. The guards [md5S’ = md5 ∧ shaS’ = sha] and
[md5C ’ = md5 ∧ shaC ’ = sha] express the condition that the
hash values of the instance which receives a Finished mes-
sage have to agree with the hash values of the other instance.
K is the symmetric session key which is created separately at
each of the protocol partners, making use of the pre-master
secret PMS. The values md5 and sha used as message
arguments are created by the sender of the respective mes-
sage by using the MD5 respectively SHA hash algorithm
over the message elements received so far. Exchange-

Data represents the communication of data over the estab-
lished channel once the handshake protocol is finished and
also has an associated guard. For simplification, we spec-
ify the encryption of a compound message as the concatena-
tion of the encryptions of the separate message elements (for
example Finished(symencK(md5), symencK(sha)) rather
than Finished(symencK(md5::sha))); we assume that type

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

8 BAUER, JÜRJENS, YU

FIGURE 6. Handshake protocol of SSL3 using RSA and Server Authentication

or message confusion attacks are ruled out using the usual
protocol design rules not under investigation here.

We used the UMLsec tools to verify the UMLsec model
of the SSL protocol (cf. Figure 6) against relevant security
requirements such as secrecy. Verifying secrecy of a value s
can be done by checking whether the statement knows(s)
is derivable from the FOL formulae generated from the
protocol specification. In each case, the properties were
proved within less than a minute, e.g., the verification of
the secrecy of the master secret communicated in the SSL
protocol took 2 seconds.

3. LINKING MODELS TO CODE

We now explain how to link the formally verified
specification to a crypto-based implementation which may
not be trustworthy (for example, it might have been
implemented insecurely from a secure specification, either
maliciously or accidentally), in a way that enforces the
security of the running system. That is, we use (online)
run-time verification (cf. [22, 10, 53]; see also Section 3.1
for a detailed overview of this technique) to check whether
or not the implementation conforms to our formal security

properties while it executes. We currently focus on Java as
the implementation language.

3.1. Run-time Verification using LTL

In a nutshell, run-time verification is a formal but dynamic
technique to establish whether or not an executing system
adheres to a predefined property (or a set thereof), by
monitoring whether the system satisfies the property while
it is used. Properties are typically specified in a temporal
logic, such as LTL [57], and the object under scrutiny is
the actual system and not its representation in terms of an
abstract model or code as is the case with a static technique.

As such, run-time verification bears not only strong
resemblance to testing since both techniques are dynamic, as
already pointed out in the introduction, but also to rigorous
formal verification methods such as (LTL-) model checking
(cf. [20]), for instance. The idea of (LTL-) model checking
is roughly as follows. A model of the system under scrutiny
is checked against a formal correctness property, usually
specified in terms of a temporal logic such as LTL, by
verifying that all possible executions specified by the model
adhere to the specified behaviour by the property. However,

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 9

depending on the temporal logic used, the complexities
of model checking range from polynomial in the size of
the system model and property to PSpace-complete in the
formula as is the case for LTL, which we are concerned with
in this paper. While model checking has been successfully
employed, e.g., for checking models of protocols (cf. [36]),
using it to verify software in terms of low-level source
code abstractions is still an active research subject due
to the large state-spaces that result from using low-level
models extracted from source code as compared to high-
level behavioural models such as sequence diagrams or state
machines (cf. [7, 30]). The advantage of model checking,
however, is that once correctness has been established, we
can be sure that the specified behaviour does, indeed, adhere
to the intended behaviour—all possible executions have been
checked. If model checking a system fails, then usually the
model checker returns a counterexample in terms of a system
execution that leads to the violation of the temporal logic
property. In such a case, the system can be repaired with
respect to the counterexample and perhaps model checked
again.

Run-time verification (cf. [22, 10]) is similar to the
above in the sense that it also employs, usually, a formal
correctness property, specified in temporal logic to capture
either intended behaviour (i.e., when one is interested
to detect occurrence of a certain “good” behaviour), or
unwanted behaviour (i.e., when one is interested in detecting
when something “bad” has happened). However, model
checking is a static verification technique as it operates
on the model-level, whereas run-time verification operates
directly on the system implementation. Moreover from a
formal point of view, let L(M) be the language generated
by some system model and L(ϕ) be the language of some
formal property, ϕ. Then, model checking translates to
checking whether or not the formal language generated by
the system is contained in the formal language generated by
the property, i.e., whether L(M) ⊆ L(ϕ) holds. Run-time
verification, on the other hand, asks for the answer of a word
problem: Let u be the prefix of some potentially infinite word
w, which resembles the system’s behaviour, then we want to
know whether or not w ∈ L(ϕ) after reading u. Or, in other
words, we want to know, after seeing the finite sequence of
behaviour u, whether or not for all possible extensions of
u, our property will be satisfied, violated, or neither. Note
that the last case simply means we have to wait for more
behavioural observations until we can give a conclusive
answer to this question. (For a more formal account on this
form of run-time verification, see Sections 3.1.2 and 3.1.4.).

From a methodological point of view, in run-time
verification, a so-called monitor, whose task it is to
observe the system behaviour as it executes, is automatically
generated from a security property (or a set thereof)
formalised as an LTL formula, also referred to as an LTL
property. This process is somewhat similar to constructing
finite automata from regular expressions [3], which are also
a formal means to define sequences of actions, i.e., system
behaviour. If a monitor detects a violation of the security
property it raises an alarm, if it detects that a security

property was fulfilled it signals accordance, and otherwise
keeps monitoring the executing system. Unlike regular
expressions, temporal logic and, in particular, LTL-based
temporal logic, has established itself in the area of formal
verification and is nowadays frequently used also in industry
to define the behaviour of systems (cf. [28]).

3.1.1. Definitions and Notation
In what follows, we briefly recall some formal definitions
regarding LTL and introduce the necessary notation. First,
let AP be a non-empty set of atomic propositions, and
Σ := 2AP be an alphabet. Then infinite words over Σ are
elements from Σω and are abbreviated usually as w,w�,
Finite words over Σ are elements from Σ∗ and are usually
abbreviated as u,u�, The notion of infinite words makes
sense when we consider the system under scrutiny being a
reactive system, where the assumption is that the system
is never switched off, and the words as a means to model
the observable behaviour of that system. In run-time
verification, however, we always observe only the prefix of
a potentially infinite behaviour, hence we need a reasonable
interpretation for LTL formulae over finite words as well.
More specifically, our monitors adhere to the semantics
introduced in [11] and realised by the open source monitor
generator in [68]. It is explained also in Section 3.1.4.

We will adopt the following terminology with respect to
monitoring LTL formulae. We will use the propositions in
AP to represent atomic system actions, which is what will be
directly observed by the monitors introduced further below.
As an example, an action may correspond to a specific
function call, or a specific message that is sent or received
by a participant in a protocol. This depends somewhat on
the property being monitored, and the application at hand.
A more comprehensive example is discussed in Section 3.3.
Note also that, by making use of dedicated actions that
notify the monitor of changes in the system state, one can
also indirectly use them to monitor whether properties of
the system state hold. Thus, we can use the terms “action
occurring” and “proposition holding” synonymously. We
will refer to a set of actions as an event, denoting the fact
that certain actions may have occurred simultaneously, or
that a certain state holds, described by a set of actions.

3.1.2. LTL Syntax and Semantics
The set of LTL formulae over Σ, written LTL(Σ), is
inductively defined by the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ∨ϕ | ϕUϕ | Xϕ, p ∈ AP.

The semantics of LTL formulae is defined inductively over
its syntax as follows. Let ϕ,ϕ1,ϕ2 ∈ LTL(Σ) be LTL
formulae, p ∈ AP an atomic proposition, w ∈ Σω an infinite
word, and i ∈ N a position in w. Let w(i) denote the ith
element in w (which is a set of propositions).

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

10 BAUER, JÜRJENS, YU

The (infinite word) semantics of LTL formulae is then
defined inductively by the following logical statements.

w, i |= true
w, i |= ¬ϕ ⇔ w, i �|= ϕ
w, i |= p ⇔ p ∈ w(i)
w, i |= ϕ1∨ϕ2 ⇔ w, i |= ϕ1∨w, i |= ϕ2
w, i |= ϕ1Uϕ2 ⇔ ∃k ≥ i. w,k |= ϕ2∧

∀i≤ l < k. w, l |= ϕ1
(“ϕ1 until ϕ2”)

w, i |= Xϕ ⇔ w, i+1 |= ϕ (“next ϕ”)

where w, i denotes the ith position of w. We also write w |= ϕ,
if and only if w,0 |= ϕ, and use w(i) to denote the ith element
in w which is a set of propositions, i.e., an event. (Notice the
difference between w, i and w(i).)

Intuitively, the statement w, i |= ϕ is supposed to formalise
the situation that the event sequence w satisfies the formula
ϕ at the point when the first i events in the event sequence w
have happened. In particular, defining w, i |= true for all w
and i means that true holds at any point of any sequence of
events.

Further, as is common, we use Fϕ as short notation
for trueUϕ (intuitively interpreted as “eventually ϕ”), Gϕ
short for ¬F¬ϕ (“always ϕ”), and ϕ1Wϕ2 short for Gϕ1 ∨
(ϕ1Uϕ2), which is thus a weaker version of the U-operator.
For brevity, whenever Σ is clear from the context or
whenever a concrete alphabet is of no importance, we will
use LTL instead of LTL(Σ).

3.1.3. Examples
We give some examples of LTL specifications. Let p ∈ AP
be an action (formally represented as a proposition). Then
GFp asserts that at each point of the execution of any of the
event sequences produced by the system, p will afterwards
eventually occur. In particular, it will occur infinitely often
in any infinite system run.

For another example, let ϕ1,ϕ2 ∈ LTL be formulae. Then
the formula ϕ1Uϕ2 states that ϕ1 holds until ϕ2 holds and,
moreover, that ϕ2 will eventually hold. On the other hand,
Gp asserts that the proposition p always holds on a given
trace (or, depending on the interpretation of this formula,
that the corresponding action occurs at each system update).

3.1.4. Finite-Word Monitor Semantics
To see how our monitors cope with the situation that at
run-time only prefixes of potentially infinite words are
observable, we also outline the semantics employed by
the monitors, which is slightly different from the above
LTL semantics, but based on it. Notably, it is a 3-valued
semantics and defined as follows. Let ϕ ∈ LTL, and u ∈ Σ∗.
Then, a monitor for ϕ returns the following values for a
processed u, written [u |= ϕ]:

[u |= ϕ] :=






�, if for all v ∈ Σω we have uv |= ϕ
⊥, if for all v ∈ Σω we have uv �|= ϕ
?, otherwise.

The [·] is used to separate the 3-valued monitor semantics
for ϕ from the classical, 2-valued LTL semantics introduced
above.

In other words, this definition says that a monitor which
was generated for a formula ϕ will, upon reading some prefix
u, return� if for all possible extensions of u the infinite word
semantics is fulfilled (i.e., uv |= ϕ), and ⊥ if for all possible
extensions of u the infinite word semantics is violated (i.e.,
uv �|= ϕ). Moreover, if there exists an extension v� to u such
that uv� ∈ ϕ, and there exists another extension v�� such that
uv�� �∈ ϕ, then the monitor returns ? and keeps monitoring
until u is long enough to allow for a conclusive answer (i.e.,
� or ⊥).

Such conclusive prefixes are also referred to as good
(respectively bad) prefixes (cf. [10]) with respect to the
monitored language that is given by ϕ. From that point of
view, we can say that a monitor detects good (respectively
bad) prefixes for the monitored property. Note, however, that
not all properties that can be formalised in LTL necessarily
have such a good or a bad prefix. Therefore, monitoring
is often restricted to so called safety properties, where
violations can be detected via bad prefixes (cf. [59]). In
contrast, our monitoring procedure is not restricted to safety
properties alone, but also to properties that lie outside
this language-theoretic categorisation. For a more detailed
comparison between the approach discussed in [59] and our
monitoring framework, see [10].

3.2. Linking Cryptographic Protocol Models to Code

In this section, we explain how to approach the problem of
creating a link between the cryptographic protocol model
and its implementation.

Note that our aim is not to provide a fine-grained formal
refinement from the specification to the code level. Such
a refinement would require a formal behavioural semantics
both of the model and the implementation of the protocol.
Although such semantics exist in principle for our modelling
notation (UMLsec) as well as the implementation language
(Java), their treatment requires several chapters (in [42])
respectively even an entire book on its own (such as [62]).
Such a treatment would exceed the goals of the current work.

Fortunately enough, for our purposes it is not necessary
to construct a fine-grained refinement relation, but it is
sufficient to create a link between the points in the
specification and the code where a message is received,
where the required cryptographic check is performed, and
where the next message is sent out (as explained below).
Since our goal is to use run-time verification, rather than
static verification of the code, we only need to consider these
points in the code, and therefore do not depend on a full
formal semantics for all of Java: instead of referring to a
static semantics of Java, we will refer to a given, concrete
execution trace at run-time, and with respect to that, we only
need to consider the messages that are received and sent
out, and make sure that the necessary checks are performed
in between. Indeed, this is one of the advantages in using
run-time verification compared with static verification. We

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 11

only need to know which library functions need to be called
to receive or send messages from or to the network, and
be able to determine whether the required cryptographic
checks have been performed in between. The link between
the relevant points in the model and the implementation is
defined formally, although, as argued above, it is sufficient
to do this on a syntactic (rather than semantic) level. An
example for that is given in the next section in Table 1.

There is a distinct advantage, from a practical point of
view, to work with a relatively abstract specification model,
which is directly linked by a mapping to the implementation
level: when the implementation changes (which usually
happens quite frequently during the lifetime of a piece of
software like a cryptographic protocol), this minimises the
amount of changes that have to be done at the model level,
but as far as possible localises the necessary changes to the
model-code mapping itself. This is a practical advantage,
in so far as the problem of keeping a model in synch with
the changing code base is one of the major impediments
to a larger update of rigorous model-based development
approaches in practice.

As explained above, the cryptographic algorithms are
viewed as abstract functions. In our application here, these
abstract functions represent the implementations from the
Java Cryptography Architecture (JCA). The messages that
can be created from these algorithms are then as usual
formally defined as a term algebra generated from ground
data such as variables, keys, nonces, and other data using
symbolic operations. These symbolic operations are the
abstract versions of the cryptographic algorithms. Note that
the cryptographic functions in the JCA are implemented as
several methods, including an object creation and possibly
initialisation. Relevant for our analysis are the actual
cryptographic computations performed by the digest(),
sign(), verify(), generatePublic(), and generatePrivate()
methods which correspond to the abstract operations
hash(E), signE �(E), verE �(E,E ��), kgen(E) from Figure 3.
Encryption and decryption are implemented in the JCA
using the functions nextBytes() (encrypting or decrypting
the next bytes of a message, depending on context), and
doFinal() (finalising the encryption or decryption process).
As mentioned above, our goal is not to provide a precise
representation of the cryptographic generation process from
the code level on the model level, but only to compare the
values that were created at the points where they are received
from or sent to the network.

First, we need to determine how important elements at the
model level are implemented at the implementation level.
This can be done in the following three steps:
• Step 1: Identification of the data transmitted in the

sending and receiving procedures at the implementation
level.

• Step 2: Interpretation of the data that is transferred and
creation of a mapping to the relevant elements in the
sequence diagram.

• Step 3: Identification and analysis of the cryptographic
guards at the implementation level.

FIGURE 7. Communication in the SSL protocol

In step 1, the communication at the implementation level
is examined and it is determined how the data that is sent and
received can be identified in the source code, with the goal to
relate it to the model level. Afterwards, in step 2, a meaning
is assigned to this data. The interpreted data elements of
the individual messages are then linked to the appropriate
elements in the model. In step 3, it is described how one can
identify the guards from the model in the source code with
the goal to ensure that the guards specified in the sequence
diagram are correctly implemented in the code.

To be able to determine the data that is sent and
received, it first needs to be identified at which points in
the implementation messages are received and sent out,
and which messages these exactly are. To be able to
do this, we exploit the fact that in many implementations
of cryptographic protocols, message communication is
implemented in a standardised way (which can be used
to recognise where messages are sent and received). The
common implementation of sending and receiving messages
in cryptographic protocols is through message buffers,
by writing the data into type-free streams (ordered byte
sequences), which are sent across the communication link,
and which can be read at the receiving end. The receiver is
responsible for reading out the messages from the buffer in
the correct order in storing it into variables of the appropriate
types. We assume that each message is represented by
a message class (as done in many implementations such
as JESSIE or JSSE). It stores the data to be written
in the communication buffer. Conversely, this class can
also read messages from the communication buffer (this
communication principle is visualised in Figure 7). We
found that this mechanism is implemented at the class
level using the methods write() (for sending messages), and
read() (for receiving them). Furthermore, the occurrences
of the method write() (respectively, read()) which are
called at the class java.io.OutputStream (respectively,
java.io.InputStream) are used to identify the individual
message parts within the communication procedure in the
form of parameters that are delivered or the assignments
made.

In the next subsection, we will explain how the ideas
explained above were used in the application to the SSL
Implementation JESSIE.

3.3. Security Monitoring the SSL Implementation
JESSIE

We now explain how we applied run-time verification to the
implementation of the Internet security protocol SSL in the
project JESSIE, which is an open source implementation of

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

12 BAUER, JÜRJENS, YU

the Java Secure Sockets Extension (JSSE). JESSIE 1.0.1 has
27271 lines of uncommented code in Java (measured using
the sloccount utility).

First, we explain how we applied the approach for linking
cryptographic protocol models to code (as explained in the
previous section) to the case of JESSIE.

In our particular protocol, setting up the connec-
tion is done by two methods: doClientHandshake()
on the client side and doServerHandshake() on the
server side, which are part of the SSLsocket class in
jessie−1.0.1/org/metastatic/jessie/provider. After some
initialisations and parameter checking, both methods per-
form the interaction between client and server that is
specified in Figure 6. Each of the messages is imple-
mented by a class, whose main methods are called by the
doClientHandshake(), respectively doServerHandshake(),
methods.

As explained above, communication is implemented as
follows: With the method call msg.write(dout,version),
the message msg is written into the output buffer dout.
Each occurrence of such a method call can be identified
and associated with the specification of sending a message
in a UMLsec sequence diagram (by an outgoing arrow
from the life line of the sender). The method call
dout.flush later flushes the buffer. The assignment msg =
Handshake.read reads a message from the buffer during
the handshake part of the protocol. As an example, the
code fragment for initialising and sending the ClientHello

message is given in Figure 8.
In order to be able to construct a link between the imple-

mentation with the abstract model, we must first deter-
mine for the individual pieces of data how they are imple-
mented on the code level. For example consider the vari-
able randomBytes written by the method ClientHello to
the message buffer. By inspecting the location at which
the variable is written (the method write(randomBytes)

in the class Random), we can see how exactly the value
of randomBytes is defined. In particular, the contents
of the variable depends on the initialisation of the current
random object and thus also on the program state. Thus
we need to trace back the initialisation of the object. In
the current program state, the random object was passed
on to the ClientHello object by the constructor. This
again was delivered at the initialisation of the Handshake

object in SSLSocket.doClientHandshake() to the con-
structor of Handshake. Here (within doClientHand-

shake()), we can find the initialisation of the Random

object that was passed on. The second parameter is gen-

erateSeed() of the class SecureRandom from the pack-
age java.security. This call determines the value of ran-

domBytes in the current program state. Thus the value
randomBytes is mapped to the model element RC in
the message ClientHello on the model level. For this,
java.security.SecureRandom.generateSeed() must be
correctly implemented.

In the case of the SSL protocol, we had to link the
symbols in its UMLsec specification in Figure 6 to their
implementation in JESSIE version 1.0.1. To illustrate this,

TABLE 1. Mapping messages from symbols to program entities

Symbols Program entities
1. C clientHello
2. S serverHello
3. Pver session.protocol version
4. RC clientRandom

RS serverRandom
5. Sid sessionId
6. Ciph[] session.enabledSuites
7. Comp[] comp
8. Veri Lines 1518–1557
9. Dnb getNotBefore()

Dna getNotAfter()

Table 1 presents nine example instances of this mapping.
The first column shows the names of symbols as used in the
cryptographic protocol model. The second column shows
the names of corresponding program entities in the JESSIE
library. Here one can also see that in general there does
not need to be a one to one correspondence between the
design and the code. For example, the design symbol Veri
is implemented by a code fragment spread out over several
lines of the code.

We now explain in particular how one can use run-
time verification to increase one’s confidence that the
implementation adheres to the security properties previously
demonstrated at the model and code levels. Note that
our goal is not to provide a full formal verification of the
correctness of the implementation against the specification,
but to raise one’s confidence in its security by demonstrating
that certain particularly security-relevant parts (such as the
checking of cryptographic certificates) are securely included
into the implementation context. However, as discussed at
the beginning of the last section, run-time verification can
provide a higher level of assurance for crypto-based software
than for example model-based testing, since full test
coverage is in general not achievable for highly interactive
and complex software like cryptographic protocols.

According to the information that is contained in a
sequence diagram specification of a cryptographic protocol,
the run-time verification needs to keep track of the following
information:

(1) Which data is sent out? and
(2) Which data is received?

The run-time checks will enforce that the relevant part of
the implementation conforms to the specification in the
following sense.

(1) The code should only send out messages that are
specified to be sent out according to the specification
and in the correct order, and

(2) these messages should only be sent out if the conditions
that have to be checked first according to the
specification are met.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 13

C l i e n t H e l l o c l i e n t H e l l o = new C l i e n t H e l l o (s e s s i o n . p r o t o c o l , c l i en tRandom ,
s e s s i o n I d , s e s s i o n . e n a b l e S u i t e s , comp , e x t e n s i o n s) ;

Handshake msg = new Handshake (Handshake . TYPE . CLIENT HELLO , c l i e n t H e l l o) ;
msg . w r i t e (dout , v e r s i o n) ;

FIGURE 8. Initialising and sending the CLIENT HELLO message

FIGURE 9. Automatically generated FSM for the property

An example of such a property in the case of the SSL-
protocol specified in Figure 6 is given by the following
requirement that arises from the above discussion:

“ClientKeyExchange(encK ,(PMS)) is not sent by the
client until it has received the Certificate(X509Cers)
message from the server, has performed the validity
check for the certificate as specified in Figure 6, and this
check turned out to be positive.”

Next, we explain how to capture such a requirement using
LTL. Together with Figure 6, this requirement gives rise to
the following set of atomic propositions:

AP := {ClientKeyExchange(encK ,(PMS)),
Certificate(X509CerS)},

whose names correlate with the ones displayed in Figure 6.
Notice that LTL as introduced above does not cater for
parameters. Therefore, parameters in an action’s name are
not a semantic concept, but merely syntactic sugar to ease
readability and establish a link with the names used in
Figure 6. The link from symbol names to the actual names
used in the monitor, and finally in the implementation code
of JESSIE, is also exemplified by Table 5. Based on AP we
can now formalise the required property in LTL as follows:

ϕ := ¬ClientKeyExchange(encK ,(PMS))
WCertificate(X509CerS).

The formula uses the “weak until” operator, which in
particular allows for the fact that if the certificate is
never received, then the formula is satisfied if in turn
the message ClientKeyExchange(encK ,(PMS)) is never
sent. This meets our intuitive interpretation of the
“until” in the natural language requirement because if,

for example, a man-in-the-middle attacker deletes any
certificate message sent by the server, we cannot possibly
demand that ClientKeyExchange(encK ,(PMS)) should be
eventually sent by the client. The derived monitor will later
signal the value � (“property satisfied”) once the certificate
was received and checked, ⊥ (“property violated”) if the
client sends the key without a successful check, and it will
signal the value ? (“inconclusive”) as long as neither of the
two conditions holds. Recall that the stream of events that
is processed by the monitor consists of elements from 2AP

(i.e., the powerset of all possible system actions). That is, at
each point in time, the monitor keeps track of both events:
the sending of ClientKeyExchange(encK ,(PMS)) and the
receiving of Certificate(X509CerS). Hence, as long as none
of the events is observed, the monitor basically processes the
empty event.

Once we have formalised the natural language require-
ments in terms of LTL formulae as above, we can then
use the tool from [68] to automatically generate finite state
machines (FSMs) from which we derive the actual (Java)
monitor code. The FSMs obtained from the tools are of type
Moore, which means that, in each state that is reached, they
output a symbol (i.e., ?, � (TOP), ⊥ (BOT), or ?). States are
changed as new system actions become visible to the mon-
itor. In that sense, the states keep track of the context in
which new actions are to be interpreted. For example, there
may be an action, such as the sending of a secret key, which
constitutes a security violation in one context, but is a neces-
sary and desired action in another context, e.g., as part of a
protocol. The monitor’s states keep track of the current con-
text, and the reaching of a new state means reaching a new
context in which to interpret future actions. The FSM gener-
ated for the run-time security property ϕ is given in Figure 9.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

14 BAUER, JÜRJENS, YU

The initial state is (0,0) whose output is ?. If event {cert}
occurs, short for {Certificate(X509CerS)}, then the monitor
takes a transition into state (1,−1) and outputs � to indicate
that the property is satisfied. On the other hand, if neither
cert nor cke, short for ClientKeyExchange(encK ,(PMS)),
occurs, then the automaton remains in (0,0) and outputs ?
anew, indicating that so far ϕ has not been violated, but also
not been satisfied. A violation would be the reaching of
(−1,1), if event {cke} occurs (before cert), such that the
monitor would output ⊥. Here is an example run of the
client which first yields ? as output for three time steps until,
finally, � is returned in the fourth because the message was
sent but the certificate also received and checked:

u := �{},{},{},{cert,cke}�.

At this point this particular monitor may stop monitoring
for the remaining session. On the other hand, consider the
following run:

u� := �{},{},{},{cke}�.

This run is indicative that the client has attempted to send
ClientKeyExchange(encK ,(PMS)) prematurely, resulting in
the monitor returning ⊥ in the fourth time step. In formal
terms, for all v ∈ Σω we have uv |= ϕ (i.e., [u |= ϕ] =�), and
for all v ∈ Σω we have u�v �|= ϕ (i.e., [u� |= ϕ] = ⊥). On the
other hand, if we shortened u and u� by one observation, we
obviously would have [u |= ϕ] = ? and [u� |= ϕ] = ?.

Further properties as the ones above, which are
monitorable in this particular application, are also discussed
in [10]. The relationships between symbol names used in
these specifications, the monitor FSMs, and the code are
then given in Table 5 on page 21.

A Note on Efficiency The monitors we generate for each
security property are minimised in a sense that we find a
smallest possible state machine which corresponds exactly
to the language of the security property by exploiting the
well-known Myhill-Nerode equivalence relation between
states of a finite automaton (cf. [37]). The latest version of
our monitor generation tools [68] perform this minimisation
and thus return the smallest monitor possible for a given
language. In other words, it is not possible to find a
smaller monitor without altering the monitored language,
i.e., the generated monitors are optimal. Therefore, the
efficiency of the proposed method solely depends on the
respective security property chosen, i.e., the formal language
it gives rise to and the means by which the state machines
are implemented for the application at hand. Specifically,
efficiency depends on

(1) the number of states in the monitor, which is
the smallest number possible by the Myhill-Nerode
equivalence,

(2) the time it takes to accept a system action and to change
state in the monitor, and

(3) the time it takes for the monitor to emit the
corresponding output symbol.

However, if the monitor contains only a very small number
of states, as was the case in our examples, then it is very
difficult to effectively measure items 2 and 3 in the above list
of items, because they require only microseconds (or less)
and exact measurements in these ranges can only be obtained
reliably using real-time operating systems. However, due
to the monitors being optimal in the above sense, we have
a guarantee that the run-time overhead is minimal, which,
indeed, resulted in no noticeable performance changes
in our application. It may, however, be the case that
for very involved specifications to be monitored in other
application domains, that there is a noticeable overhead
and that, indeed, additional resources are necessary to
facilitate this technique. After all, the monitors are of
worst-case exponential size with respect to the specification,
and sometimes the worst case cannot be avoided, which
is particularly limiting when the formula was already of a
large size to begin with. Our experiences with the given
application, however, did not reveal such cases, which leads
us to believe that in many practical situations the worst-case
behaviour can be avoided. Moreover, after minimalisation,
the state-space of the generated monitors was <= 10 states,
which is a good indication for how efficiently this method
can be implemented.

Notice also that run-time verification is a method which
scales well, in a sense that the size of the system under
scrutiny does not impact on the efficiency of the method.
Run-time verification operates on a concrete behaviour,
whereas static verification techniques like model checking
or ones which try to establish correctness with the help of
a theorem prover, as we have laid them out in Section 2,
explore the overall state-space of a system imposed by
a model representation of it. Naturally, as system sizes
increase, it affects the efficiency of such techniques, whereas
run-time verification stays constant.

4. MAINTAINING TRACEABILITY UNDER

EVOLUTION

There are two kinds of traceability associated with our use
of run-time verification. First, as discussed in Section 3, we
use it as a tool to trace high-level security properties beyond
code and down to the actual execution level. Second, we
have to tackle traceability within our run-time verification
framework itself as security properties and the code change,
which may affect the generated monitors. In this section, we
focus mainly on the second kind of traceability with regard
to run-time verification; that is, we examine how our LTL
properties and monitors are affected by changes of the high-
level security properties and of the implementation code.

We now explain how to maintain the traceability link
constructed using the approach explained in the previous
section in the presence of code evolution. We then explain
how to apply the approach for run-time security verification
explained in the previous section in this situation.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 15

4.1. Evolution as Code Refactoring

Software refactoring [54] by definition changes the
internal structure of an implementation without changing
its externally observable behaviour. By this definition,
refactoring transformations are program transformations that
preserve externally observable program behaviour. Note
that therefore transformations that change the externally
observable behaviour of a program are beyond the definition
of refactoring, and thus not considered in the following.
Modification of the behaviour due to refactoring would be
considered a bug of the refactoring engine that needs to be
fixed eventually.

In practice, the refactoring engine in programming IDEs
implements a subset of possible refactoring transformations
which are commonly used in programming activities, such
as renaming, extracting methods, etc.

For example, the general refactoring engine in Eclipse
is provided by a set of plug-ins called the refactoring
Language Toolkit (LTK)[70], which allows one (1) to
perform refactoring operations, (2) to save the history of
refactoring operations into an XML-based script, and (3) to
apply a refactoring script automatically. The plug-ins are
applicable to any programming or specification language.
The Java Development Tool (JDT), for example, instantiates
LTK with a number of Java-specific refactoring operations.
Rather than refactoring Java source, another refactoring tool
in the Plugin Development Environment (PDE) instantiates
LTK with a number of refactoring operations specific for the
plug-in metadata.

We use refactoring scripts to maintain traceability
between a design and its evolving implementations.
Modern IDEs such as Eclipse support refactoring by
automated scripts, allowing users to perform, record and
replay refactoring steps as if they were basic editing
operations. The advantage over traditional editing scripts
is that refactoring scripts preserve the externally observable
behaviour of the program. Otherwise, Eclipse would
reject the execution of an operation that might change the
behaviour. For example, renaming class field x to y will
change behaviour if there is already a local variable y
in some method(s), because the renamed references to x
will now become references to the local variable. This is
carefully excluded by Eclipse.

However, such basic refactoring support is inadequate
for our purpose, namely to maintain traceability between
changing code bases. For example, adding or deleting
a single space can make the extract.method (see below)
operation inapplicable. To enhance reusability of refactoring
operations regarding such kind of code changes, we
extended the Eclipse Refactoring Language Toolkit (LTK)
using a new approach to make the operating context of
refactoring more tolerant to changes. To ease specifying
these refactoring operations, we also implemented a utility
to convert refactoring scripts saved from Eclipse into our
specification language.

/∗ $workspace / abc / s r c / abc . j a v a ∗ /
p u b l i c c l a s s abc {

p u b l i c vo id main2 (S t r i n g a r g s []) {
System . o u t . p r i n t l n (” H e l l o ”) ;

}
}
−−−−−−− Step 1 . rename . t y p e −−−−−−−
/∗ $workspace / abc / s r c / h e l l o . j a v a ∗ /
p u b l i c c l a s s h e l l o { . . . }
−−−−−−− Step 2 . e x t r a c t . method −−−−
p u b l i c vo id main2 (S t r i n g a r g s []) {

p r i n t h e l l o () ;
}
p r i v a t e vo id p r i n t h e l l o () {

System . o u t . p r i n t l n (” H e l l o ”) ;
}
−−−−−−− Step 3 . e x t r a c t . temp −−−−−−

S t r i n g s t r i n g = ” H e l l o ” ;
System . o u t . p r i n t l n (s t r i n g) ;

−−−−−−− Step 4 . rename . method −−−−−
p u b l i c c l a s s h e l l o {

p u b l i c vo id main (S t r i n g a r g s []) {
p r i n t h e l l o () ;

}
p r i v a t e vo id p r i n t h e l l o () {

S t r i n g s t r i n g = ” H e l l o ” ;
System . o u t . p r i n t l n (s t r i n g) ;

}
}

FIGURE 10. A running example illustrates refactoring

An Illustrative Example To illustrate Java refactoring,
Figure 10 shows a running example specific to Eclipse JDT,
where a series of refactoring operations are applied to a small
“Hello World” program.

Assume that initially the source file abc.java is located at
a source folder src in the project abc. A series of refactoring
operations are applied as follows. Step 1: The class
abc is renamed to hello and abc.java is also renamed to
hello.java, accordingly. This refactoring operation is called
rename.type. Step 2: The statement System.out.println is
extracted into the body of a new method print hello(). This
operation is called extract.method. Step 3: The expression
”Hello” is explicitly assigned to a new local variable string.
This operation is called extract.temp. Finally, Step 4: The
method main2 is renamed to a new method name main.
This last operation is called rename.method.

After performing the above refactoring operations in
Eclipse one can save the history into a refactoring script.
Such a script can be automatically applied on the original
code again to replay the changes. Figure 11 shows a
snippet from the refactoring script in XML format. It briefly
specifies the rename.type and extract.method operations
used in the first two steps.

Every refactoring is recorded as an XML element refac-

toring, whose attributes specify the operation. Every
operation has an identifier ID, indicating the type of
the operation. Here, org.eclipse. jdt.ui.rename.type

is the internal name used by JDT for rename.
type refactoring. For readability, we omit the common
prefix in the following and call it rename.type. The tar-
get of a refactoring operation for rename.type is a new
class name, whereas the target for extract.method is a new
method name. They are completely specified by the name

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

16 BAUER, JÜRJENS, YU

<?xml v e r s i o n =”1.0”? >
<s e s s i o n v e r s i o n =”1.0”>
<r e f a c t o r i n g comment = ” . . . ”

i d =” org . e c l i p s e . j d t . u i . rename . t y p e ”
d e s c r i p t i o n =”Rename t y p e ’ abc ’ ”
p r o j e c t =” abc ” i n p u t = ” / s r c& l t ; abc . j a v a [abc ”
name=” h e l l o ” . . . />

<r e f a c t o r i n g comment = ” . . . ”
d e s c r i p t i o n =” E x t r a c t method ’ p r i n t h e l l o ’ ”
i d =” org . e c l i p s e . j d t . u i . e x t r a c t . method ”
p r o j e c t =” abc ” i n p u t = ” / s r c& l t ;{ h e l l o . j a v a ”
name=” p r i n t h e l l o ” s e l e c t i o n =”64 28”
. . . />

. . .
</ s e s s i o n>

FIGURE 11. Operations of Eclipse refactoring script (cf.
Figure 10)

attribute. On the other hand, the source of a refactoring
operation is suggested by attributes including project, input
and optionally selection. The values of these attributes
typically indicate the context of an operation. The project
attribute specifies the subject project of the refactoring oper-
ation; the input attribute specifies the source folder, package
and class name in which the source element is refactored;
the selection attribute, when used, specifies the exact offset
and length of the string selected for the refactoring.

In our example the extract.method refactoring is
applicable only if the selection of a substring of 28
characters starting from the offset 68 in hello.java matches
the statement to extract, character by character. Given such
strict specifications of refactoring contexts in Eclipse, we
can see that existing refactoring scripts are inadequate if
source code has been modified by evolution or by previously
applied refactoring operations, or when source code from a
different library implementation is used. For example, it is
required to modify the offset/length value if an extract.temp
operation was applied earlier.

4.2. Maintaining Model-Code Traceability

In this subsection, we explain how to maintain traceability
between a UMLsec specification of a cryptographic
protocol and its implementation while the code evolves (cf.
Figure 12).

We present our new refactoring engine that overcomes the
limitation of the native Eclipse JDT refactoring operations,
while making the refactoring operations reusable for
maintaining design traceability in different legacy code.

Specifically, we need to map any symbolic name S
that appears in the design model to an identifier I on the
implementation level.

Refactoring scripts are used for maintaining such
traceability: they guarantee that the externally observable
behaviour of the program is preserved as far as expressed
in the traceability links to the model level. We can apply the
mapping in a round-trip fashion:

(1) to convert the program entities to names on the design
level and

!"#$"%&'
(

)*"+,%-*.*/$
"01%2+#"*/$'

(

3#/2"0+*./$
"01%2+#"*/$'

(

DESIGN IMPLEMENTATION

!"#$"%&'
4

)*"+,%-*.*/$
"01%2+#"*/$'

4

3#/2"0+*.*/$
"01%2+#"*/$'

4

50'+'
(

666

66 50'+'
4

6

FIGURE 12. Traceability for reuse

(2) to convert the names on the design level to names in the
implementation.

When a relation between a symbol S and an entity I in
the program is established, it will be maintained through
a number of refactoring operations that transform every
occurrence and update every reference of I into S.

When the program entity already has an identifier in a
form of class, method, field or local variable, renaming oper-
ations such as rename.type, rename.method, rename.field
and rename.local.variable can be used; when the program
entity does not have an associated identifier, then extract-
ing operations such as extract.method, extract.temp and
extract.field can be used to directly extract an identifier
named by S.

The renaming operations, when applied in low granularity
(e.g., rename.local.variable), are typically change sensitive
as a selection offset/length is required to specify the exact
context of source. The extracting operations, by definition,
always need to specify the context of the source explicitly.

The mapping between symbols and program entities is not
one to one. The same symbol from the design model may
be implemented differently in different contexts. Therefore
more than one refactoring operation can be applied to
resolve the symbol names. Since a symbol may even be
called differently in different parts of the program, the actual
program entities have to be checked to find out whether they
are the same throughout the design. Such checks must in
particular ensure that the name can be differentiated by using
the context of the messages.

If S is a complex design element, such as a message in a
message sequence chart, its mapping may at the same time
require a mapping from its arguments to their corresponding
identifiers. In order to create such a mapping, a sequence
of basic refactoring operations needs to be performed.
Therefore, such dependencies among refactoring operations
need to be respected.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 17

SPECIFICATION := OPERATION SPECIFICATION
OPERATION := ’@’ ’{ ’ NAME ’ , ’ FIELDS ’} ’
NAME := I d e n t i f i e r [’ . ’ NAME]
FIELDS := FIELD [’ , ’ FIELDS]
FIELD := KEY ’= ’ VALUE
KEY := I d e n t i f i e r
VALUE := S t r i n g

FIGURE 13. The extended BNF for the syntax of our refactoring
language

As we have mentioned, the refactoring of I to S, when
applied after other editing/refactoring operations, have to be
carried out independently of the previous changes.

4.3. Reuse Support for Traceability Refactoring

One can reuse the traceability information discovered when
linking the implementation to the UML model. For example,
this can be done if one wants to apply the refactoring
operations defined for one version of the implementation
to a different version of that implementation, or to a
different library. To this end, we create a refactoring plug-
in that can apply parameterised refactoring operations1. Our
refactoring tool is implemented on top of LTK refactoring
plug-ins, which support languages beyond Java. In order
to limit the changes to the existing refactoring engine, we
invoke the context-specific refactoring operations in JDT
by instantiating a scripting template with the parameters
derived from our specifications.

In [51], Krueger classified software reusability as five
connected facets: abstraction, classification, selection,
specialisation and integration. Our traceability refactoring
engine supports this view.

Abstraction. An extended BNF grammar of the abstract
refactoring language is given in Figure 13.

A specification consists of one to many refactoring
operations. Every operation has a name indicating the class
that handles the refactoring and one to many fields. A field
is a pair of a key identifier and a value string. It is up to
the refactoring class to decide the concrete list of fields to be
used.

Our declarative specification language abstracts away
context-sensitivity of existing refactoring operations and can
describe generally any refactoring operation supported by
LTK, beyond Java. The refactoring context is parameterised
to remove certain change-resisting dependencies (e.g.,
selection in Figure 11). Similar in format to that of BibTeX,
a specification consists of a list of entries. Each entry
is made of a list of fields, separated by a comma. The
first field is a key, which matches one type of the existing
refactoring operations (as in JDT). The remaining fields
are in the form of name=”string” pairs, where the quoted
string can span multiple lines. As in Java, every quotation

1These automated refactoring tools (ART), including their source code
and examples in the paper, can be downloaded from the project subversion
repository linked from [66].

@{org . e c l i p s e . j d t . u i . rename . type ,
p r o j e c t =” abc ” , s o u r c e =” s r c ” , package =”” ,
c l a s s =” abc ” , name=” h e l l o ”

}
@{org . e c l i p s e . j d t . u i . e x t r a c t . method ,

p r o j e c t =” abc ” , s o u r c e =” s r c ” , package =”” ,
c l a s s =” h e l l o ” , method =” main ” ,
t o c l a s s =” h e l l o ” , name=” p r i n t h e l l o ” ,
r eg ex p =”S .∗ (\ ” H e l l o \ ”) ; ” ,
c o u n t =”1”

}

FIGURE 14. Our specification for refactoring (cf. Figure 11)

in the string must be escaped. Depending on the type of
refactoring operations, the number of required fields may
vary. The main reason why we chose this format is to
support variability for recording refactoring operations.

Corresponding to Figure 11, the snippet in Figure 14 lists
two refactoring operations in our specification language.

Selection and Specialisation. Most fields have evident
meaning and usage as they correspond to the attributes in
the Eclipse refactoring scripts. We introduce the new fields
to compute the context (input) of the source element, such
as source, package. The fields regexp and count in this
specification indicate a selection to be refactored that is
matching a regular expression, counted from the beginning.
Our regular expression-based selection for context-sensitive
refactoring operations increases the chance of reusability
when changes happen to the code. In the implementation,
we can actually construct a regular expression from a normal
one by replacing white spaces with an arbitrary number
of white spaces. In this way, even if a programmer or
a code formatter inserted some indentation, the selection
can still be matched. Introducing count is done mainly to
be able to selectively refactor some instances of matching
selection rather than the first one. When unspecified, the first
matching selection will be chosen. The selection parameter
is specialised from the other parameters by parsing the Java
source file, searching for the method name in the given class
to obtain the offset to the method in the source range, and
then searching for the local variable in the source of the
selected method and adding its relative offset to the method
to obtain the absolute offset to the file.

Classification. As refactoring consists of a sequence of
operations, we classify existing refactoring operations by
context-sensitivity and discuss its impact on exchangeability
and invertibility.

Context-free operations are more reusable whereas
context-resistant or sensitive ones require more care. Since
it is more likely to have the other parts of the code
changed rather than the pattern of regular expressions,
our new refactoring operation becomes less sensitive to
code changes. According to our experience, when relaxed
patterns are used in the regular expression, the context
specification of refactoring operation is more tolerant to
changes.

In practice we have found that if one performs
larger-granularity refactoring operations (say, a) earlier

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

18 BAUER, JÜRJENS, YU

TABLE 2. Refactoring operations parameterised by our refactoring tool

ID change resistant? context source selection specified in Eclipse our specification

org.eclipse.jdt.ui.rename.project no workspace project project project

org.eclipse.jdt.ui.rename.folder no project folder folder folder

org.eclipse.jdt.ui.rename.package no folder package package package

org.eclipse.jdt.ui.rename.type no package class class class

org.eclipse.jdt.ui.rename.method no class method method method

org.eclipse.jdt.ui.move.method no class method method method

org.eclipse.jdt.ui.extract.method yes class statements (offset, len) (regexp [, count])

org.eclipse.jdt.ui.rename.local.variable yes method variable (offset, len) (regexp [, count])

org.eclipse.jdt.ui.extract.local.variable yes method expression (offset, len) (regexp [, count])

.

than smaller-granularity ones (say, b), the reusability of
refactoring operation sequences can be increased. To allow
reordering operations, side-effects of an operation on the
context of another must be captured by changes to their
parameters, i.e. a ⊗ b = b� ⊗ a�. For example, the two
operations in our running example are not exchangeable. If
one were to swap their order, one needs to accordingly apply
the latter refactoring to the refactoring script of the former
one. If one would apply the extract.method operation first,
then the rename.type operation should be applied to the
specification such that it is a method in the class abc rather
than the class hello being extracted.

In Table 2, we list some JDT refactoring operations that
have been parameterised in our refactoring engine. We also
show which JDT operations are considered change resistant
and a brief description on how such limitations are resolved.

Integration. After selection and specialisation, our
tool delegates the domain-specific (here Java) refactoring
integration tasks to LTK in Eclipse. We also support both
interactivity and transparency for programmers to preview
the effects of a refactoring if they choose to, and to
avoid manually constructing the specification from the saved
refactoring history in Eclipse.

The implementation of our refactoring plug-in adds two
command buttons to the Eclipse GUI: one of them performs
all refactoring operations automatically, while the other
brings up a dialogue for each operation to preview the
effects of a refactoring. This allows us to verify if there
are any potential maintenance problems arising from the
operation. For example, when renaming a variable to R C,
we can see a warning message from the Eclipse IDE that, by
programming convention, it is not recommended to let the
name of a variable start with capital letters. However, since
our purpose is to facilitate the reuse of traceability in security
analysis, such a renaming does not affect programmers
because they can always edit the original source code.

Another utility program we implemented is a transforma-
tion that converts an XML-based refactoring script from the
Eclipse IDE into our own specification language. By such a
conversion, a string selected by offset and length is replaced
with a regular expression and its count of its matching occur-
rence. For the string selected, the utility generates a regular

expression with wildcards and an occurrence count such that
it could match precisely with the selection string in the refac-
toring context (e.g., a method body), while being agnostic to
the change to other parts of the program. For example, if
the extract.method is applied to a set of statements, they will
be remembered by the generated regular expression so that
the method can be matched even when the other part of the
method is changed.

After translation, the resulting specification is still further
customisable. We also implemented a headless tool to
invoke the functionality of the automated button as an RCP
command. The argument of the command provides the name
of a refactoring specification file.

4.4. The SSL Case Studies

In general, the run-time verification of a protocol like
SSL should be invariant to implementation changes if
the properties that are to be monitored are derived from
the specification of the protocol (unless, of course, the
specification of the protocol changes). In other words, if we
have a security property that we want a correctly operating
implementation of the SSL-protocol to adhere to at run-time,
we want a modified implementation to also adhere to this
property regardless of how it achieves it internally. This view
asserts that run-time verification considers the system under
scrutiny as a “black box”.

4.4.1. Evolution in the JESSIE Case Study
To perform the model-based security analysis as explained
above on a different version of JESSIE, one only needs to
modify the specifications of the refactoring operations that
provide the traceability of the model to the implementation
level, without making any other adjustments to our
refactoring engine. In particular, we considered the two
versions JESSIE 1.0.0 (released on June 9, 2004 according
to its CVS repository) JESSIE 1.0.1 (released on October 12,
2005 according to its CVS repository).

However, in the case of monitoring JESSIE, we linked the
run-time verification to code elements and, therefore, are not
immune to changes in the code to such an extent.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 19

For example, in Section 3, we have defined an abstract
run-time security property in LTL and, in doing so, have
performed a mapping from elements in the design model
(and therefore also in the LTL formula) to elements used
in the monitor code. Moreover, there also exists a mapping
from elements used in the monitor code to elements used in
JESSIE’s code. Table 5 exemplifies these mappings for three
different run-time security properties (where the first is our
running example, discussed in Section 3).

Evolution Inside the org.metastatic.jessie.provider
package in JESSIE the 1.0.1 version has got 24 code
block differences compared to that of 1.0.1 version. These
changes cause that the selection-sensitive operations in
the refactoring history script saved from Eclipse cannot be
applied to JESSIE 1.0.0. After converting the script into
our specification language, all of the refactoring operations
(some of which are listed in Table 3) become reusable in our
enhanced refactoring engine (cf. the column JESSIE 1.0.0).
The only necessary change made to our original refactoring
specification for JESSIE 1.0.1 was a global substitution of
the project attribute for all operations from jessie-1.0.1 to
jessie-1.0.0.

As part of the library release, two model-based unit tests
for the message sequences in JESSIE 1.0.1 were provided:
testclient.java and testserver.java. After refactoring, we
were able to reuse them for the two other implementation
libraries as well.

Since the “hooks” required in the code are different but
conceptually the same, we focussed on only the first of the
three properties in this paper given again in Table 5. All of
the mentioned code can be found inside SSLSocket.java.
The first column of Table 5 shows the name of an entity on
the design model level as well as its symbol name in the
corresponding LTL formula, the second column shows the
action symbol as it is used within the generated monitor,
and the last column displays the corresponding entity in
the JESSIE source code. Notably, some properties share
symbol names, which has to be respected by potential
refactoring steps. That is, when we apply refactoring
steps that affect elements in the given table, we have to
make the according changes there as well to notify the
run-time verification framework of the occurring changes.
Internally, our refactorings reflect the links represented by
that table and its crucial symbol names and code segments.
This gives us a straightforward, but manageable, means
to evolve our monitors along with code changes. As the
properties that we monitor are fairly generic properties
that are derived from the SSL-protocol specification itself,
they have not changed between versions 1.0.1 and 1.0.0
of the SSL-protocol implementation JESSIE. However,
this type of book-keeping does not in general give us any
indication when refactorings or other code changes do not
affect our monitors, because code which has been identified
relevant to the monitors may have become “dead code”
by a modification outside the scope of our book-keeping.
Note however that dead code detection can typically also be
automated, e.g. using static analysis (cf. [19]).

Evolution Beyond Simple Refactoring In order to preserve
externally observable behaviour, the refactoring steps
defined in previous sections represent relatively small and
simple changes on the code base (e.g. consistent renaming
of identifiers). However, in practice, systems often undergo
more significant evolutions which may in particular not
be behaviour-preserving. In these cases, the definition of
the LTL formula to be monitored may have to be adapted
manually to account for the system evolution. In this section,
we demonstrate this in terms of an example.

We consider the situation where an initial version of
a protocol implementation does not provide for dedicated
error handling in the case that one of the cryptographic
checks in the protocol is violated. We investigate how a
monitor for such an implementation will have to evolve if
the implementation is adjusted to provide dedicated error
handling, to make sure that the error handling leads to
a fail-safe system state. This will prevent the protocol
implementation from proceeding with an insecure protocol
execution, e.g. by sending out secret information even
though the cryptographic checks were violated.

We therefore distinguish between the following cases:

(1) The system fails and does not reach a fail-safe state
(monitor returns ⊥).

(2) The system succeeds or reaches a fail-safe state,
assuming an error occurred (monitor returns �).

(3) Neither of the two conditions holds (monitor returns ?).

What we have done is, basically, added an exception to
our rule, and thereby mapped two different events to one
truth value, namely �. This, however, is not uncommon in
specifying behaviour of software and systems. For example,
exceptions are incorporated into many different specification
languages that are based on LTL and regular languages (cf.
[28, 12, 6]). The one presented in [12], SALT, introduced
the accepton x directive for this purpose, where x represents
the exception.

As we are using LTL directly in this paper, we
give a straightforward extension of our previously used
specification (see Section 3) that caters for such an exception
and demonstrates the concept:

ϕ f s := ¬ClientKeyExchange(encK ,(PMS))
W(Certificate(X509CerS)
∨failsafe).

Using our monitor generator [68], it is easy to verify in terms
of the resulting monitor FSM that this extension has the
desired effect. Had we used the LTL meta-language SALT as
introduced in [12], we could have simply added an exception
as follows

ϕ�f s := (¬ClientKeyExchange(encK ,(PMS))
WCertificate(X509CerS))

accepton failsafe,

which would then have been translated into the above LTL
formula. While with short formulae such as the above,
it does not seem to make any difference as to whether

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

20 BAUER, JÜRJENS, YU

TABLE 3. Refactorings for the traceability to the protocol
(cf. Figure 6)

Messages in sequence op. diff Time (sec)

S1: C→ S : (Pver,RC ,Sid,Ciph[],Comp[]) 7 31 13.891

S2. S→C : (Pver,RS,Sid,Ciph[],Comp[]) 5 20 9.437

S3. S→C : Certificate[X509Certs] 2 2 1.474

S4. C : Veri(X509Certs) 2 2 3.854

...

Total of 7 messages and 3 checks 27 86 40.303

meta-level constructs like accepton are employed, which
subsequently “weave” the exception into all subformulae of
a given specification, more comprehensive formulae may be
difficult to specify in LTL alone and without such directives.
Semantically, however, a language such as SALT is equally
expressive to LTL. We therefore abstain from discussing it
further in this paper as the resulting monitors are the same.

For all the 19 symbols, 7 messages and 3 checks in
Figure 6, in total we have defined 27 refactoring steps in
the specification to maintain the traceability between the
protocol design and the JESSIE 1.0.1 code. The third column
of Table 3 shows the count of changed segments by the
refactoring steps. Using diff, each block of changes, even
when they contain multiple lines, is counted as one. When
the number of changed blocks is larger than the number of
steps, changes have happened to more than one places on
average. The last column shows the performance, i.e., how
much time in seconds it took to perform the refactoring steps
using our tools. Note the time required for the refactoring
steps varies depending on its type and the number of
occurrences in the code. For example, renaming a sessionId
field into S id took only 0.141ms whereas renaming a local
variable sessionId into S id took 1.484ms. The automatic
execution of all the steps took about 40 seconds running our
plug-ins inside Eclipse SDK 3.3 on a dual-core laptop (with
a CPU running at 2 x 1.8GHz). Given the significant pay-off
provided by the fact that the externally observable behaviour
of the code is preserved during the complex refactoring
steps, such performance figures do not impose a bottleneck
within the overall process. On the contrary, much more time
is spent on the security analysis and the manual creation of
the refactoring steps, which will be paid back by reusing the
scripts on different implementations.

4.4.2. Maintaining Monitor-Code Traceability
To illustrate this refactoring mapping, Table 4 presents
some instances of such a mapping for our example
implementation. The first column shows the names of
symbols as used in the cryptographic protocol model. The
second column shows the names of the corresponding
program entities in the implementation. The third column
shows the identifiers that are the target names of the
refactoring operations. The type of the refactoring operation
is shown in the last column. The implementation and
execution of these refactoring operations is done using
refactoring scripts. These scripts only allow a limited kind of

TABLE 4. Refactoring program entities in a traceable way

Symbols Program entities Identif. Refactoring op.

1. C clientHello C rename.type

2. S serverHello S rename.type

3. Pver session.protocol P ver extract.temp

version

4. RC clientRandom R C rename.local.variable

RS serverRandom R S rename.local.variable

5. Sid sessionId S id rename.field

sessionId S id rename.local.variable

6. Ciph[] session.enabledSuites Ciph extract.temp

7. Comp[] comp Comp extract.temp

8. Veri Lines 1518–1557 Veri extract.method

refactoring which guarantees that the externally observable
behaviour of the program is preserved (e.g. renaming
identifiers in a way that is ensured not to create any
conflicts). Each refactoring operation is declared as a
transformation from a program entity (a collection of
executable statements or declarations) to a symbolic entity
which is named after the corresponding symbol in the design
model. For example, the clientRandom variable is mapped
to the symbol R C in the protocol.

4.4.3. Reusing JESSIE Refactoring Transformations for
JSSE

We also investigated on how to reuse the model-code
traceability links for SSL from the JESSIE project for
JSSE, another implementation of SSL. JSSEis part of
Sun’s Java Secure Sockets Extension (JSSE), a library
in the standard JDK since version 1.4, released by Sun
from version 1.6 onwards as an open source project
called OpenJDK. Specifically, we considered JSSE 1.6
(released on May 8, 2007). The source code of the JSSE
library can be checked out from its Subversion repos-
itory: https://openjdk.dev.java.net/svn/openjdk/jdk/
trunk/j2se/src/share/classes/sun/security/ssl. In this
case, we found that most of the refactoring operations
cannot be applied as is. The doHandshake protocol
is mainly implemented in the class SSLSocket of the
JESSIE 1.0.1 library, whereas in the JSSE library imple-
mentation in the OpenJDK 1.6 (hereafter called JSSE
1.6), the protocol is mainly implemented in the class
sun.security.ssl.HandshakeMessage. Nevertheless, the
naming of the symbols can be traced to the implementation.

Table 6 lists the mappings from the symbols in
Table 1 to their naming in the JSSE library. To
reuse the existing refactoring operations, we have to
instantiate their specifications with different parameters
for its source (i.e., project, folder, package, class)
and its context (i.e., regexp, count). In some cases
even the type of refactoring operation needs to be
changed. For example, Veri(X509Certs) is refactored by the
extract.method operation in JESSIE (Table 4). However, to
obtain the same symbol, a rename.method operation in JSSE
is required (Table 6).

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 21

TABLE 5. Mapping model elements to monitor code and JESSIE (SSLSocket.java)
Model / LTL symbol Monitor Concrete representation in JESSIE

1: ¬ClientKeyExchange(encK ,(PMS))WCertificate(X509CerS)

ClientKeyExchange(encK ,(PMS)) cke

P r o t o c o l V e r s i o n v = (P r o t o c o l V e r s i o n)
s e s s i o n . e n a b l e d P r o t o c o l s . l a s t () ;

byte [] b = new byte [4 6] ;
s e s s i o n . random . n e x t B y t e s (b) ;
p r e M a s t e r S e c r e t = U t i l . c o n c a t (v . ge tEncoded () , b) ;
EME PKCS1 V1 5 pkcs1 =

EME PKCS1 V1 5 . g e t I n s t a n c e ((RSAPublicKey)
s e r v e r K e x) ;

B i g I n t e g e r b i = new B i g I n t e g e r (1 , pkcs1 . encode
(p r e M a s t e r S e c r e t , s e s s i o n . random)) ;

b i = RSA . e n c r y p t ((RSAPublicKey) se rve rKex , b i) ;
C l i en tKeyExchange ckex = new Cl ien tKeyExchange

(U t i l . t r i m (b i)) ;

Certificate(X509CerS) cert

C e r t i f i c a t e s e r v e r C e r t i f i c a t e = (C e r t i f i c a t e)
msg . getBody () ;

X 5 0 9 C e r t i f i c a t e [] p e e r C e r t s =
s e r v e r C e r t i f i c a t e . g e t C e r t i f i c a t e s () ;

2: (¬Finished(HashMD5(. . .WArrayequal(md5s,md5c))∧ (FArrayequal(md5s,md5c)⇒ FFinished(HashMD5(md5s,ms, . . .)))

Finished(HashMD5(md5s,ms,PAD1,PAD2)) finished
f i n i s = g e n e r a t e F i n i s h e d (v e r s i o n , (I M e s s a g e D i g e s t)

md5 . c l o n e () , (I M e s s a g e D i g e s t) sha . c l o n e () , t rue) ;
msg = new Handshake (Handshake . Type . FINISHED , f i n i s) ;

Arrayequal(md5s,md5c) equal

i f (! Ar r a ys . e q u a l s (f i n i s . getMD5Hash () ,
v e r i f y . getMD5Hash ()) | |

! A r r ay s . e q u a l s (f i n i s . getSHAHash () ,
v e r i f y . getSHAHash ()))

. . .

3: ¬DataWArrayequal(md5s,md5c)

Arrayequal(md5s,md5c) equal

i f (! Ar r a ys . e q u a l s (f i n i s . getMD5Hash () ,
v e r i f y . getMD5Hash ()) | |

! A r r ay s . e q u a l s (f i n i s . getSHAHash () ,
v e r i f y . getSHAHash ()))

. . .

Data data (Various stream read and write methods.)

Such changes, however, do not influence the target
name attribute for the operations because they are derived
from the same protocol design. Modifying the refactoring
specifications might seem a lot of work. However, we
experienced little difficulty in applying them with the
help of automated execution of the declarative refactoring
specification. The benefit of such an effort is that we can
reuse the model-based security test cases.

5. SECURITY HARDENING

Using the approach to run-time security verification
explained in the previous sections, one can raise an alarm
at run-time in case of a security violation, and terminate the
given protocol execution, before the secret is leaked out to
the network. In such a situation, it would however be even
more useful if one could go a step further, and remove the
security vulnerability in the implementation that has been
detected in this way to make sure the same problem will not
appear again. In this section, we explain how this is achieved

TABLE 6. Symbol-code mappings for JSSE

Symbols JSSE 1.6
1. C HandshakeMessage.ClientHello
2. S HandshakeMessage.ServerHello
3. Pver protocolVersion
4. RC clnt random

RS svr random
5. Sid sessionId
6. Ciph[] cipherSuites
7. Comp[] compression methods
8. Veri CertificateVerify.verify()
9. DnotBefore cert.getNotBefore()

DnotAfter cert.getNotAfter()

in an approach making use of automated instrumentation
techniques.

One often has to fix a vulnerability in multiple places
of the code, making it difficult to maintain the changes
consistently. In order to automate the vulnerability fix for

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

22 BAUER, JÜRJENS, YU

FIGURE 15. Comparing component-based with aspect-oriented
systems in light of the inverse of control principle

security hardening, we therefore choose to apply aspect-
oriented programming (AOP) techniques.

In the following subsection, we explain the basic concepts
of aspect-oriented programming (AOP) in detail.

5.1. Aspect-Oriented Programming (AOP)

Aspect-oriented programming (AOP, [50, 64]) separates
crosscutting concerns that tangle the code into aspect
modules. The tangled code at various control flow
points (so-called “joinpoints”) are encapsulated into a
module when they match with the signatures of pointcut
expressions. The functionality of the existing code can
be altered by weaving additional statements (so-called
“advices”) before, after or around the existing joinpoints.
AOP has advantages for maintenance as one can change
the crosscutting behaviour of the system without directly
modifying the source. AOP is supported in systems such
as aspectJ [50] and Hyper/J [64] and fully supported in Java
IDEs such as Eclipse through the AJDT project.

AOP Principles In a previous paper, we compared
the fundamental difference in the methods reflected by
component-based programming and AOP [73]. Figure 15
illustrates two modularisations to divide a problem into
subproblems and to compose their solution later. In the
component-based manner (left), the composition requires
at various points an explicit invocation of the component
module, whilst in the AOP manner (right), the aspect module
has two parts: pointcuts and advices. The pointcuts are
expression for the aspect module to figure out the various
points that would be otherwise scattered in the components;
and the advices are instrumentations that need to be weaved
into the base system by automatically composing the advices
at points (i.e., joinpoints) that match with the pointcuts
expression. One of the major advantages of AOP is that
the scattered joinpoints are modularised by the pointcut
expressions, thus reducing the complexity in code. This
principle is also known as Inversion Of Control (IOC).

AOP can reduce the complexity given that the base system
cannot be easily disentangled and the joinpoints scattered
among them as crosscuts. As one often sees, similar
security vulnerability are often scattered in the code thus
making them good candidates for joinpoints. By weaving
the advices into these scattered places, AOP can help one

/∗ Hel loWorld . java ∗ /

p u b l i c c l a s s Hel loWor ld {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

System . o u t . p r i n t l n ("Hello world!") ;
}

}

/∗ GoodbyeWorld . java ∗ /

p u b l i c c l a s s GoodbyeWorld {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

System . o u t . p r i n t l n ("Goodbye, world!") ;
}

}

/∗ HelloFromAspectJ . a j ∗ /

p u b l i c a s p e c t He l loFromAspec t J {
p o i n t c u t mainMethod () :

e x e c u t i o n (p u b l i c s t a t i c vo id

main (S t r i n g [])) ;
a f t e r () r e t u r n i n g : mainMethod () {

System . o u t . p r i n t l n ("Hello from

AspectJ") ;
}

}

FIGURE 16. An illustrative aspectJ program

harden the security in the design and implementation of the
base system.

AOP with aspectJ There are several implementations of
AOP, among which aspectJ for Java is the most widely
used. To convey the basic concepts of AOP, and also
to explain the example used in this paper, we illustrate
the syntax and semantics of the AOP language using the
following illustrative example.

Two Java classes “HelloWorld” and “GoodbyeWorld”
serve as the original system which an aspect “HelloFro-
mAspectJ.aj” implements an advice that instrument the orig-
inal program to print an additional message “Hello from
AspectJ” (see Figure 16).

In the aspectJ module, for example, the pointcut
expression mainMethod() matches the main methods in
both Java classes according to the interface signature of
the method. The specification of the advice introduces
the boolean pointcut expression by the keyword “after”.
Because it matches with the two joinpoint methods in the
Java classes, the statement in the body of the advice will be
inserted after the invocation of main method. According to
the semantics of the aspectJ language, one can also specify
“before” and “around” advices. Namely, the before advice
will be executed before the execution of the method at the
joinpoint, and the around advice will be executed instead
of the execution of the method at the joinpoint. Therefore,
it is clear that AOP can completely change the behaviour
of the original method, making it suitable to fix security
vulnerability as opposed to the refactoring transformations.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 23

5.2. Traceability under Evolution in the Presence of
Aspects

The joinpoint model of AOP such as aspectJ is powerful:
according to the specification an aspect specified in aspectJ
can match with methods of classes. On the other hand,
it does not include support for loops, super calls, throws
clauses, multiple statements, etc. According to the
literature [49], a joinpoint model at the method level has
advantage over one at the lower statement level to ensure
modularity of the code. Using aspectJ, therefore, we cannot
base our solution on a statement level joinpoint model. If
one wants to alter the behaviour of a group of statements, a
necessary step is to perform a refactoring operation such as
extract.method.

Another issue is that when expressed in an aspect, the
pointcuts must match with names in a particular library.
If one does not change the function names or naming
conventions used in the pointcut expressions, the aspects can
be harder to reuse for a different library. In order to improve
the reusability of such security aspects, we therefore abstract
away the names from the implementation by substituting
them with the corresponding symbolic name in the design
model. These again require refactoring operations.

Therefore to exploit the refactoring traceability, we need
to make sure that the traceability-preserving refactoring
also preserves the aspect-oriented joinpoints used in that
approach. Thus we need to define joinpoints in terms of the
symbol names and the joinpoint model in aspectJ (methods
and fields). Such joinpoints must be aware of the context of
the method invocations or field accesses.

When the identifiers are methods or fields, then they
can already be matched by pointcut expressions in the
aspects. Otherwise, more refactoring operations need
to be performed to prepare for AOP instrumentations.
As the joinpoint model in aspectJ does not support the
instrumentation of a group of statements inside a method,
for example, it is necessary to apply more refactoring
operations such as extract.method to group these statements
into a method. Having the joinpoints symbols refactored as
methods and fields, they can now be used to define aspect
pointcut expressions.

As long as program changes are captured by changing the
refactoring scripts, one can maintain the pointcut expression
unchanged. Similarly, if one wants to apply the same aspect
to a different library where the symbols are implemented
differently, the reusability of such security aspects eliminates
the need to change the definition of the aspects. This effort
for maintaining the traceability has a payoff only when
a mapping can be used to express security aspects which
otherwise would be non-reusable.

Since refactoring operations can improve the internal
structures, these mappings can be performed selectively on
the joinpoints that are made immediately useful for the
aspects.

5.3. The SSL Case study: Fixing a Vulnerability in
JESSIE

Since the places that need to get changed to fix a security
vulnerability are often scattered across the code, it can
be difficult and error-prone for humans to manually and
consistently update the code.

We demonstrate how we use aspects for security
hardening with an example from the JESSIE project.

In the JESSIE implementation, we found a signifi-
cant security vulnerability as the certificate verification
Veri(X509Cert s) is not always invoked when the certifi-
cate message is received, which is an essential security check
according to the protocol specification. It is needed because
otherwise a man-in-the-middle attacker could insert a forged
certificate containing his own public key into the communi-
cation and thereby decrypt the session key that is encrypted
using that key, and thus eavesdrop on the encrypted commu-
nication in that session without being noticed by the com-
munication partners. Therefore the current implementation
of the SSL protocol in the JESSIE project does not enforce
its security requirements. Below, we explain how this vul-
nerability arises and how one can use our approach to insert
additional checks into the protocol implementation to harden
its security.

Table 7 highlights the vulnerability by showing the
execution log of four different test cases. In this table, the
eight steps on the handshake protocol message sequence
chart are shown by the rows. The second column shows the
code corresponding to these steps that has been tested by the
test cases. The third column highlights the differences in the
instances of the four test cases.

If the certificate was checked at step S4, in Cases 3 and 4,
the cheVal should report false in a correct implementation.
However, we found they reported true instead.

Additional checks can be inserted into the protocol to
harden its security. For example, using an aspect to
crosscut every joinpoint of the program where a certificate
is received, we found nothing is called by the program
to check the issuing date. Therefore we find it is
necessary to instrument the program with the functionality
to check validity of the certificate against its date range
issued by OpenSSL. Interestingly, this functionality was
defined in JESSIE as a utility method checkValidity() in
X509CertBridge.java. However it was never called, as
indicated by a warning message in Eclipse.

Besides fixing the vulnerability by weaving an aspect
into the refactored code we can also apply it to the
implementation of the original program: After renaming
checkValidity to cheVal, the aspect in Figure 17 is enabled
to insert an additional check on the validity of certificate
date (cheVal). Also, the refactored Veri is called right
after a certificate is obtained through the pointcut expression
certificate(). Without these refactoring operations, this
aspect cannot be weaved through the original program.

This aspect whose design is derived from the protocol
design model introduced earlier assumes the existence of
a method for Veri. This method is created from the given

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

24 BAUER, JÜRJENS, YU

TABLE 7. Test cases for assessing security
Seq. Tested Code Example Test Case

S1

C = new C l i e n t H e l l o (P pre , R C ,
S id , Ciph , Comp) ;

Case1 : C l i e n t H e l l o (TLSv1 , c l ien tRandom1 ,
[B@b012a558 , e n a b l e d S u i t e s 1 , z l i b)

Case2−4: C l i e n t H e l l o (TLSv1 , c l ien tRandom2 ,
[B@b01b0558 , e n a b l e d S u i t e s 2 , z l i b)

S2 S . S e r v e r H e l l o (P ver , R S ,
S id , Ciph , Comp) ;

Case1 : S e r v e r H e l l o (TLSv1 ,
serverRandom1 , [B@b0134ed8 ,

TLS DHE RSA WITH AES 256 CBC SHA , z l i b)
Case2−4: S e r v e r H e l l o (TLSv1 ,

serverRandom2 , [B@b01baed8 ,
TLS DHE DSS WITH AES 256 CBC SHA , z l i b)

S3 C . C e r t i f i c a t e (X509Cert\ s) Case1−4: C e r t i f i c a t e (s e r v e r C e r t i f i c a t e)

S4 cheVal (D\ n o t B e f o r e ,
D\ n o t A f t e r)

Case1 , 2 : cheVal ((1 0 7 , 2 , 2) , (1 0 8 , 3 , 2)) == True
Case3 : cheVal ((1 0 7 , 2 , 1) , (1 0 7 , 3 , 1)) != F a l s e
Case4 : cheVal ((1 0 7 , 2 , 3) , (1 0 7 , 3 , 1)) != F a l s e

S5 Ver K CA(Sig) Case1−4: s i g V e r i t y ((1 . 2 . 8 4 0 . 1 1 3 5 4 9 . 1 . 1 . 5
S i g n a t u r e))

S6 c l i e n t K e y E x c h a n g e (ckex) Case1−4: Cl i en tKeyExchange (ckex1)

S7 S . f i n i s h e d (md5\ C , sha\ C) Case1−4: f i n i s h e d (gnu . j a v a . s e c u r i t y . hash . MD5@b00d27f8 ,
gnu . j a v a . s e c u r i t y . hash . Sha160@b00d2f78)

S8 C . f i n i s h e d (v e r i f y D a t a) Case1−4:
f i n i s h e d ("6a:df:3d:90:ec:0b:33:bc:2d:ce:ef:aa")

implementation by extracting 58 lines of code from the
doClientHandshake method into a new public method Veri

in the SSLSocket class. The extracted Veri method is
then called in the advice to reimplement the already existing
check. In addition to this check, we introduced an additional
cheVal method into the aspect module. After weaving in
this aspect, the date validity check is performed before the
existing certificate check.

Using the test aspect, we were able to detect that
the certificate() pointcut crosscuts three call sites with
different argument settings (see accordingly the wildcard
signature call(* C.certificate(..)) defined for this pointcut
in our aspect definition above). One of them is without
any arguments, whilst the other two are instantiated with
arguments. From the execution log, we found all are
executed after weaving our security aspect. However,
if our aspect is not woven in (i.e. in the original
JESSIE implementation), the original library only invokes
the function of Veri when certificate is called without
argument. In other words, the aspect has placed the check on
all obtained certificates whilst the existing implementation
misses some of them, which clearly results in a significant
security vulnerability as explained earlier.

When weaving in the security aspect at the JSSE
implementation, we could determine that it did not
further harden the security for JSSE beyond the existing
implementation since the security check implemented in
the aspect is already correctly enforced in JSSE. This is
confirmed by the logs of the two test cases that were reused.

These test cases also helped us to verify that the messages
are sent and received in a way that is consistent with the
sequence diagram in Figure 6.

5.4. Continuous Integration

Continuous integration[26] has been adopted by our process
where the regression test subprocess is augmented with
the regressive refactoring: whenever code or model are
changed in the repository – e.g., a developer committed
a set of changes – the continuous integration script will
check out the change set into a sandbox to conduct various
automated builds and tests. Adding our refactoring scripts
to the continuous integration script allows us to integrate our
security assurance approach with the continuous integration
framework. The error report subprocess is also augmented
with an explanation of the counter-example of potential
attack traces and the mismatch between the UMLsec model
and the implementation code. Therefore we can incorporate
a continuous integration process to make sure that whenever
there is a change to the artefacts in the repository, a sequence
of actions will be triggered to fully integrate the otherwise
separate security tools.

For example, the usual compilation and function test steps
are integrated with the additional actions in our proposed
framework. Whenever there is a change in the design or in
the implementation of the system, or there is a change to the
refactoring scripts, the automated refactoring tool (ART) is
called to check whether this causes the traceability links to
be broken. If so, then the run-time verification tools will be

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 25

p u b l i c a s p e c t t e s t C r y p t o P r o t o c o l S e c u r i t y {
p o i n t c u t c e r t i f i c a t e () :

c a l l (∗ C e r t i f i c a t e . C e r t i f i c a t e (. .)) ;
O b j e c t a round () : c e r t i f i c a t e () {

X 5 0 9 C e r t i f i c a t e [] X509Cer t s =
(X 5 0 9 C e r t i f i c a t e []) p r o c e e d () ;

i f (! X509Cer t s . checked) {
System . o u t . p r i n t l n ("Problematic

traceability found!") ;
}

}
}
p u b l i c a s p e c t C r y p t o P r o t o c o l S e c u r i t y {

p o i n t c u t c e r t i f i c a t e () :
c a l l (∗ C e r t i f i c a t e . C e r t i f i c a t e (. .)) ;

O b j e c t a round () : c e r t i f i c a t e () {
X 5 0 9 C e r t i f i c a t e [] X509Cer t s =

(X 5 0 9 C e r t i f i c a t e []) p r o c e e d () ;
SSLSocket s = (SSLSocket)

t h i s J o i n P o i n t . g e t T h i s () ;
f o r (i n t m=0; m<pCs . l e n g t h ;m++) {

a s s e r t cheVal (pCs [m] . D nb () ,
pCs [m] . D na ()) :

"+++ The date is invalid +++" ;
}
s . V e r i (X509Cer t s) ;
re turn X509Cer t s ;

}
}

FIGURE 17. Aspect to check vulnerable certificates

invoked to check whether the new system still has correct
traceability between design and implementation. If not, the
developers will be informed to obtain a new refactoring
script through further analysis.

The CruiseControl system is one of the most widely
used continuous integration systems. A CI process in
CruiseControl is driven by an XML-based build script for
the Java-based build tool Apache Ant2. By default, the
script would periodically monitor the designated repository
for any changes. Then based on the Ant build dependencies,
these changes may trigger a sequence of actions, normally
including building (compilation, packaging, deploying) and
testing.

We extend the CruiseControl system by adding a few
more tasks to the Ant build and test scripts. A daemon
process on the build/test machine periodically monitors
whether there is any change to the repository. Whenever
changed artifacts (including the code, the model, the test
cases, the refactoring scripts and the security aspects and
assurance test cases) are committed, the event triggered a
run of the extended Ant build.xml script, cf. the following
example:

2http://ant.apache.org

<p r o j e c t name="jessie"
d e f a u l t ="test"
b a s e d i r ="jessie">
< t a r g e t name="build" depends ="refactoring"/>
< t a r g e t name="test" depends ="build"/>
/ / the f o l l o w i n g tasks are augmented

< t a r g e t name="umlsec"/>
< t a r g e t name="refactoring"/>
< t a r g e t name="saspect" depends ="test"/>

</ p r o j e c t >

The first parameter specifies an environment variable for
the Eclipse headless build process. Since our refactoring
and aspect tools have dependencies on the basic Eclipse
platform and JDT, in order to run the scripts for refactoring
and security aspects it is necessary to start Eclipse without
GUI.

The dependencies between the targets of the build.xml
are straightforward. Before one can build the new
system, the modified code must be refactored such that the
changes committed by the programmers are synchronised
with the model. The UMLsec security check for model
vulnerabilities is performed after the system is built and
the refactoring is done. Based on the UMLsec model and
the LTL formulae to be monitored, an updated security
monitor can now be generated automatically, if required by
the system changes.

Integrating with the rest of the system through continuous
integration, these aspects are thus reusable whenever a
change to the design or the code does not affect the
traceability.

6. RELATED WORK

6.1. Formal Security Verification and Model-based

Security

Model-based Security [25] uses UML for the risk
assessment of an e-commerce system within the CORAS
framework for model-based security risk assessment. This
framework is characterised by an integration of aspects
from partly complementary risk assessment methods. [29]
proposes an extension of the i*/Tropos requirements
engineering framework to deal with security requirements.
[9] shows how UML can be used to specify access control
in an application and how one can then generate access
control mechanisms from the specifications. The approach
is based on role-based access control and gives additional
support for specifying authorisation constraints. [4] presents
the SECTET framework for Model Driven Security which
is then specialised towards a domain-specific approach for
healthcare scenarios, including the modelling of access
control policies, a target architecture for their enforcement,
and model-to-code transformations. [72] presents an
approach for the transformation of security requirements to
software architectures.

In an approach for model-based development of crypto-
graphic protocols, [56] explains how to generate “provably
correct” implementations from formal models.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

26 BAUER, JÜRJENS, YU

Formally Verifying Cryptographic Protocol Implementa-
tions: There have recently been some approaches towards
formally verifying implementations of cryptographic pro-
tocols against high-level security requirements such as
secrecy, for example [46, 31, 15].

6.2. Security Traceability and Maintenance

Traceability and Model Synchronisation Software mainte-
nance makes use of related models at different stages of
development. Example models are goal trees for require-
ments, UML diagrams for design and source code for imple-
mentation. When some model elements change, it is nec-
essary to synchronise the change on related elements in
order to maintain model consistency [38]. Existing trace-
ability approaches aim to recover traceability links that con-
nect elements of certain software engineering artifacts in
requirements, design and implementation [5, 27, 21, 39].
Search-based techniques recover traceability links between
documents and code with a precision below 100% [5, 39];
a probability-model based approaches relies on a softgoal-
interdependency graph to recover traceability links between
functional and non-functional requirements [21]; a scenario-
driven approach generates traceability links from observa-
tions of system executions [27]. Other work on require-
ments tracing includes [61]. In general, none of them can
recover accurate requirements traceability links. Though
efficient techniques have been proposed to account for incre-
mental update of traceability links recovered from search-
based approaches, these incrementally maintained traceabil-
ity links are still inaccurate [39]. Graph transformation-
based techniques [38] may accurately trace structural seman-
tics, yet another mechanism is required to trace behavioural
semantics.

Reverse Engineering Existing reverse engineering frame-
works were proposed to improve accuracy of traceability
for reference architecture [55] and for known design pat-
terns [14]. In our previous work [74], refactoring was pro-
posed to enable accurate abstraction of behavioural imple-
mentations such that they can be compared to the goal-
oriented requirements. In this work, refactoring is not only
used for comparing the source and target, but also for trans-
forming the source into the target.

Refactoring Scripts Dig et al. [23] first studied the
evolution of component APIs that can be replayed as
refactoring steps. They argued that the refactoring of library
components may indeed change the behaviour of the overall
system especially when the client of the components are
not refactored accordingly. For example, a function ‘foo’
may be renamed to ‘bar’ in the library, yet the call site
of the function may still try to invoke ‘foo’, only to find
broken contracts. Therefore, it is useful to keep track of
(or detect in Dig’s case) the refactoring steps as a script
such that they can be replayed at the client side. Our
tool supports tracking refactoring steps by translating the
refactoring steps recorded by the IDE into change resilient

refactoring specifications. Comparing with [23]’s work, our
use of refactoring is not for replaying the changes, rather
for maintaining the traceability between design elements
and implementation regardless of changes. Though the
RefactorCrawler tool [23] cannot be used directly, we can
make use of the refactoring preview dialog code in the
MolhadoRef tool [24].

Refactoring for Aspects In [32, 52], specialised refactoring
actions are defined mainly for aspect-orientation. In
this work, we expand the scope to any general-purpose
refactoring steps supported by existing tools. We
have exploited the opportunity to perform aspect-oriented
instrumentation in order to harden the security that require
general-purposed refactoring actions. In [16], Binkley
et al. proposed a number of aspect-aware refactoring
transformations to convert object-oriented programs into
aspect-oriented ones. If the design element is implemented
by crosscutting code, then Binkley et al.’s technique may
be applied to our work to maintain the traceability between
such elements. Since refactoring alone does not change
the behaviour of the system, aspects derived from such
refactoring transformations must not change the behaviour.
Consequently, they cannot improve the security of existing
implementation. In our work, we employ AOP to instrument
the code with additional functionality to enforce security
hardening. Therefore our aspect is introduced for a different
purpose.

6.3. Run-time Verification for Traceability

In this work we employ run-time verification as a tool to
trace security requirements not only to the source code level,
but beyond to the level of the execution of code. There
are various reasons as to why this is advantageous. For
example, assumptions that are inherent in design models
may not adequately address real-world challenges, such
as assumptions about attacker behaviour or the correctness
of an implementation. Run-time verification as used in
Section 3 has become a popular tool to verify that a system’s
execution adheres to a set of predefined properties.

As far as we know, this is the first work in which run-time
verification is used for the traceability of high-level security
properties in evolving systems.

Work in the area of run-time verification such as [34,
33, 11] consider it foremost from a theoretical point of
view; that is, the complexity of the underlying problems, the
theoretical expressiveness of the formalism used to express
monitoring properties, or the efficiency of the generated
monitors. In contrast, we focus on the methodological
aspects of this technique for achieving traceable security
beyond the source-code level.

As such, there are two aspects to be considered:

(1) the use of run-time verification for traceability of
security properties in evolving systems, and

(2) the evolution of the run-time verification “layer” itself
in terms of changing properties, monitor code, etc.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 27

Regarding 1), although there seems to be no prior work on
run-time security verification for evolving systems, there is
some previous work on run-time security verification. The
techniques used in run-time verification bear a resemblance
with the well-known security automata as introduced by
Schneider [59]. Formally, Schneider’s work is based on
temporal logic as well, however, it imposes restrictions
on the types of specifications which can be monitored (or
“enforced” to put it in Schneider’s own terms). Security
automata are restricted to the so-called safety fragment (of
LTL). Because the properties we consider go beyond the
pure safety fragment of LTL, our approach is strictly more
expressive than Schneider’s original work (see [10] for
a discussion of this). Another application of monitoring
to security was presented in [69]. The paper proposes
a caller-side rewriting algorithm for the byte-code of the
.NET virtual machine where security checks are inserted
around calls to security-relevant methods. The work is
different from ours in that it has not been applied to the
security verification of cryptographic protocols, which pose
specific challenges (such as the correct use of cryptographic
functions and checks). In another approach, [60] proposes
to use formal patterns of LTL formulae that formalise
frequently reoccurring system requirements as security
monitoring patterns. Again, this does not seem to have been
applied to cryptographic protocols so far.

Regarding 2), an important step regarding evolvable
systems was recently also made by Barringer et al. in
[8]. However, their view on evolution differs from the
one presented in this paper. Notably, their approach to
run-time verification is not just passive, but active, in that
a failing system is modified by a monitor noticing the
failure. As such, the failing system evolves, and the monitors
continuously adapt. In contrast, the evolution of our systems
is sparked by comparably major changes in the software’s
implementation, e.g., triggered by new requirements that
warrant a new release of a system, or specific rewrites for
efficiency gains. As a consequence, our use of run-time
verification is not as tightly integrated as that presented in
[8], formally and practically.

7. CONCLUSIONS

We have used an approach for model-based security
verification in which a design model in the UML
security extension UMLsec can be formally verified against
high-level security requirements such as secrecy and
authentication. An implementation of the specification can
then be verified against the model by making use of run-
time verification. Using the approach to run-time security
verification, one can raise an alarm at run-time in case
of a security violation, and terminate the given protocol
execution, before the secret is leaked out to the network. We
also explained how to remove the security vulnerability in a
implementation that has been detected in this way to make
sure the same problem will not appear again, making use of
techniques from aspect-oriented programming (AOP).

Despite the similarities between testing and run-time
verification, run-time verification can provide a level of
assurance that goes beyond what testing can usually
achieve when applied to highly complex security-critical
software: While testing complex systems can usually not be
exhaustive, run-time verification ensures, by construction,
that every system trace that will ever be executed will
be verified – while it is executed. In the case of the
cryptographic protocols that we consider, it is indeed
sufficient to notice attempted security violations at run-time
to still be able to maintain the security of the system: The
monitor is constructed in such a way that, if it detects a
violation, the current execution of the security protocol will
be terminated before any secret information is leaked out on
the network.

In practice, systems do not remain unchanged after they
are being used but may evolve over their life-time. We have
therefore enabled our security assurance approach to cope
automatically with the fact that systems will evolve at run-
time, and still provide valid run-time security assurance.

We demonstrated the approach at the hand of an
application to the Java-based implementation JESSIE of
the Internet security protocol SSL, in which a security
weakness was detected and fixed using our approach. We
also explained how the traceability link can be transformed
to the official implementation of the Java Secure Sockets
Extension (JSSE) that was recently made open source by
Sun.

There are a number of possible directions for future
work.

• Although run-time verification is quite effective,
sometimes it would be preferable to be able to statically
verify at least a particularly critical part of the code,
to further increase its trustworthiness. In future
work we plan to investigate how to combine run-time
security verification with static compositional software
verification such as [2].

• In another direction, it would be interesting to
see whether it would be possible to expand the
kinds of attacks that could be detected by this
approach, for example by including weaknesses in the
implementations of cryptographic algorithms (such as
encryption and digital signature). It remains, however,
to be seen which impact this would have on the
performance of the monitors.

• The current monitoring approach relies on the assump-
tion of having access to the source code of the moni-
tored software. It would be interesting to see whether
one could develop a monitor approach that does not rely
on this assumption but is still sufficiently precise and
performant.

Acknowledgements Discussions with Martin Leucker
about a draft of this paper are gratefully acknowledged,
as well as constructive comments by the reviewers which
helped improving the presentation significantly.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

28 BAUER, JÜRJENS, YU

REFERENCES

[1] Abadi, M. and R. Needham (1996). Prudent engineering
practice for cryptographic protocols. IEEE Trans. on

Software Engineering 22(1), 6–15.

[2] Abramsky, S., D. Ghica, A. Murawski, and C.-H. Ong
(2004). Applying game semantics to compositional
software modeling and verification. In Intl. Conference

on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS), pp. 421–435. Springer-
Verlag, Berlin.

[3] Aho, A. V., R. Sethi, and J. D. Ullman (1988).
Compilers: Principles, Techniques and Tools. Addison-
Wesley.

[4] Alam, M., M. Hafner, and R. Breu (2007). Model-driven
security engineering for trust management in SECTET.
Journal of Software 2(1), 47–59.

[5] Antoniol, G., G. Canfora, G. Casazza, A. de Lucia, and
E. Merlo (2002). Recovering traceability links between
code and documentation. IEEE Trans. on Software

Engineering 28(10), 970–983.

[6] Armoni, R., L. Fix, A. Flaisher, R. Gerth, B. Ginsburg,
T. Kanza, A. Landver, S. Mador-Haim, E. Singerman,
A. Tiemeyer, M. Y. Vardi, and Y. Zbar (2002). The
ForSpec temporal logic: A new temporal property-
specification language. In Intl. Conference on Tools and

Algorithms for the Construction and Analysis of Systems

(TACAS), Volume 2280 of Lecture Notes in Computer

Science, pp. 296–211. Springer-Verlag, Berlin.

[7] Ball, T., R. Majumdar, T. Millstein, and S. K. Rajamani
(2001). Automatic predicate abstraction of C programs.
SIGPLAN Not. 36(5), 203–213.

[8] Barringer, H., D. M. Gabbay, and D. E. Rydeheard
(2007). From runtime verification to evolvable systems.
In O. Sokolsky and S. Tasiran (Eds.), Intl. Workshop on

Runtime Verification, Volume 4839 of Lecture Notes in

Computer Science, pp. 97–110. Springer-Verlag, Berlin.

[9] Basin, D., J. Doser, and T. Lodderstedt (2006). Model
driven security: From UML models to access control
infrastructures. ACM Trans. on Software Engineering and

Methodology 15(1), 39–91.

[10] Bauer, A. and J. Jürjens (2008). Security protocols,
properties, and their monitoring. In 4th Int. Workshop on

Software Engineering for Secure Systems (SESS), pp. 33–
40. ACM Press, New York, NY.

[11] Bauer, A., M. Leucker, and C. Schallhart (2006).
Monitoring of real-time properties. In 26th Intl.

Conference on Foundations of Software Technology and

Theoretical Computer Science (FSTTCS), Volume 4337
of Lecture Notes in Computer Science, pp. 261–273.
Springer-Verlag, Berlin.

[12] Bauer, A., M. Leucker, and J. Streit (2006). SALT—
Structured Assertion Language for Temporal logic. In
Eighth Intl. Conference on Formal Engineering Methods

(ICFEM), Volume 4260 of Lecture Notes in Computer

Science, pp. 757–776. Springer-Verlag, Berlin.

[13] Best, B., J. Jürjens, and B. Nuseibeh. (2007). Model-
based security engineering of distributed information
systems using UMLsec. In Intl. Conference on Software

Engineering (ICSE), pp. 581–590. ACM Press, New
York, NY.

[14] Beyer, D., A. Noack, and C. Lewerentz (2005).
Efficient Relational Calculation for Software Analysis.
IEEE Trans. on Software Engineering 31(2), 137–149.

[15] Bhargavan, K., C. Fournet, A. Gordon, and S. Tse
(2006). Verified interoperable implementations of
security protocols. In Computer Security Foundations

Workshop, pp. 139–152. IEEE Computer Society.

[16] Binkley, D., M. Ceccato, M. Harman, F. Ricca, and
P. Tonella (2006). Tool-supported refactoring of existing
object-oriented code into aspects. IEEE Trans. on

Software Engineering 32(9), 698–717.

[17] Breu, R., K. Burger, M. Hafner, J. Jürjens, G. Popp,
G. Wimmel, and V. Lotz (2003). Key issues of a formally
based process model for security engineering. In 16th

Intl. Conference “Software & Systems Engineering &

their Applications” (ICSSEA). IEEE Computer Society.

[18] Calder, M. (1998). What use are formal design
and analysis methods to telecommunications services?
In 5th Intl. Conference on Feature Interactions in

Telecommunications and Software Systems, pp. 23–31.
IOS Press.

[19] Chess, B. and J. West (2007). Secure Programming

with Static Analysis. Addison-Wesley Professional.

[20] Clarke, E. M., O. Grumberg, and D. A. Peled (1999).
Model Checking. Cambridge, Massachusetts: The MIT
Press.

[21] Cleland-Huang, J., R. Settimi, O. BenKhadra,
E. Berezhanskaya, and S. Christina (2005). Goal-centric
traceability for managing non-functional requirements.
In Intl. Conference on Software Engineering (ICSE), pp.
362–371. ACM Press, New York, NY.

[22] Colin, S. and L. Mariani (2004). Run-time verification.
In Model-Based Testing of Reactive Systems, Volume
3472 of Lecture Notes in Computer Science, pp. 525–555.
Springer-Verlag, Berlin.

[23] Dig, D., C. Comertoglu, D. Marinov, and R. Johnson
(2006). Automated detection of refactorings in evolving
components. In 20th European Conference on Object-

Oriented Programming (ECOOP), Volume 4067 of
Lecture Notes in Computer Science, pp. 404–428.
Springer-Verlag, Berlin.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

RUN-TIME SECURITY TRACEABILITY FOR EVOLVING SYSTEMS 29

[24] Dig, D., K. Manzoor, R. Johnson, and T. N. Nguyen
(2007). Refactoring-aware configuration management
for object-oriented programs. In Intl. Conference on

Software Engineering (ICSE), pp. 427–436. ACM Press,
New York, NY.

[25] Dimitrakos, T., B. Ritchie, D. Raptis, J. Aagedal, F. den
Braber, K. Stølen, and S. Houmb (2002). Integrating
model-based security risk management into ebusiness
systems development: The CORAS approach. In
Second IFIP Conference on E-Commerce, E-Business,

E-Government (I3E), pp. 159–175. Kluwer Academic
Publishers.

[26] Duvall, P., S. Matyas, and A. Glover (2007).
Continuous integration: improving software quality and

reducing risk. Addison-Wesley Professional.

[27] Egyed, A. (2003). A scenario-driven approach to
trace dependency analysis. IEEE Trans. on Software

Engineering 9(2), 116–132.

[28] Eisner, C. and D. Fisman (2006). A Practical

Introduction to PSL (Series on Integrated Circuits and

Systems). Springer New York, Inc.

[29] Giorgini, P., F. Massacci, and J. Mylopoulos (2003).
Requirement engineering meets security: A case study
on modelling secure electronic transactions by VISA and
Mastercard. In 22nd Intl. Conference on Conceptual

Modeling (ER), Volume 2813 of Lecture Notes in

Computer Science, pp. 263–276. Springer-Verlag, Berlin.

[30] Godefroid, P. (2005). Software model checking: The
verisoft approach. Form. Methods Syst. Des. 26(2), 77–
101.

[31] Goubault-Larrecq, J. and F. Parrennes (2005). Cryp-
tographic protocol analysis on real C code. In 6th

Intl. Conference on Verification, Model Checking and

Abstract Interpretation (VMCAI), Volume 3385 of Lec-

ture Notes in Computer Science, pp. 363–379. Springer-
Verlag, Berlin.

[32] Hannemann, J. (2006). Role-based refactoring of

crosscutting concerns. Ph. D. thesis, Vancouver, BC,
Canada.

[33] Havelund, K. and G. Rosu (2002). Synthesizing
Monitors for Safety Properties. In Intl. Conference on

Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), Volume 2280 of Lecture Notes in

Computer Science, pp. 342–356. Springer-Verlag, Berlin.

[34] Havelund, K. and G. Rosu (2004). Efficient monitoring
of safety properties. Software Tools for Technology

Transfer 6, 158– 173.

[35] Hoare, C. (1996). How did software get so reliable
without proof? In Formal Methods Europe (FME’96),
Volume 1051 of Lecture Notes in Computer Science, pp.
1–17. Springer-Verlag, Berlin.

[36] Holzmann, G. J. (1991). Design and validation of

computer protocols. Prentice-Hall, Inc.

[37] Hopcroft, J. E. and J. D. Ullman (1979). Introduction

to Automata Theory, Languages and Computation (First
ed.). Addison-Wesley.

[38] Ivkovic, I. and K. Kontogiannis (2004). Tracing
evolution changes of software artifacts through model
synchronization. In 20th IEEE Intl. Conference on

Software Maintenance (ICSM), pp. 252–261. IEEE
Computer Society.

[39] Jiang, H., T. N. Nguyen, and I. Chen (2008).
Incremental latent semantic indexing for effective,
automatic traceability link evolution management. In
Intl. Conference on Software Engineering (ICSE), pp. 59–
68. ACM Press, New York, NY.

[40] Jürjens, J. (2000). Secure information flow for
concurrent processes. In 11th Intl. Conference on

Concurrency Theory (CONCUR), Volume 1877 of
Lecture Notes in Computer Science, pp. 395–409.
Springer-Verlag, Berlin.

[41] Jürjens, J. (2002). Formal semantics for interact-
ing UML subsystems. In 5th Intl. Conference on For-

mal Methods for Open Object-Based Distributed Sys-

tems (FMOODS), pp. 29–44. International Federation for
Information Processing (IFIP): Kluwer Academic Pub-
lishers.

[42] Jürjens, J. (2004). Secure Systems Development with

UML. Springer-Verlag, Berlin.

[43] Jürjens, J. (2005). Sound methods and effective tools
for model-based security engineering with UML. In
Intl. Conference on Software Engineering (ICSE), pp.
322–331. ACM Press, New York, NY.

[44] Jürjens, J., J. Schreck, and P. Bartmann (2008). Model-
based security analysis for mobile communications. In
Intl. Conference on Software Engineering (ICSE), pp.
683–692. ACM Press, New York, NY.

[45] Jürjens, J. and P. Shabalin (2004). Automated
verification of UMLsec models for security requirements.
In The Unified Modeling Language (UML), Volume 2460
of Lecture Notes in Computer Science, pp. 412–425.
Springer-Verlag, Berlin.

[46] Jürjens, J. and M. Yampolskiy (2005). Code security
analysis with assertions. In 20th Intl. Conference on

Automated Software Engineering (ASE), pp. 392–395.
ACM Press, New York, NY.

[47] Jürjens, J. and Y. Yu (2007). Tools for model-based
security engineering: Models vs. code. In 22nd Intl.

Conference on Automated Software Engineering (ASE),
pp. 545–546. ACM Press, New York, NY.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

30 BAUER, JÜRJENS, YU

[48] Jürjens, J., Y. Yu, and A. Bauer (2008). Tools for
traceable security verification. In Proceedings of the

BCS International Academic Conference 2008—Visions

of Computer Science, Swindon, UK, pp. 367–378. The
British Computer Society.

[49] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold (2001). An overview

of AspectJ, Volume 2072/2001 of Lecture Notes in

Computer Science, pp. 327–355. Springer-Verlag, Berlin.

[50] Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin (1997). Aspect-
oriented programming. In 17th European Conference on

Object-Oriented Programming (ECOOP), Volume 1241
of Lecture Notes in Computer Science, pp. 220–242.
Springer-Verlag, Berlin.

[51] Krueger, C. W. (1992). Software reuse. ACM Comput.

Surv. 24(2), 131–183.

[52] Laddad, R. (2006). Aspect Oriented Refactoring.
Addison-Wesley Professional.

[53] Leucker, M. and C. Schallhart (2009). A brief account
of runtime verification. Journal of Logic and Algebraic

Programming. in press.

[54] Mens, T. and T. Tourwe (2004). A survey of software
refactoring. IEEE Trans. on Software Engineering 30(2),
126–139.

[55] Murphy, G. C., D. Notkin, and K. J. Sullivan (2001).
Software reflexion models: Bridging the gap between
design and implementation. IEEE Trans. on Software

Engineering 27(4), 364–380.

[56] Pironti, A. and R. Sisto (2007). An experiment
in interoperable cryptographic protocol implementation
using automatic code generation. In IEEE Symposium

on Computers and Communications, pp. 839–844. IEEE
Computer Society.

[57] Pnueli, A. (1977). The temporal logic of programs. In
18th IEEE Symposium on the Foundations of Computer

Science (FOCS), pp. 46–57. IEEE Computer Society.

[58] Ryan, P., S. Schneider, M. Goldsmith, G. Lowe, and
B. Roscoe (2001). The Modelling and Analysis of

Security Protocols: the CSP Approach. Addison-Wesley.

[59] Schneider, F. B. (2000). Enforceable security policies.
ACM Trans. Inf. Syst. Secur. 3(1), 30–50.

[60] Spanoudakis, G., C. Kloukinas, and K. Androutsopou-
los (2007). Towards security monitoring patterns. In ACM

Symposium on Applied Computing (SAC), pp. 1518–
1525. ACM Press, New York, NY.

[61] Spanoudakis, G., A. Zisman, E. Pérez-Miñana,
and P. Krause (2004). Rule-based generation of
requirements traceability relations. Journal of Systems

and Software 72(2), 105–127.

[62] Stärk, R., J. Schmid, and E. Börger (2001). Java

and the Java virtual machine – definition, verification,

validation. Springer-Verlag.

[63] Stenz, G. and A. Wolf (2000). E-setheo: An
automated theorem prover. In Intl. Conference on

Automated Reasoning with Analytic Tableaux and

Related Methods (TABLEAUX), Volume 1847 of Lecture

Notes in Computer Science, pp. 436–440. Springer-
Verlag, Berlin.

[64] Tarr, P., H. Ossher, W. Harrison, and S. S. Jr. (1999).
Degrees of separation: Multi-dimensional separation of
concerns. In Intl. Conference on Software Engineering

(ICSE), pp. 107–119. ACM Press, New York, NY.

[65] Thomas, M. (2004). Engineering judgement. In
9th Australian workshop on Safety critical systems and

software (SCS), pp. 43–47. Australian Computer Society,
Inc.

[66] Tool (2001-08). Security analysis tools.
http://computing-research.open.ac.uk/jj/
sectracetool.

[67] Tool (2009a). Borland Together.
http://www.borland.com/us/products/together/.

[68] Tool (2009b). LTL3 Tools.
http://ltl3tools.SourceForge.Net/.

[69] Vanoverberghe, D. and F. Piessens (2008). A caller-
side inline reference monitor for an object-oriented
intermediate language. In 10 Intl. Conference on Formal

Methods for Open Object-Based Distributed Systems

(FMOODS), Volume 5051 of Lecture Notes in Computer

Science, pp. 240–258. Springer-Verlag, Berlin.

[70] Widmer, T. (2007, Feb). Unleashing the power of
refactoring. Eclipse Corner Articles.

[71] Woodcock, J., S. Stepney, D. Cooper, J. Clark, and
J. Jacob (2008). The certification of the Mondex
electronic purse to ITSEC Level E6. Formal Aspects of

Computing 20(1), 5–19.

[72] Yskout, K., R. Scandariato, B. D. Win, and W. Joosen
(2008). Transforming security requirements into
architecture. In 3rd Intl. Conference on Availability,

Reliability and Security (ARES), pp. 1421–1428. IEEE
Computer Society.

[73] Yu, Y., J. C. S. do Prado Leite, and J. Mylopoulos
(2004). From goals to aspects: Discovering aspects from
requirements goal models. In 12th IEEE Intl. Conference

on Requirements Engineering (RE), pp. 38–47. IEEE
Computer Society.

[74] Yu, Y., Y. Wang, J. Mylopoulos, S. Liaskos,
A. Lapouchnian, and J. C. S. do Prado Leite (2005).
Reverse engineering goal models from legacy code. In
13th IEEE Intl. Conference on Requirements Engineering

(RE), pp. 363–372. IEEE Computer Society.

THE COMPUTER JOURNAL VOL. 00 NO. 0, 2008

