

D6.1 Programming model and annotations

Frank Piessens, Bart Jacobs, Jan Smans, Pieter Philippaerts
K.U.Leuven), Isabelle Simplot-Ryl (INRIA Lille), Elisa Chiarani
UNITN)

(
(

Document information

Document Number D6.1

Document Title Programming model and annotations

Version 4.0

Status Final

Work Package WP 6

Deliverable Type Report

Contractual Date of Delivery 31 January 2010

Actual Date of Delivery 31 January 2010

Responsible Unit KUL

Contributors INR, UNITN

Keyword List Programming models, verification

Dissemination level PU

D6.1 Programming model and annotations | version 4.0 | page 1/53

Document change record

Version Date Status Author (Unit) Description

1.0 18 Dec
2009 Draft

Frank Piessens, Bart
Jacobs, Jan Smans,
Pieter Philippaerts
(KUL)

First draft

2.0 7 Jan 2010 Draft
Frank Piessens (KUL),
Isabelle Simplot‐Ryl
(INR)

Addressed comments
and feedback from

l Isabelle Simplot‐Ry

2.1 11 Jan
2010 Draft Elisa Chiarani (UNITN)

First quality check
completed; Some
minor remarks

3.0 15 Jan
2010 Draft Frank Piessens (KUL) Addressed UNITN

remarks

3.1 19 Jan
2010 Draft Elisa Chiarani (UNITN)

Final quality check
completed; Minor
remarks

4.0 22 Jan
010 2 Final Frank Piessens (KUL)

Addressed UNITN
remarks and finalized
ocument d

D6.1 Programming model and annotations | version 4.0 | page 2/53

Executive summary

This document summarizes the work performed in Task 6.1 of Work Package 6 of the
SecureChange project funded by the European Commission within the Seventh
Framework Programme.

The overall objective of Work Package 6 is the development of verification techniques
for evolving systems, with a strong focus on the development time and run time phases
of the software lifecycle. Task 6.1 focuses on development time. The objective of Task
6.1 is the development of programming models that can ensure the absence of classes
of vulnerabilities. A programming model consists of a set of programming guidelines
designed to avoid a specific class of vulnerabilities. Source code annotations make the
programming model explicit, and can support formal verification of compliance with the
programming model.

Two important results were obtained in Task 6.1. First, we developed a programming
model to avoid so-called dependency-safety errors. A dependency-safety violation
happens when a particular piece of code fails (throws an exception), and consequently
other code that essentially depends on the successful completion of that piece of code
is executed. Dependency safety violations are typically caused by improper exception
handling. Our programming model allows a developer to make dependencies explicit
through annotations, and provides more strict exception handling machinery such that
dependency safety can be guaranteed. The theory behind this model has been
published in the ECOOP 2009 conference, one of the top programming languages
conferences in Europe.

Second, we developed a programming model to avoid safety issues related to the
dynamic loading and unloading of modules. These run-time modifications to the code
of an application are an important technique to support evolvability of a software
product, but they introduce several safety risks, including for instance the creation of
dangling function pointers, pointing to code that is already unloaded. We developed a
programming model and annotations in a variant of separation logic that allow a
developer to verify the safety of the resulting system. This second result is work in
progress, and its current status is summarized in a Technical Report of the department
of computer science of the K.U.Leuven.

These two models, as well as existing programming models, address specific software
quality and security issues and can be used independently. However, an important
advantage of the programming model approach is that it is relatively straightforward to
combine models. Several models can be used together and can strengthen eachother.

Since the ECOOP paper and the Technical Report mentioned above provide excellent
descriptions of these two results, the core of the deliverable consists of these two
publications. We first provide a small introduction situating the work in the entire
SecureChange project, and a glossary defining the Work Package 6 use of terms.
Then we add the two publications as appendices : they describe the core technical
contributions.

D6.1 Programming model and annotations | version 4.0 | page 3/53

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 3

INDEX 4

1 INTRODUCTION 5

2 TECHNICAL RESULTS 6

2.1 Dependency safety 6

2.2 Safety of unloadable modules 6

3 CONCLUSION 7

4 GLOSSARY 8

REFERENCES 9

5

 APPENDIX 10

D6.1 Programming model and annotations | version 4.0 | page 4/53

1 Introduction

The key objective of the SecureChange project is the development of tools and
techniques to ensure lifelong compliance to evolving security, privacy and
dependability requirements for long-running and evolving software-based systems.

To achieve this objective, the project studies and improves the state-of-the-art in
several phases of the software lifecycle, including requirements engineering,
architectural design, detailed design, implementation, verification and testing.

The focus of Work Package 6 of the project is on the implementation and verification
phases, but it includes also the usage phase, as the question how to securely update
and evolve running systems is very much in scope for Work Package 6.

The same terminology (terms such as vulnerability, threat, countermeasure and so
forth…) is used in all phases of the software lifecycle, but these terms often have a
more specific meaning when specialized to, for instance, the development phase. To
avoid ambiguities, this deliverable includes a glossary (see Section 4) of these
security-specific terms, and how they are used in Work Package 6.

Work Package 6 has three main lines of work. The first line (consisting of Tasks 6.1
and 6.2) concerns the development of programming models that can ensure the
absence of classes of vulnerabilities, and the development of proof-of-concept tools
that can verify compliance with a programming model. Such models and tools support
secure and correct evolution of the code and changes to the code by making implicit
developer assumptions explicit in annotations, and by checking that these assumptions
are not violated during code evolution. The first half of this line of work (Task 6.1) is
finished, and the results are reported in this deliverable.

The second line of work (Tasks 6.3, 6.4 and 6.5) concerns the development of on-
device verification algorithms. This includes techniques to verify the information flow
security of dynamically loaded code, and extensions to the Security-by-Contract
paradigm for information flow security. This line of work is ongoing, and the first results
will be made available at month 18 of the project in Deliverable D6.3.

Finally, the third line of work (Task 6.6) studies the interplay between development-
time verification and on-device verification. This line of work will only start at the end of
year 2 of the project.

The glossary provided in Section 4 covers the terms relevant to all these three lines of
work. But all the other content of this deliverable is specific to the first line of work,
development time verification using programming models.

D6.1 Programming model and annotations | version 4.0 | page 5/53

2 Technical results

A programming model consists of a set of programming guidelines designed to avoid a
specific class of vulnerabilities. Source code annotations make the programming model
explicit, and can support formal verification of compliance with the programming model.

As such, programming models are very similar to pluggable type systems [3]. A wide
variety of programming models or related type systems already existed at the start of
the SecureChange project, including systems that deal with concurrency vulnerabilities
or bugs [4,5], aliasing bugs [6], or code access security vulnerabilities [7].

In the context of SecureChange, two new results were obtained, and we discuss these
in the next two subsections.

2.1 Dependency safety
First, we developed a programming model to avoid so-called dependency-safety
errors. A dependency-safety violation happens when a particular piece of code fails
(throws an exception), and consequently other code that essentially depends on the
successful completion of that piece of code is executed. Dependency safety violations
are typically caused by improper exception handling. The Ariane 5 crash is a well-
known example of the fact that proper exception handling is a major concern during
code evolution.

This line of work was ongoing when the SecureChange project started, and we
finalized the programming model and annotations in the first five months of the project.
Our programming model allows a developer to make dependencies explicit through
annotations, and provides more strict exception handling machinery such that
dependency safety can be guaranteed.

The theory behind this model is described in detail in an ECOOP 2009 publication [1].
This publication is included verbatim in the Appendix of this deliverable. Ongoing and
future work includes a further practical validation, and the study of the interaction
between dependency safety and information flow security as studied in the other Tasks
in WP 6.

2.2 Safety of unloadable modules
Second, we developed a programming model to avoid safety issues related to the
dynamic loading and unloading of modules. These run-time modifications to the code
of an application are an important technique to support evolvability of a software
product, but they introduce several safety risks, including for instance the creation of
dangling function pointers, pointing to code that is already unloaded.

This line of work is still ongoing, but the programming model and annotations are
stable. The annotations are done in a variant of separation logic. The current status of
this work is described in a Technical Report [2]. This technical report is included
verbatim in the Appendix of this deliverable.

D6.1 Programming model and annotations | version 4.0 | page 6/53

3 Conclusion

Task 6.1 of the SecureChange project has completed on schedule. We have designed
two programming models and the corresponding annotations, one to ensure
dependency safety, and another one to guarantee safety of dynamically loadable and
unloadable code.

Task 6.2 will build on this work and develop a prototype verifier for at least one of these
programming models, and evaluate it on one of the SecureChange case studies. Two
case studies are under consideration: the POPS case study, where provable absence
of certain classes of run time exceptions in JavaCard code is an important concern,
and the HOMES case study, where the safety of the software on the home gateway
(both C code and Java code) in the presence of evolution (for instance loading /
unloading of modules) is a concern.

D6.1 Programming model and annotations | version 4.0 | page 7/53

4 Glossary

Attack: the execution of a program or program module with exploit input.

Contract: a specification of the security-relevant behaviour of a program or program
module. Examples include: information flow contracts that specify how information can
flow from inputs to outputs, or access control contracts that specify the possible traces
of security-relevant events that a program could generate.

Countermeasure: a technique to prevent, remove or tolerate vulnerabilities.

Exploit: A set of inputs to, or an interaction with a program or program module that
triggers a vulnerability, and hence makes the program (module) deviate from its
contract.

Information flow: how outputs of a program (directly or indirectly) depend on inputs of
a program.

Matching (policy-contract): the process of checking whether a contract is compatible
with a policy: is everything that is specified as possible security-relevant behaviour by
the contract also allowed by the policy. For access control contracts and policies,
where security-relevant behaviour can be formalized as a set of allowable traces of
security-relevant events, matching corresponds to set inclusion.

Modular verification: a verification process that verifies each module separately.
While verifying a module, the verification relies only on the contracts of dependent
modules, not on their implementation. Modular verification can make the verification
process more scalable to large programs, and can make it lighter for new versions of
the system.

Module: a logically self-contained part of a program. Packages, classes, or methods
are examples of modules of different granularity. Modules have an implementation and
a specification. The security-relevant part of the specification is called the contract.

Policy: a specification of the security constraints that a deployment context wishes to
impose upon a program. Examples include: information flow policies that specify how
information is allowed to flow from inputs to outputs, or access control policies that
specify the traces of security-relevant events that a program is allowed to generate.

Programming model: a programming model is a set of guidelines on how to use the
features of a given programming language. These guidelines will typically be designed
in such a way that they avoid the introduction of certain classes of vulnerabilities in the
code.

Verification (code-contract): the process of checking the compliance of a program or
program module with its contract.

Vulnerability: a vulnerability is a security-relevant bug in a program, i.e. the program is
not satisfying its contract.

D6.1 Programming model and annotations | version 4.0 | page 8/53

References

[1] Bart Jacobs, Frank Piessens, Failboxes: Provably safe exception handling, ECOOP 2009 -
Object-Oriented Programming, 23rd European Conference, Genova, Italy, July 6-10, 2009,
Proceedings, volume 5653, pages 470-494, Genova, 6-10 July 2009.

[2] Bart Jacobs, Jan Smans, Frank Piessens, Verification of unloadable C modules - status
report, Technical Report (CW Reports), volume CW567, Department of Computer Science,
K.U.Leuven, October 2009.

[3] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for
implementing pluggable type systems. SIGPLAN Not., 41(10):57–74, 2006.

[4] Bart Jacobs, K. Rustan M. Leino, Frank Piessens, andWolfram Schulte. Safe concurrency
for aggregate objects with invariants. In Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, pages 137–146. IEEE
Computer Society, 2005.

[5] Boyapati, C., Lee, R., and Rinard, M. 2002. Ownership types for safe programming:
Preventing data races and deadlocks. In Proc. Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), S. Matsuoka, Ed. SIGPLAN Notices 37, 11, 211-
230

[6] David Clarke, John Potter, James Noble, Ownership types for flexible alias protection,
SIGPLAN notices, volume 33, issue 10, pages 48-64, October 1998

[7] Jan Smans, Bart Jacobs, and Frank Piessens. Static verification of code access security
policy compliance of .NET applications. Journal of Object Technology, 5(3), April 2006.

D6.1 Programming model and annotations | version 4.0 | page 9/53

5 APPENDIX

This appendix contains the two papers:

• Bart Jacobs, Frank Piessens, Failboxes: Provably safe exception handling, ECOOP
2009 - Object-Oriented Programming, 23rd European Conference, Genova, Italy, July
6-10, 2009, Proceedings, volume 5653, pages 470-494, Genova, 6-10 July 2009.

• Bart Jacobs, Jan Smans, Frank Piessens, Verification of unloadable C modules - status
report, Technical Report (CW Reports), volume CW567, Department of Computer
Science, K.U.Leuven, October 2009.

D6.1 Programming model and annotations | version 4.0 | page 10/53

Failboxes: Provably Safe Exception Handling?

Bart Jacobs?? and Frank Piessens

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{bart.jacobs,frank.piessens}@cs.kuleuven.be

Abstract. The primary goal of exception mechanisms is to help ensure
that when an operation fails, code that depends on the operation’s suc-
cessful completion is not executed (a property we call dependency safety).
However, the exception mechanisms of current mainstream programming
languages make it hard to achieve dependency safety, in particular when
objects manipulated inside a try block outlive the try block.
Many programming languages, mechanisms and paradigms have been
proposed that address this issue. However, they all depart significantly
from current practice. In this paper, we propose a language mechanism
called failboxes. When applied correctly, failboxes have no significant im-
pact on the structure, the semantics, or the performance of the program,
other than to eliminate the executions that violate dependency safety.
Specifically, programmers may create failboxes dynamically and execute
blocks of code in them. Once any such block fails, all subsequent at-
tempts to execute code in the failbox will fail. To achieve dependency
safety, programmers simply need to ensure that if an operation B de-
pends on an operation A, then A and B are executed in the same failbox.
Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup.
Finally, the Fail Fast mechanism prevents liveness issues when a thread
is waiting on a failed thread.
We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are
easy to reason about, we propose proof rules in separation logic. The
theory has been machine-checked.

1 Introduction

If a program is seen as a state machine, a programmer’s job may be seen as
writing code to deal with each of the states that the program may reach. How-
ever, programmer time is limited and some states are less likely to occur during
production than others. Therefore, in many projects it is useful to designate
the most unlikely states as failure states and to deal with all failure states in a
uniform way, while writing specific code only for non-failure (or normal) states.

An extreme form of this approach is to simply ignore failure states and not
care what the program does when it reaches a failure state (i.e., when it fails).
? We used the term subsystems in preliminary work.

?? Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

D6.1 Programming model and annotations | version 4.0 | page 11/53

This is often what happens when subroutines indicate failure conditions as spe-
cial return values, and programmers have no time to write code at call sites to
check for them.

A major problem with this approach is that it is unsafe: a failure may lead to
the violation of any and all of the program’s intended safety properties. Specifi-
cally, the approach violates dependency safety, the property which says that when
an operation fails, code that depends on the operation’s successful completion
is not executed.

To fix this, modern programming languages offer constructs that make it easy
for programmers to indicate that a state is a failure state, and deal with failure
states by terminating the program by default. The underlying assumption is that
termination is always safe. For example, in Java, a failure state is indicated by
throwing an unchecked exception. We will focus on the Java language in this
paper; the related work section discusses other languages.

Whereas by default, when a program throws an exception it terminates im-
mediately, the programmer can override this default through the use of try-catch
statements and try-finally statements. Furthermore, in a multithreaded program,
when a thread’s main method completes abruptly (i.e., an exception was thrown
and not caught during its execution), only that thread, not the entire program,
is terminated. Also, when a synchronized block’s body completes abruptly, the
lock is released before the exception is propagated further.

These deviations from strict termination behavior are useful and are used for
two reasons. Firstly, not all exceptions indicate failure. Sometimes, programmers
throw and catch exceptions to implement the program’s functional behavior.
Typically, in Java, checked exceptions are used for this. Secondly, programmers
sometimes wish to increase the program’s robustness by not considering the
program to be a single unit of failure but rather by identifying multiple smaller
units of failure. Common examples are extensible programs, where poorly written
or malicious plugins (such as applets or servlets) should not affect the base
system; and command-processing applications (such as request-response-based
servers, GUI applications, or command-line shells) where a failure during the
processing of a command should simply cause an error response to be returned,
while continuing to process other commands normally.

However, by continuing to execute after a failure, the risk of safety violations
reappears. In particular, safety violations are likely if the code that fails leaves a
data structure in an inconsistent state and this data structure is then accessed
during execution of a finally block or after the exception is caught, or by another
thread. In other words, there is a safety risk if a try block manipulates an object
that outlives the try block. More generally, if we define dependency safety as
the property that if an operation fails, no code that depends on the operation’s
successful completion is executed, then dependency safety may be violated if
pieces of code outside a try block depend on particular pieces of code inside the
try block either not executing at all or executing to completion successfully. This
is the problem we address in this paper.

D6.1 Programming model and annotations | version 4.0 | page 12/53

To remedy this, we propose a language mechanism called failboxes. Program-
mers may create failboxes dynamically and execute blocks of code in them. Once
any such block fails, all subsequent attempts to execute code in the failbox will
fail. To achieve dependency safety, programmers simply need to ensure that if an
operation B depends on an operation A, then A and B are executed in the same
failbox. Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup. Fi-
nally, the Fail Fast mechanism prevents liveness issues in the presence of failure
in cooperating concurrent computations.

Failboxes are very lightweight: a failbox can be implemented as an object
with a boolean field indicating if the failbox has failed, and a parent pointer.
Executing a code block in a failbox essentially means that before and after
executing the block, the thread-local variable that designates the current failbox
is updated, and before a failbox is made current, it is checked that it has not
failed.

We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are easy to
reason about, we propose separation logic proof rules and prove their soundness.

The rest of the paper is structured as follows. In Section 2, we illustrate
the problem with an example and discuss existing approaches. In Section 3, we
introduce failboxes. We show additional aspects and benefits of the approach
for multithreaded programs in Section 4. Section 5 briefly discusses how the
approach enables safe cancellation and robust compensation. To show that it is
easy to reason about the new constructs, we propose separation logic proof rules
for the envisaged usage patterns in Section 6. We end the paper with sections
on implementation issues (Section 7), related work (Section 8), and a conclusion
(Section 9).

The theory of this paper has been machine-checked using the Coq proof
assistant [12].

2 Problem Statement

Consider the example program in Figure 1. It shows a program that continuously
receives commands and processes them. The code for processing commands is
not shown, except that it involves calls of compute and calls of addEntry on a
Database object db that is shared across all command executions. If the process-
ing of a command fails, e.g. because it requires too much memory, the exception
is caught, an error message is shown to the user, and the next command is
received.

This program is unsafe. Specifically, some executions of this program violate
the intended safety property that at the start of each loop iteration, object
db is consistent, i.e., satisfies the property that count is not greater than the
length of entries. In particular, consider an execution where method addEntry
is called in a state where entries is full. This means count equals entries.length.
As a result, after incrementing count , addEntry will attempt to allocate a new,

D6.1 Programming model and annotations | version 4.0 | page 13/53

	SC_Deliverable 6.1 - Programming model and annotations.pdf
	1 Introduction
	2 Technical results
	2.1 Dependency safety
	2.2 Safety of unloadable modules

	3 Conclusion
	4 Glossary
	References
	5 APPENDIX

	failboxes
	CW567

