
D 7.2: How to integrate evolution into a model-
based testing approach

Fabrice BOUQUET, Frédéric DADEAU, Stéphane DEBRICON, Elizabeta
FOURNERET, Jacques JULLIAND, Pierre-Alain MASSON, Philippe PAQUE-
LIER (INR), Julien BOTELLA, Bruno LEGEARD (SMA), Berthold AGRE-
ITER, Michael FELDERER (UIB), Julien BERNET, Boutheina CHETALI,
Quang-Huy NGUYEN (GTO), Alvaro ARMENTEROS PACHECO (TID), Zoltan
MICSKEI (BME), Fabio MASSACCI and Elisa CHIARANI (UNITN)

Document Information

Document Number D7.2.
Document Title How to integrate evolution into a model-

based testing approach
Version 1.7
Status Final
Work Package WP 7
Deliverable Type Report
Contractual Date of Delivery M12.
Actual Date of Delivery 19 January 2010
Responsible Unit INR
Contributors INR, UIB, SMA, BME, GTO, TID,

UNITN
Keyword List Model-based, Test
Dissemination level PU

How to integrate evolution into MBT | version 1.7 | page 1 / 82

Document change record

Version Date Status Author (Unit) Description
0.1 2009/10/12 Working F. BOUQUET (INR) Plan and document
0.2 2009/10/30 Working F. BOUQUET (INR),

F. DADEAU (INR), S.
DEBRICON (INR), E.
FOURNERET (INR),
J. JULLIAND (INR),
B. LEGEARD (SMA),
P.A. MASSON and P.
PAQUELIER (INR)

Methods

0.3 2009/11/19 Working M. FELDERER
and B. AGREITER
(UIB) and Alvaro
ARMENTEROS
PACHECO (TID)

Home Gateways El-
ements & Telling
Story

0.4 2009/11/24 Working J. BOTELLA (SMA)
and E. FOURNERET
(INR)

GlobalPlateform

0.5 2009/12/14 Working all authors Reviews
1.0 2009/12/19 Draft F. BOUQUET (INR) First non author

Review
1.1 2009/12/20 Draft J. BERNET,

Boutheina CHETALI,
Quang-Huy NGUYEN
(GTO)

Review

1.2 2009/12/23 Draft Z. MISCKEI (BME) Review
1.3 2010/01/11 Draft F. MASSACCI and E.

CHIARANI (UNITN)
First Quality
Check; minor
remarks

1.4 2010/01/12 Draft F. BOUQUET (INR) Changes made
according to first
quality check and
remarks

1.5 2010/01/18 Draft B. AGREITER (UIB) Typos
1.6 2010/01/19 Draft F. MASSACCI and E.

CHIARANI (UNITN)
Quality Check; mi-
nor remarks

1.7 2010/01/19 Final F. BOUQUET (INR) Changes made ac-
cording to quality
check and remarks

How to integrate evolution into MBT | version 1.7 | page 2 / 82

Executive summary

This deliverable is the result of the work realized in task 2 of Work Package
7. From the state of the art provided in task 1 and presented in Deliverable 7.1,
we propose to extend the methods and the tools in order to take the evolution
into account. We will generate tests to emphasize the correctness of the system
w.r.t. evolution, based on requirements and model changes.

This document presents the process and the concepts for a Model-Based
Testing approach used to compute tests. We introduce a motivating example
called Bob’s adventure. We propose with this simple example to illustrate sev-
eral situations of evolution, and their impact on our methods. We conclude
with the preliminary results of the collaboration between WP7 and WP1 on
two case studies: Home Gateway provided by Telefonica and GlobalPlatform
(called POPS) provided by Gemalto.

How to integrate evolution into MBT | version 1.7 | page 3 / 82

Index

Document information 1

Document change record 2

Executive summary 3

1 Introduction 11

2 MBT Process and Concepts 12
2.1 MBT Process . 12
2.2 MBT Artefacts . 15

3 Motivating example: Bob’s Adventure 17
3.1 Functional description . 17

3.1.1 Initial behavior . 18
3.1.2 Evolution . 18

3.2 Functional Requirements . 19
3.2.1 Evolutions . 20

3.3 Static View . 20
3.3.1 Initial behavior . 21
3.3.2 Evolution . 22

3.4 Dynamic View . 25
3.5 Tests . 28

4 Several Kinds of Evolution for Test 31
4.1 Evolution of the requirements . 31

4.1.1 Impact of a functional requirement evolution 31
4.1.2 Impact of a behavioral requirement evolution 32

4.2 Evolution of the model . 32
4.3 Evolution of the IUT . 33
4.4 Evolution of the environment . 33

4.4.1 Technological Evolution 33
4.4.2 Data Evolution . 33
4.4.3 New Vulnerabilities . 34

How to integrate evolution into MBT | version 1.7 | page 4 / 82

5 Tests and Test Sequences Life Cycles 35
5.1 Preliminary Definitions . 35
5.2 Tests life cycle . 38
5.3 Test suites life cycle . 39

6 Methods and techniques 41
6.1 Introduction . 41
6.2 Transformation into dependency graph 42

6.2.1 Data dependence graph 42
6.2.2 Control dependencies graph 43

6.3 Selective test sequence generation method - SeTGaM 47
6.3.1 Rules for the selective test generation with reference to

model’s evolution . 47
6.3.2 Synthesis . 53
6.3.3 Bob’s adventure test case 55

6.4 Telling TestStories . 58
6.4.1 Security Requirements . 59
6.4.2 System and Testing Artifacts 60

6.5 Conclusion . 63

7 Case Study 64
7.1 Home Gateway . 64

7.1.1 Requirements Model . 65
7.1.2 System Model . 66
7.1.3 Test Model . 68
7.1.4 Test Execution . 70

7.2 GlobalPlatform . 72
7.2.1 The GlobalPlatform test model 73
7.2.2 Model’s dynamic level . 76
7.2.3 Model’s evolution management 78

8 Conclusion 80

How to integrate evolution into MBT | version 1.7 | page 5 / 82

List of Figures

2.1 The Process of Model-Based Testing 13
2.2 Conceptual Model of SecureChange approach of Model-Based

Testing . 15

3.1 Initial class diagram . 21
3.2 Enumerations . 22
3.3 Initial smart card content . 23
3.4 New class diagram . 23
3.5 New enumerations . 24
3.6 New initial smart card content 24
3.7 access() operation . 25
3.8 block() operation . 26
3.9 New access() operation . 27
3.10 New block() operation . 28
3.11 Test Designer tool . 29

5.1 Syntax of the sequence and model layers 36
5.2 Syntax of the test generation directive layer 36
5.3 Test Life Cycles . 38

6.1 Dependence graph. 46
6.2 Selective test generation. 48
6.3 Test sequence’s life cycle. 52
6.4 State chart of the smart card’s initial behavior 56
6.5 Initial test suite . 56
6.6 State chart of Bob’s adventure evolution 57
6.7 Test case classification using the selective test case generation

method . 58
6.8 Artifacts overview . 60
6.9 Testing methodology . 62

7.1 Requirements . 66
7.2 Requirements expressed on use cases 67

How to integrate evolution into MBT | version 1.7 | page 6 / 82

7.3 Actors modelled as components with provided and required in-
terfaces. 67

7.4 Interface definitions of services. 68
7.5 Teststory TestPolicy . 69
7.6 Story for system setup (a) and global test story invoking setup

and another test story (b) . 70
7.7 Life cycle in each version of GlobalPlatform 72
7.8 GlobalPlatform class diagram . 75
7.9 Example . 76
7.10 setStatus() operation . 76
7.11 Test sequence (success): APDU_SETSTATUS_ SUCCESS_CARD_-

LOCKED_TO_TERMINATED . 77
7.12 Test sequence (error): FROM LOCKEDAPDU_SETSTATUS_ERROR_-

CARD_MUST_HAVE_TERMINATE_PRIVILEGE 77
7.13 Evolution from GP 2.1.1 to GP 2.2 78
7.14 Test sequence (error) : ERROR_SETSTATUS _onlyISDCan-

TerminateFromLocked . 79
7.15 Test sequence: SUCCESS . 79

How to integrate evolution into MBT | version 1.7 | page 7 / 82

List of Tables

1 Abbreviations used in the document 9
2 Glossary . 10

3.1 Initial functional requirements . 19
3.2 Functional requirements capturing evolutions 20
3.3 Statistics on test suites . 28
3.4 Statistics on test suites (new model) 29

6.1 Rules for added transition. 54
6.2 Rules for deleted transition. 54
6.3 Rules for modified transition. 55

7.1 Test Data Table . 69

How to integrate evolution into MBT | version 1.7 | page 8 / 82

Abbreviations and Glossary

Abbreviations

Abbreviations References
API Application Programming Interface
FSM Finite State Machine
ISTQB International Software Testing Qualifications Board
MBT Model-Based Testing
REQ Requirement
SUT System Under Test
TTS Telling TestStories

Table 1: Abbreviations used in the document

How to integrate evolution into MBT | version 1.7 | page 9 / 82

Glossary

Term Definition
Adapter Piece of code to concretize logical tests into physical tests

Evolution Test Suite Test Suite targeting SUT evolutions
Logical Test See Test Case
Model Layer Link of model’s operations in Test Scenario

Model-Based Testing Process to generate tests from a behavioural model of the
SUT

Status of Test Case new, obsolete (outdated, failed), adapted, reusable (reexe-
cuted, unimpacted)

Physical Test See Test Script
Requirements Collection of functional and security requirements

Regression Test Suite Test Suite targeting non-modified part of the SUT
Stagnation Test Suite Test Suite targeting removed part of the SUT

System Model Model of the SUT used for development
Test Case A finite set of test steps

Test Intention User’s view of requirement into Test Scenario
Test Model Dedicated model for test capturing the expected SUT be-

haviour
Test Suite A finite set of test cases
Test Script Executable version of a test case

Test Scenario A test generation strategy
Test Sequence See Test case

Test Step Operation’s call or verdict computation
Test Strategy Formalization of test generation criteria
Test Objective High level test intention

Table 2: Glossary

How to integrate evolution into MBT | version 1.7 | page 10 / 82

1. Introduction

This deliverable is the result of the work realized in task 2 of Work Package 7.
From the state of the art provided in task 1 and presented in Deliverable 7.1,
we propose to extend the methods and the tools in order to take the evolution
into account. We will generate tests to emphasize the correctness of the system
w.r.t. evolution, based on requirements and model changes.

This document begins with the process and the concepts for a Model-Based
Testing approach used to compute tests. In Section 3, we present a motivat-
ing example called Bob’s adventure. We propose with this simple example to
illustrate several situations of evolution, and their impact on our methods. The
kinds of evolution to consider are explained in Section 4 and we give in Sec-
tion 5 the impact on test. These two sections provide the vocabulary for testing
evolution. Section 6 presents the methods and processes used for testing evolu-
tion from two points of view. The first one proceeds by comparing two models
that integrate evolution and the second one is based on scenarios for security.
In Section 7, we present the preliminary results of the collaboration between
WP7 and WP1 on two case studies: Home Gateway provided by Telefonica and
GlobalPlatform (called POPS) provided by Gemalto.

How to integrate evolution into MBT | version 1.7 | page 11 / 82

2. MBT Process and Concepts

We use this section to define the terminology used throughout the deliverable
and describe the general process of model-based testing. See [UPL06] for a
detailed description of MBT approaches’ taxonomy.

2.1 MBT Process

A test suite is a finite set of test cases. A test case is a finite structure of input
and expected output: a pair of input and output in the case of deterministic
transformative systems, a sequence of input and output in the case of deter-
ministic reactive systems, and a tree or a graph in the case of non-deterministic
reactive systems. The input part of a test case is called test input.

By model-based testing we consider: the processes and the techniques for
automatic derivation of abstract test cases from abstract formal models, the
generation of concrete tests from abstract tests, and the manual or automated
execution of the resulting concrete test cases. Models must be formal and com-
plete enough to allow, in principle, a machine to derive tests from these models,
which is not the case for use case diagrams, or static business domain models
like class diagrams for instance.

The generic process of model-based testing described in Figure 2.1 then pro-
ceeds as follows.

Step 1. A model of the System Under Test (SUT) is built from informal
requirements or existing specification documents. This model is often called a
test model, because the abstraction level and the focus of the model is directly
linked with testing objectives. In some cases, the test model could be also
the design model of the system under test, but it is important to have some
independence between the model used for test generation and any development
models, so that the kind of errors possibly introduced in the development model
are not propagated into the generated tests. For this reason, it is usual to
develop a test-specific model directly from the informal requirements, or to reuse
just a few aspects of the development model as basis for a test model, which is
then validated against informal requirements. Validating the model means that
the requirements themselves are scrutinised for consistency and completeness

How to integrate evolution into MBT | version 1.7 | page 12 / 82

and this often exposes requirements errors.
On the one hand in Model-Based Testing, the necessity to validate the model

implies that the model must be simpler (more abstract) than the SUT, or at least
easier to check, modify and maintain. Otherwise, the efforts of validating the
model would equal the efforts of validating the SUT. Throughout this paper, we
will use the term abstraction to denote both: the deliberate omission of details
in the model and the encapsulation of detail by means of high-level language
constructs. The test model can reside at various levels of abstraction. The most
abstract variant maps each possible input to the output ’no exception’ or ’no
crash’.

On the other hand, the model must be sufficiently precise to serve as a basis
for the generation of ’meaningful’ test cases. This means that tests generated
from the model should be complete enough in terms of actions, input parameters
and expected results in order to provide real added value. If not, the test design
job still has to be done manually, and there is little added value in generating
tests from the model.

Adaptor + Env

Test
Selection
Criteria

Requirements

Test Case
Specification

Model

Verdicts

Test
Cases

Test
Script

(1)

(2)

(3)

(4)(4)

(5−2)

(5−1)

SUT

Figure 2.1: The Process of Model-Based Testing

Step 2. Test selection criteria are chosen to guide the automatic test gen-
eration so that it produces a ‘good’ test suite – one that fulfils the test policy
defined for the SUT. Defining a clear test policy and test objectives for a sys-
tem and associated development project is part of all testing methods such as
TMap(r)[TMa08] or the ISTQB Manuals [IST10] that are widely used in in-
dustry. In such methods, the test policy and test objectives are formalized into
Test Plan documents, which define the scope of testing and the various testing
strategies and techniques that will be used in the project for each testing level
(e.g. unit testing, integration testing, system testing, acceptance testing).

Test selection criteria can relate to a given functionality of the system
(requirements-based test selection criteria), to the structure of the test model
(state coverage, transition coverage, def-use coverage), to data coverage heuris-

How to integrate evolution into MBT | version 1.7 | page 13 / 82

tics (pair-wise, boundary value), to stochastic characterisations such as pure
randomness or user profiles, to properties of the environment, and they can also
relate to a well-defined set of faults.

Step 3. Test selection criteria are then transformed into test case specifica-
tions. Test case specifications formalise the notion of test selection criteria and
render them operational: given a model and a test case specification, some au-
tomatic test case generator must be capable of deriving a test suite (see Step 4).
For instance, ‘state coverage’ of a finite state machine (FSM) might translate
into a set of test case specifications such as {reach s0, reach s1, reach s2, . . .},
where s0, s1, s2, . . . are all the states of the FSM. A test case specification is a
high level description of a desired test case.

Step 4. Once the model and the test case specification are defined, a test
suite is generated. The set of test cases that satisfy a test case specification with
respect to the model, can be empty, in which case we say that the test case
specification is unsatisfiable. Usually, there are several test cases that satisfy it,
and the test case generator will choose just one of those test cases. Some test
generators may spend significant effort in minimizing the test suite, so that a
small number of generated test cases cover a large number of test case specifi-
cations.

Step 5. Once the test suite has been generated, the test cases are run. Test
execution may be manual - i.e. by a physical person - or may be automated by
a test execution environment that provides facilities to automatically execute
the tests and record test verdicts. Sometimes, especially for non-deterministic
systems, the generation and running of the tests are done-tailed together, which
is called online testing.

Running a test case includes several steps: recall that model and SUT re-
side at different levels of abstraction, and that these different levels must be
bridged. For example, an abstract test case for a bookshop website might be
checkPrice(WarAndPeace) = $19.50, where checkPrice is the name of the
webservice to be used, WarAndPeace is the book to be queried, and $19.50 is
the expected result. Executing a test case then starts by concretising the test
inputs (e.g., to obtain a detailed web services call) and sending that concrete
data to the SUT (see step 5-1 in Figure 2.1). Secondly, the resulting concrete
output of the SUT (e.g., a page of XML) must be captured and must then be
abstracted to obtain the high-level expected result (a price) that can then be
compared against the expected result (step 5-2 in Figure 2.1). We call the com-
ponent that performs the concretization of test inputs and abstraction of test
outputs the adaptor, because it adapts the abstract test data to the concrete
SUT interface.

The verdict can take the outcomes pass, fail, and inconclusive. A test passes
if the expected and actual output conform. It fails if they do not, and it is
inconclusive when this decision cannot be made (yet). Building the verdict
can be inconclusive in the context of nondetermistic systems where the decision

How to integrate evolution into MBT | version 1.7 | page 14 / 82

Figure 2.2: Conceptual Model of SecureChange approach of Model-Based Testing

must be postponed. For instance, certain permutations of output signals may
be acceptable, and one has to wait until all output is given to judge this.

A test script is some executable code that executes a test case, abstracts the
output of the SUT, and then builds the verdict. Note that an adaptor can be
a concept and it is not necessarily a separate software component—it may be
integrated within the test scripts.

To summarize, model-based testing involves the following major activities:
building the model, defining test selection criteria and transforming them into
operational test case specifications, generating tests, conceiving and setting up
the adaptor component (if the generated tests are to be executed automatically,
the adaptor is usually a significant proportion of the workload) and executing the
tests on the SUT. The model of the SUT is used as the basis for test generation,
but also serves to validate requirements and check their consistency.

2.2 MBT Artefacts

This section introduces a conceptual model (see Figure 2.2) that represents
the main entities and artefacts that are used in the MBT process in the Se-
cureChange project.

In the following list, we detail the main concepts used in the model-based
testing approach in SecureChange:

Requirements They represent a collection of requirements, either functional
or security requirements. The functional and security requirements repos-
itory is considered to be already present at the start of the test project.

How to integrate evolution into MBT | version 1.7 | page 15 / 82

Test Objective This is the high level test objective for testing. Regarding
security testing, this includes definition of the testing need for security
requirements.

Test Model The test model represents the expected behaviour of the System
Under Test (SUT). In the SecureChange MBT approach, the test model
is developed using the Unified Modeling Language (UML), with Class
Diagrams, Instance Diagrams and State Machine Diagrams with formal
behavioural specifications in OCL (Object Constraint Language). The test
model is composed of operations (actions, observation or private/internal
operation), and data (attributes).

Test Strategy Test strategies formalize the way tests are generated to fulfill
the test objectives on the test model basis. Test strategies are coverage
criteria (such as decision coverage, transition coverage, data coverage ...)
and high level scenarios.

Test Suite A test suite is a collection of generated test cases based on the test
model, a test data configuration (instances of test and environment data)
and test strategies.

Test Case A test case is composed by steps and concrete test scripts implement
generated test cases depending on the SUT interface (API or GUI).

The model-based testing process manages bidirectional traceability between
requirements and generated tests. ”Bidirectional traceability” is the ability to
trace link between two parts of the software development process with respect
to each other. In the present case, this concerns management of the double link:
requirements to tests and tests to requirements.

In the next chapter, we propose to illustrate this concept on the running
example of this document.

How to integrate evolution into MBT | version 1.7 | page 16 / 82

3. Motivating example: Bob’s Ad-
venture

Bob’s smartphone was bought from a Telefonica store and pre-installed with sev-
eral applications. These applications were provided and secured by Telefonica,
they were uploaded on the SIM card of the phone:

• The first application is a Bank account manager. It is allowing Bob to
buy on the Internet or to interact directly with the bank account.

• There is also a Taxi booking application. As a customer of Telefonica, Bob
has access to specific book service for taxi in Europe.

• The last one is an Instant messaging system on TV, allowing Bob or a
Telefonica application to send messages to Bob’s TV using the HOME
gateway.

• Bob has also installed another application: Flight monitor provided by
SkyTeam, allowing Bob to check for his business flights.

3.1 Functional description

In order to facilitate the reader’s understanding of the example, the
sequel of this section considers only a simplified view of a SIM card
and the GlobalPlatform specification.

The SIM card was designed using GlobalPlatform specification and offers the
following operations: access and block. These operations cannot be used di-
rectly by Bob, but are used by developers of applications that can be found
on any smartphone. For instance, the developer of the Bank account manager
wants to check if he can access the instant messaging application. Telefonica
can decide to block an application like taxi booking if Telefonica don’t found
an arrangement with a taxi company. The blocked application cannot be used
anymore by Bob.

Access is used to define if an application can access another application, the

How to integrate evolution into MBT | version 1.7 | page 17 / 82

operation returns 0 if the access is possible. It will return -1 and an error code
otherwise.
Block will ask a security domain to block an application and return 0, or return
-1 and an error code if not possible. A security domain is an entity containing
applications or other security domains.

Following sections will present the detailed functional behavior of both oper-
ations as well as the new expected behavior.

3.1.1 Initial behavior
We will begin with the access operation. There are two parameters: caller ap-
plication and called application, meaning that the caller application wants to
access the called application.

Nominal case: return 0 if both applications have the same security domain or
if the security domain of the calling application contains the security domain of
the called application.

Error case: return -1 with an error code:

• DIFF_SD if applications have not the same security domain

• SAME_APP if access is called with the same application

• CALLER_BLOCK if the caller application is blocked

• CALLED_BLOCK if the called application is blocked

The block operation has also two parameters: a security domain and an
application. The card asks a security domain to block an application.

Nominal case: return 0 if the security domain manages the application and if
the application is not already blocked.

Error case: return -1 with an error code:

• NOT_OWNER if the security domain does not contain the application

• ALREADY_BLOCKED if the application is already blocked

3.1.2 Evolution
A new version of the GlobalPlatform specification is introduced and the behavior
of the access operation changes. There is a revolution: the concept of access right
is introduced, and a security domain stores operations’ access rights. This is a
simplified version of access management that only specify bidirectional access
privilege.
The access operation now has three parameters: a security domain, a caller

How to integrate evolution into MBT | version 1.7 | page 18 / 82

application and a called application.
Nominal case: return 0 when applications have access rights.
Error case: return -1 with an error code:

• SAME_APP if access is called with the same application

• CALLER_BLOCK if the caller application is blocked

• CALLED_BLOCK if the called application is blocked

But there is also a small functional evolution on the block operation. The
new version includes a search for a suitable security domain including children
of the security domain given in parameter.

3.2 Functional Requirements

Functional requirements were extracted from the previous section. Require-
ments are business rules covering nominal and error cases.

Initial behavior

We identify nine requirements from the initial behavior. They are presented in
Table 3.1.

id description
ACCESS_OK_SAME_SD access succeeds if both application

have the same security domain
ACCESS_OK_SD_CONTAIN access succeeds if the security domain

of the calling application contains the
security domain of the called applica-
tion

ACCESS_ERROR_DIFF_SD access fails if applications have not
the same security domain (error
DIFF_SD)

ACCESS_ERROR_SAME_APP access fails if caller and called applica-
tion are the same (error SAME_APP)

ACCESS_ERROR_CALLER_BLOCKED access fails if caller application is
blocked (error CALLER_BLOCKED)

ACCESS_ERROR_CALLED_BLOCKED access fails if called application is
blocked (error CALLED_BLOCKED)

BLOCK_OK_SD_CONT_APP block succeeds if the security domain
contains the application

BLOCK_ERROR_NOT_OWNER block fails if the security domain
does not contain the application (error
NOT_OWNER)

BLOCK_ERROR_ALREADY_BLOCKED block fails if the application
is already blocked (error AL-
READY_BLOCKED)

Table 3.1: Initial functional requirements

How to integrate evolution into MBT | version 1.7 | page 19 / 82

3.2.1 Evolutions
In Table 3.2, we add a new column to identify new (NEW), unchanged (UN)
and removed (REM) requirements. There is one new requirement, seven re-
quirements unchanged and three removed.

id status description
ACCESS_OK_SAME_SD REM access succeeds if both application

have the same security domain
ACCESS_OK_SD_CONTAIN REM access succeeds if the security do-

main of the calling application con-
tains the security domain of the
called application

ACCESS_ERROR_DIFF_SD REM access fails if applications have not
the same security domain (error
DIFF_SD)

ACCESS_ERROR_SAME_APP UN access fails if caller and called
application are the same (error
SAME_APP)

ACCESS_ERROR_CALLER_BLOCKED UN access fails if caller ap-
plication is blocked (error
CALLER_BLOCKED)

ACCESS_ERROR_CALLED_BLOCKED UN access fails if called ap-
plication is blocked (error
CALLED_BLOCKED)

BLOCK_OK_SD_CONT_APP UN block succeeds if the security domain
contains the application

BLOCK_ERROR_SD_NOT_OWNER UN block fails if the security domain
does not contain the application (er-
ror NOT_OWNER)

BLOCK_ERROR_ALREADY_BLOCKED UN block fails if the application
is already blocked (error AL-
READY_BLOCKED)

BLOCK_OK_SD_CONT_SD UN block succeeds if the security domain
contains a security domain contain-
ing the application

ACCESS_OK_RIGHT NEW access succeeds if security domain
store access rights for applications

Table 3.2: Functional requirements capturing evolutions

The smart card’s expected behavior can be defined by a static and a dynamic
view. They are detailed in the following section.

3.3 Static View

The static view defines classes, enumerations and an initial state of the system
(the smart card).

How to integrate evolution into MBT | version 1.7 | page 20 / 82

3.3.1 Initial behavior
We have created an UML model to describe the initial behavior. The UML
class diagram contains three classes (see Figure 3.1):

1. the Smardcard class, which is the system under test

2. the SecurityDomain class, describing a security domain

3. the Application class.

The smart card contains at least one security domain. Each security domain
can contain several security domains and several applications.

Figure 3.1: Initial class diagram

There are two enumerations described in Figure 3.2: ERRNO describing any
error types returned by access and block operations. APPLICATION_STATE
describing the current state of an application.

How to integrate evolution into MBT | version 1.7 | page 21 / 82

ERRNO:

• VOID: no error code

• DIFF_SD: Applications do not have the same security domain

• SAME_APP: Applications used for access call are the same

• CALLED_BLOCK: Called application is blocked

• CALLER_BLOCK: Caller application is blocked

• NOT_OWNER: The security domain does not contain the application

• ALREADY_BLOCK: The application cannot be blocked because it al-
ready is.

APPLICATION_STATE:

• AVAILABLE: Application can be used

• BLOCKED: Application is blocked

Figure 3.2: Enumerations

Figure 3.3 shows the content of the card. We can find the smart card and its
root security domain (SIM security domain). There are also two main security
domains: one for Telefonica and one for other provider. The Telefonica security
domain contains the Home security domain (dealing with home applications).
There are also all the applications listed in the functional description.

3.3.2 Evolution
The new class diagram (see Figure 3.4) contains a new class AccessRight storing
rights between applications and managed by a security domain.

The ERRNO enumerate contains the new value, ACCESS_REFUSED, as
presented in Figure 3.5, meaning that two applications cannot access each other.

How to integrate evolution into MBT | version 1.7 | page 22 / 82

Figure 3.3: Initial smart card content

Figure 3.4: New class diagram

How to integrate evolution into MBT | version 1.7 | page 23 / 82

Figure 3.5: New enumerations

Figure 3.6 presents the smart card containing a new object. The object
called AccessRightInstance is managed by the Telefonica security domain. Ac-
cessRightInstance is linked to the bank application and the instant TV messag-
ing application.

Figure 3.6: New initial smart card content

How to integrate evolution into MBT | version 1.7 | page 24 / 82

3.4 Dynamic View

The dynamic view of the system is the actual behavior of the card when dealing
with access and block operations.

In Figure 3.7, the access() operation is modeled with the OCL language,
it contains a tag (REQ) to specify what part of the code corresponds to a
requirement.

i f in_cal ler_app . app l i c a t i onS t a t e = APPLICATION_STATE : :BLOCKED then
−−−@REQ: ACCESS_ERROR_CALLER_BLOCKED
s e l f . e r r o r=ERRNO: :CALLER_BLOCKED and
r e s u l t = −1

else
i f in_called_app . app l i c a t i onS t a t e = APPLICATION_STATE : :

BLOCKED then
−−−@REQ: ACCESS_ERROR_CALLED_BLOCKED
s e l f . e r r o r = ERRNO: :CALLED_BLOCKED and
r e s u l t = −1

else
i f in_cal ler_app . securityDomain = in_called_app .

securityDomain then
i f in_cal ler_app = in_called_app then

−−−@REQ: ACCESS_ERROR_SAME_APP
s e l f . e r r o r = ERRNO: :SAME_APP and
r e s u l t = −1

else
−−−@REQ: ACCESS_OK_SAME_SD
r e s u l t = 0

end i f
else

i f in_cal ler_app . securityDomain .
securityDomainChi ldren−>ex i s t s (sd | sd .
app l i c a t i on s−>ex i s t s (app | app=
in_called_app)) then

−−−@REQ: ACCESS_OK_SD_CONTAIN
r e s u l t = 0

else
−−−@REQ: ACCESS_ERROR_DIFF_SD
s e l f . e r r o r = ERRNO: : DIFF_SD and
r e s u l t = −1

end i f
e nd i f

e nd i f
e nd i f

Figure 3.7: access() operation

How to integrate evolution into MBT | version 1.7 | page 25 / 82

In Figure 3.8, the behavior of the block() operation is also modeled in OCL.

i f in_app . app l i c a t i onS t a t e = APPLICATION_STATE : :BLOCKED
then

−−−@REQ: BLOCK_ERROR_ALREADY_BLOCKED
s e l f . e r r o r = ERRNO: :ALREADY_BLOCKED and
r e s u l t = −1

else
i f in_sd . app l i c a t i on s−>ex i s t s (app | app=in_app)

then
−−−@REQ: BLOCK_OK_SD_CONT_APP
in_app . app l i c a t i onS t a t e =

APPLICATION_STATE : :BLOCKED and
r e s u l t = 0

else
−−−@REQ: BLOCK_ERROR_NOT_OWNER
s e l f . e r r o r = ERRNO: :NOT_OWNER and
r e s u l t = −1

end i f
e nd i f

Figure 3.8: block() operation

How to integrate evolution into MBT | version 1.7 | page 26 / 82

In Figure 3.9, the new access() operation behavior contains the AIM tag to
identify a behavior that is not present in requirements.

i f in_app1 . app l i c a t i onS t a t e = APPLICATION_STATE : :BLOCKED then
−−−@REQ: ACCESS_ERROR_CALLER_BLOCKED
s e l f . e r r o r=ERRNO: :CALLER_BLOCKED and
r e s u l t = −1

else
i f in_app2 . app l i c a t i onS t a t e = APPLICATION_STATE : :BLOCKED

then
−−−@REQ: ACCESS_ERROR_CALLED_BLOCKED
s e l f . e r r o r = ERRNO: :CALLED_BLOCKED and
r e s u l t = −1

else
i f in_app1 = in_app2 then

−−−@REQ: ACCESS_ERROR_SAME_APP
s e l f . e r r o r = ERRNO: :SAME_APP and
r e s u l t = −1

else
i f in_sd . acces sRights−>ex i s t s (ar | ar .

app l i c a t i on s−>inc l ud e s (in_app1) and ar .
app l i c a t i on s−>inc l ud e s (in_app2)) then

−−−@REQ: ACCESS_OK_RIGHT
r e s u l t = 0

else
−−−@AIM: ACCESS_REFUSED
s e l f . e r r o r = ERRNO: :ACCESS_REFUSED

and
r e s u l t = −1

end i f
e nd i f

e nd i f
e nd i f

Figure 3.9: New access() operation

How to integrate evolution into MBT | version 1.7 | page 27 / 82

In Figure 3.10, the new block() operation behavior contains the functional
change introduced by the new version of the GlobalPlatform specification.

i f in_app . app l i c a t i onS t a t e = APPLICATION_STATE : :BLOCKED then
−−−@REQ: BLOCK_ERROR_ALREADY_BLOCKED
s e l f . e r r o r = ERRNO: :ALREADY_BLOCKED and
r e s u l t = −1

else
i f in_sd . app l i c a t i on s−>ex i s t s (app | app=in_app) then

−−−@REQ: BLOCK_OK_SD_CONT_APP
in_app . app l i c a t i onS t a t e = APPLICATION_STATE : :

BLOCKED and
r e s u l t = 0

else
i f in_sd . securityDomainChi ldren−>ex i s t s (sd | sd .

app l i c a t i on s−>ex i s t s (app | app=in_app)) then
−−−@REQ: BLOCK_OK_SD_CONT_SD
−− Funct iona l change
in_app . app l i c a t i onS t a t e = APPLICATION_STATE

: :BLOCKED and
r e s u l t = 0

else
−−−@REQ: BLOCK_ERROR_NOT_OWNER
s e l f . e r r o r = ERRNO: :NOT_OWNER and
r e s u l t = −1

end i f
e nd i f

e nd i f

Figure 3.10: New block() operation

3.5 Tests

Based on this example and on the UML model produced, we used the Test
Designer tool (see Figure 3.11) to generate several test campaigns.

Test suite Tests Behaviors Requirements
All 9 9 9
error_access 4 4 4
error_block 2 2 2
nominal_access 2 2 2
nominal_block 1 1 1

Table 3.3: Statistics on test suites

For each operation, we created two test suites: one for all nominal cases and
one for all error cases. Table 3.3 presents statistics about those test suites:

• The column Test suite gives goal of test case,

How to integrate evolution into MBT | version 1.7 | page 28 / 82

• The column Tests gives the number of tests,

• The column Behaviors gives the number of Behaviors in model covering
goal,

• The column Requirements gives the number of requirements associated to
the goal.

Figure 3.11: Test Designer tool

The same work was done on the evolved model producing the results pre-
sented in Table 3.4.

Test suite Tests Behaviors Requirements
All 9 9 8
error_access 3 3 3
error_block 2 2 2
nominal_access 2 2 1
nominal_block 1 1 1

Table 3.4: Statistics on test suites (new model)

Requirement changes (as shown in Table 3.2, page 20) explain the difference
between those tables. For the access() operation in the nominal case, we add
a new requirement and remove two requirements, which leaves us with only

How to integrate evolution into MBT | version 1.7 | page 29 / 82

one requirement. A specific behavior, not part of the initial requirements, is
tagged on the OCL code (see Figure 3.9) with AIM, and it produces a test.
This explains why we have nine tests for nine behaviors but for only eight
requirements. Considering error case, we removed a requirement and its OCL
code. We now have only three tests left.

This example is good to illustrate method but in Section 7, we will present
preliminary works of our Work Package on case studies of SecureChange project
provided by Work Package 1.

We use this example in the next chapters. We will begin with some definition
and vocabulary for testing evolution.

How to integrate evolution into MBT | version 1.7 | page 30 / 82

4. Several Kinds of Evolution for
Test

Usually, the first step towards the development of a software system consists
in collecting as a document an informal description of what the system is sup-
posed to do. This constitutes what we call the requirements document. It is the
description of the expected functionalities of the system. The document can
contain, or be accompanied by a set of behavioral and/or security properties
descriptions. Then the implementation is written, and has to be tested in or-
der to validate the fact that it correctly implements all of these requirements.
This results in functionality testing, behavioral properties testing and security
testing. We examine in this chapter a list of needs for evolution that may have
an impact on the MBT methodology, and we discuss how these needs can, or
cannot, be addressed in the scope of an MBT approach.

4.1 Evolution of the requirements

We consider in this section two kinds of requirements: the functional require-
ments, that we distinguish from the behavioral requirements.

We call functional the requirements concerned with the expected functional-
ities of the system. They are modelled by the operations of the model. Tests of
functional requirements will be obtained by structural coverage criteria of the
model’s operations.

Besides, the behavioral requirements are specifications of the expected be-
havior of entire executions of the system, regardless of the functionalities exer-
cised. They are modelled as properties (invariant, safety, ...) that accompany
the model. The tests of such behavioral requirements will be obtained by using
the properties as selection criteria, i.e. by selecting executions of the model
whose shape conform to the one described by the properties.

4.1.1 Impact of a functional requirement evolution
A change in functional requirements will have a direct impact on the model.
Each functionality is supposed to be modelled as an operation in the model.

How to integrate evolution into MBT | version 1.7 | page 31 / 82

Thus we can report an evolution of the functional requirements as a modification
of the model’s operations.

Addition of a functionality The introduction of a new functionality will be
reported as the definition of a new operation in the model. New tests have to
be extracted to structurally cover the new operations.

Suppression of a functionality If a functionality is no longer expected to
be provided by the system, then the tests that had been computed from them
become totally obsolete. They can nevertheless be used as negative test cases,
to validate the fact that the functionality is no longer available.

Modification of a functionality A modification of a functionality occurs
when an existing feature must still be provided by the system, but differently.
More precisely, the before/after specification of the functionality changes. Tests
computed from the previous version of the model become “partially” obsolete.
This means that the oracle for these tests has to be recomputed from the new
model.

4.1.2 Impact of a behavioral requirement evolution
A change in the behavioral requirements will be reflected as a change in the
properties that accompany the model. There again, changes can occur in terms
of addition, suppression or modification of the properties. New tests have to
be computed by using the new properties as selection criteria. The tests issued
from the removed properties become obsolete. As for the modified properties,
the tests issued from the property before its modification become obsolete, while
new tests have to be computed to exercise the property in its modified shape.

4.2 Evolution of the model

A change in the model can occur, even in absence of a change in requirements.
We do not discuss here if this is desirable or not. For example, a wrong inter-
pretation of the informal requirements can be discovered in the model, which
motivates its correction. A more radical change is to completely rewrite the
model, for example in a different modelling language.

The impact of a correction of the model is the same as if the modification
was imposed by a change of requirements. New tests have to be computed to
exercise the added parts, and the tests that covered the modified parts become
partially or totally obsolete.

As for a complete change of the model, all the former tests become obso-
lete, and must be replaced by new ones extracted from the new model. Notice
that we could imagine relating the two models through a formal conformance
relationship, from which we could deduce that the old tests are still valid w.r.t.

How to integrate evolution into MBT | version 1.7 | page 32 / 82

the new model. But we think that this question is out of scope of the Secure
Change project.

4.3 Evolution of the IUT

Changes in the IUT that we consider in this section are evolutions, not revolu-
tions. We typically think of new versions of an implementation. We distinguish
it from a complete re-implementation of the system, which is obviously more a
revolution than an evolution. Such radical changes in the IUT will be considered
in the next section (see Section 4.4).

A modification of the system’s implementation is not supposed to have a
direct impact on tests, that are computed from the model and not from the
IUT. If the modification was motivated by an evolution of requirements, then
the model is also supposed to have evolved, according to what is discussed at
Section 4.1 on the changes in the requirements. In this case, the tests have
already been modified. But the modification does not necessarily result from
an evolution of requirements. It can result for example from the correction of a
bug. In this case, the tests are unchanged.

Thus a modification of the IUT does not have a direct impact on tests. But
it has an impact on the concretization layer, which relates the tests issued from
the model to the IUT. Each transformation of the IUT has to be reported into
the concretization layer.

4.4 Evolution of the environment

Changes of the environment in which the system is deployed are also to be
considered.

4.4.1 Technological Evolution
A complete rewriting of the IUT, for example in another programming language,
or by using a new technology, can be considered as a change of the system’s
environment. It is in fact a change of its technological environment. Such
changes are out of scope of the testing activity in the project. Once again,
tests are computed from a model, that is a conceptual one. This means that
technological considerations and detailed implementation choices are voluntarily
not taken into account in the model. That guarantees that the model is generic
enough to be used to compute tests whatever the implementation details are.
Thus, these tests will remain the same, but they will be translated differently
by the concretization layer, that has to be re-written in such a situation.

4.4.2 Data Evolution
The data on which the system operates is abstracted into the model. The
mapping between the concrete data (manipulated by the IUT) and the abstract

How to integrate evolution into MBT | version 1.7 | page 33 / 82

data (the representation in the model) is implemented by the concretization
layer. Therefore there are two cases to consider if the concrete data evolve.

Abstract Data not Impacted The change does not necessarily impact the
abstract data. Think for example of an error code that is abstracted as OK (no
error) or KO (error) in the model. If in the concrete code the value of an error
code has changed from -1 to -2, it can still for example be related to the KO
value of the model. In this case, the abstract model does not change and the
abstract tests remain valid. But the change has to be taken into account by the
concretization layer.

Abstract Data Impacted A more substantial change of the concrete data
may have an impact on the way it is modelled, and thus be reported as a
modification of the model. To take such changes into account, it is necessary
to identify the operations of the model that manipulate the modified data. The
tests invoking these operations become partially obsolete. Their oracle has to
be recomputed according to the new abstract values of the data.

4.4.3 New Vulnerabilities
In the case of tests dedicated to security, another change to be considered is the
discovery of new vulnerabilities in the system, or new attacks. This raises the
need for new tests, dedicated to exercise the system w.r.t. these vulnerabilities
or attacks. The possibility to compute such tests by MBT depends on the ability
to model vulnerabilities or attacks, in the shape of properties or by modifications
of the model. The addition of new properties or the modification of the model
falls into the case described at Section 4.1, of changes in requirements. This will
be illustrated it in Section 6.4.

In this chapter, we have presented a list of needs for evolution that may have
an impact on the MBT methodology. In the next chapter, we will present the
impact for life cycle of tests and test suites.

How to integrate evolution into MBT | version 1.7 | page 34 / 82

5. Tests and Test Sequences Life
Cycles

This part deals with the definition of the notion of test life cycle and test suite
life cycles.

5.1 Preliminary Definitions

We give in this first section formal definitions of the test generation process that
we consider.

Definition 1 (Test Generation Process) A test generation process TG is
a deterministic function, taking as input a model and a test intention, and
resulting in a set of test sequences:

TG :M× scen→ 2seq

in which:

• M is a test model, that describes how the system evolves,

• scen defines the test generation strategy, it is expressed as a test scenario
that is applied to the model so as to produce a set of test sequences.

• seq is a test sequence, namely a sequence of steps. Each step is defined
by:

~o, s← op(~i)

an operation call with specific inputs op(~i), and its expected results, the
output parameter values ~o and the resulting state s.

We assume that there is only one test generation process. In our approach,
the test generation approach consists in animating the model, guided by the
scenario, so as to produce the test sequences.

Definition 2 (Test Scenario) A test scenario is defined as a specification of
operation sequences potentially reaching specific states.

How to integrate evolution into MBT | version 1.7 | page 35 / 82

SEQ ::= OP1 | "(" SEQ ")"
| SEQ "." SEQ
| SEQ REPEAT ALL_or_ONE
| SEQ CHOICE SEQ
| SEQ " (" SP ")"

REPEAT ::= "?" | "{" n "}" | "{," n "}"
| "{" n "," m "}"

OP ::= operation_name
| "$OP"
| "$OP \ {" OPLIST "}"

OPLIST ::= operation_name
| operation_name"," OPLIST

SP ::= state_predicate

Figure 5.1: Syntax of the sequence and model layers

It is a textual description whose syntax, organised in three layers, is given
by the grammar given in Figure 5.1 and Figure 5.2, and described hereafter.

The sequence layer (Figure 5.1, left column) is based on regular expressions
that make it possible to define test scenarios as operation sequences (repeated
or alternated) that may possibly lead to specific states. The model layer (Fig-
ure 5.1, right column) describes the operation calls at the model level and con-
stitutes the interface between the model and the scenario.

Rule SEQ describes a sequence of operation calls as a regular expression.
A step in the sequence is either a simple operation call, denoted by OP1, or
an operation call that leads to a state satisfying a state predicate, denoted by
SEQ (SP). This latter represents provides a useful help for the design of the
scenarion since it makes possible to define the target of an operation sequence,
without necessarily having to enumerate all the operations that compose this
sequence. Scenarios can be composed of the concatenation of two sequences,
the repetition of a sequence, or the choice between two or more sequences. In
practice, we use bounded repetition operators: 0 or 1, exactly n times, at most
m times, between n and m times. Rule SP describes a state predicate, whereas
OP is used to describe the operation calls that can be (i) an operation name, (ii)
the $OP keyword, meaning “any operation”, or (iii) $OP\{OPLIST} meaning “any
operation except those of OPLIST”.

The test generation directive layer makes it possible to drive the step of test
generation, when the tests are unfolded. We propose three kinds of directives
that aim at reducing the research for the instantiation of a test scenario. This
part of the language is given in Figure 5.2.

Rule CHOICE introduces two operators denoted | and ⊗, for covering the
branches of a choice. For example, if S1 and S2 are two sequences, S1 | S2
specifies that the test generator has to produce tests that will cover S1 and

CHOICE ::= "|" OP1 ::= OP | "["OP"]"
| "⊕" | "[" OP "/w" CPTLIST "]"

| "[" OP "/e" CPTLIST "]"
ALL_or_ONE ::= "_one"

| ε CPTLIST ::= cpt_label ("," cpt_label)*

Figure 5.2: Syntax of the test generation directive layer

How to integrate evolution into MBT | version 1.7 | page 36 / 82

other tests that will cover schema S2, whereas S1 ⊗ S2 specifies that the test
generator has to produce test cases covering either S1 or S2. Rule ALL_or_ONE

makes it possible to specify if all the solutions of the iteration will be returned
(ε – default option) or if only one will be selected (_one).

Rule OP1 indicates to the test generator that it has to cover one of the be-
haviors of the OP operation. The test engineer may also require all the behaviors
to be covered by surrounding the operation with brackets. Two variants make
it possible to select the behaviors that will be applied, by specifying which be-
haviors are authorized (/w) or refused (/e) using labels that are associated to
the behaviors of the model operations.

Example 1 (Scenario and Test Generation Directives) Consider the fol-
lowing piece of scenario, that can be associated to the case study presented in
Chapter 3.

[Smartcard::block /w {BLOCK_OK_SD_CONT_APP}]{1, 3}_one
 (Bank.applicationState = BLOCKED)

This scenario tries to repeat from 1 to 3 times the invocation of the block
operation with a nominal behavior until the Bank application instance is in a
blocked state. In practice, any sequence of length 1, 2 or 3, that ends with the
blocking of the banking application will satisfy this scenario. However, the test
generation directive (_one) will only keep the first one that succeeds (i.e. the
shortest sequence).

The scenarios are currently designed manually. They address a specific test
intention that originates from the know-how of the validation engineer that
designs the scenario. Each test intention is generally associated to a given
requirement.

Definition 3 (Test Intention) A test intention is a user-defined function intent
of profile:

intent : req → scen

taking as input a given requirement req and producing a test scenario scen that
describes how to exercise the considered requirement.

Finally, we define a test case, using the previous definitions.

Definition 4 (Test Case) A test case is a quadruplet 〈M, req, intent, seq〉. It
results of the application of the intention intent for requirement req on model
M with seq ∈ TG(M, req(intent)).

Test cases are gathered into test suites, that are defined as sets of test cases.

How to integrate evolution into MBT | version 1.7 | page 37 / 82

Figure 5.3: Test Life Cycles

5.2 Tests life cycle

In the context of evolving systems and, thus, evolving test suites, we associate
to a test a status, that indicates its state in the life cycle depicted in Figure 5.3.

All tests start by being new. When an evolution occurs, the state of the
test changes depending on the impact of the evolutions on the model elements
covered by the test. If none of the covered model elements are impacted, the
test may be replayed as it is, without modifying the test sequence. The test is
thus said to be reusable, more precisely, it is unimpacted. If any covered model
element turns out to be impacted, there are two possibilities:

• The test intention is still relevant: the test can be replayed to check if it
is executable on the new model. If so, the test is said to be re-executed.
Otherwise, it then has to be adapted so as to update the test sequence
w.r.t. the evolution (i.e. update the oracle and/or modify the steps com-
posing the test sequence). Once changed, the test becomes adapted. Its
old version is obsolete and more precisely, it is failed.

• The test intention is no more relevant, meaning that covered model ele-
ments have disappeared or the intention does not make any sense regarding
the result of the evolution. In this case, the test becomes obsolete, more
precisely, it is outdated.

We assume that a high level analysis process is able to retrieve the differences
between the models, and identify the modified model elements between models
MN and MN+1. Furthermore, we assume that we are able to detect if a test
sequence seq covers parts ofMN that have been modified, or have disappeared,
inMN+1.

A technical solution, based on model content analysis is provided in the next
chapter.

The definition of the evolving test cases revisits the definition of the test
case, and introduces the test status.

How to integrate evolution into MBT | version 1.7 | page 38 / 82

Definition 5 (Evolving Test Cases) An Evolving Test Case is character-
ized by a triplet 〈req, intent, vd〉 in which

vd : N→M× seq × status

gives the version dependant informations of the test, namely the model from
which it is computed, the test sequence and the associated status (status ∈
{new, adapted, reusable, obsolete})

Notice that, if tc is an evolving test case, then tcN is the test case that
contains all the informations related to the version N of the system.

5.3 Test suites life cycle

We describe in this part the evolution of the test suites contents w.r.t. the
evolutions that are performed. We consider three tests suites.

Evolution test suite. ΓE contains tests exercising the novelties of the system
(new requirements, new operations, etc.)

Regression test suite. ΓR contains tests exercising the non-modified parts
of the system. These tests aim at ensuring that the evolutions did not impact
parts of the SUT that were not supposed to be modified. The particularity of
the tests contained in ΓR is that they have been computed from a former version
of the model, that is prior to the current model version.

Stagnation test suite. ΓS contains invalid tests w.r.t. the current version
of the system. These tests aim at ensuring that the evolution did actually
take place and changed the behaviour of the system. Notice that, unlike the
regression tests, these tests have also been computed from a former version of
the model. But, these tests are invalid, and thus, are expected to fail when
executed on the SUT (either because they can not be executed, or because they
detect a non-conformance of the SUT w.r.t. the expected results).

We now describe how the test suites are filled w.r.t. the evolutions and the
test life cycles. This description takes into account the test status defined in
Sect. 5.2. Each test suite contains a set of tests for a given version of the system.
We speak about tc be an evolving test case with tcN for previous version (when
it exist) and tcN+1 for new version (evolving).

Rule 1 (New tests) A new test exists only on tcN+1 version. All new tests
are put in the Evolution Test Suite:

status(tcN+1) = new and tcN+1 ∈ ΓN+1
E

How to integrate evolution into MBT | version 1.7 | page 39 / 82

Rule 2 (Reusable tests) A reusable test comes from an existing test suite
tcN ∈ ΓN

E ∪ ΓN
R and it is unchanged tcN+1 = tcN . All reusable tests are put in

the Regression Test Suite:

status(tcN+1) = reusable and tcN+1 ∈ ΓN+1
R

Rule 3 (Adapted tests) An adapted tests comes from an existing test suite
tcN ∈ ΓN

E ∪ ΓN
R . All tests that have been adapted are put in the Evolution Test

Suite. Their previous versions are put in the Stagnation Test Suite.

status(tcN+1) = adapted and tcN+1 ∈ ΓN+1
E ∧ tcN ∈ ΓN+1

S

Rule 4 (Obsolete tests) An obsolete tests comes from an existing test suite
(eventually obsolete) tcN ∈ ΓN

E ∪ ΓN
R ∪ ΓN

S . All tests that have been declared as
obsolete are put in the Stagnation Test Suite.

status(tcN+1) = obsolete and tcN+1 ∈ ΓN+1
S

This chapter described the life cycle of tests and test suites. In the next
chapter, we will present process to compute each kind of tests.

How to integrate evolution into MBT | version 1.7 | page 40 / 82

6. Methods and techniques

In Section 2.1, we have presented the Model-based Testing technique (MBT) as
one possible way to test formally modeled systems. We propose in this chapter
two complementary techniques of MBT. The first one focuses on evolution of
the SUT and the second one on security.

6.1 Introduction

This technique as mentioned above is implemented using Rational Software
Architect (RSA) based on the Test Designer (TD) Smartesting tool. For our
method we have used these tools and the Unified Modeling Language (UML),
in particular class and state machine diagrams. Functional requirements are
expressed with the constraint language OCL. Bearing in mind the systems evo-
lution and in order to respond to the project’s aims, we have developed our
method for testing evolving critical systems.

The method, we have created, is taking into account functional tests and
requirements expressed in the model. On one hand, we should verify that all
tested unchanged parts of the system are not affected by the modification. This
subset of tests is used for regression testing. On the other hand, we should
verify modifications, if they are made in implementation. We suppose that each
modification in the application is passed in the model and vice-versa. In this
case we have always two models:

• the first one is the reference model - the one before the evolution.

• the second one is the evolved model - including modification.

Thus, regression testing (see Deliverable 7.1) consists in re-executing well
chosen test sequences in order to validate a change. In order to cover all appli-
cation’s behaviors, it might be necessary to generate new test sequences.

With reference to regression testing techniques we have based our technique
on selective test generation strategy for UML/OCL using behavioral coverage
and dependence analysis.

So, in this chapter, you will find the computation algorithms for data and
control dependencies from state chart diagrams and the study carried out on
selective test generation technique. In the second approach, we take into account
the security properties by Telling TestStories.

How to integrate evolution into MBT | version 1.7 | page 41 / 82

6.2 Transformation into dependency graph

The selective test generation guides us to select tests from the model before
the change according to different techniques. This work is inspired from the
dependency analysis, as defined by Chen and al. [UPC07]. They gave rules for
Extended Finite State Machines, to select tests from test suites using depen-
dency analysis.

Notice that an UML state chart diagram can be considered as an automaton.
We consider only a simple state machine without any hierarchy. So we can build
our dependence graph from it. First of all, we are going to present the data
dependence graph and then the control dependence graph construction. Finally,
we will merge them in order to obtain the dependency graph.

6.2.1 Data dependence graph
The data dependence is based on the definition and use of variables in the graph
respecting the property of def-clear path. You can find below a brief recall of
the data dependence definition, which we deduced from the data dependence
definition for automata (see Definition 6).

Definition 6 (Data dependent) We define that one transition T’ is data de-
pendent from another transition T with reference to a variable v if and only if
v is defined in T and is used in T’ and def-clear path exists with reference to v
between T’ and T. A def-clear path is between the definition and the use of the
variable and there should not be any other definition between, otherwise the path
is not def-clear.

Referring to the definition of data dependence, we have created our algo-
rithm for state chart diagrams.

Used vocabulary for the algorithm:
StatechartDiagram - the state chart diagram.
T, T’ - transitions belonging to the state chart diagram.
dataDependence(X,Y) - Boolean matrix, indicating true if Y is data dependent
on X, and false if it is not.

Data dependence algorithm
Forall transition T ∈ StatechartDiagram do
Forall transition T’ ∈ StatechartDiagram where T’ 6= T do
if the path between T and T’ is def-clear then

dataDependence(T,T’) = true
else dataDependence(T,T’) = false
endif

Done
Done

How to integrate evolution into MBT | version 1.7 | page 42 / 82

Using this algorithm, we are defining the def/use pairs, which represent the
data dependence graph.

6.2.2 Control dependencies graph
To define control dependencies, we are going to make a short recall of its def-
inition for state chart diagrams, which we deduced from the automata control
dependence definition (cf. Definition 7).

Definition 7 (Control Dependence) Transition T has control dependence
on transition T’ if and only if:

• The state from which T’ leaves does not post-dominate the state from which
T leaves.

• The state from which T’ leaves post-dominates the transition T.

From this definition, we can find two notions that we should clarify: the post-
dominance between states (see Definition 8) and the post-dominance between
state and transition (see Definition 9).

Definition 8 (Post-Dominate State) One state Z post-dominates another
state Y of the state chart diagram if and only if the state Z is on each path from
Y to the exit state.

Definition 9 (Post-Dominate Transition) One state Z post-dominates one
transition T of the state chart diagram if and only if each path passing through
T to the exit state passes through the state Z.

In the next section, we are going to present each algorithm separately.
A reflexive transition (transition that is leaving and arriving at the same

state) during graph visiting can create viscous circles (a viscous circle is a se-
quence of causes and effects in a loop). That is why we are going to consider the
principle of graph coloring. We are going to mark each transition that we pass
through, and if needed we are going to backtrack and mark it as a non visited
transition.

Control dependence algorithm

We are proposing a simple structure for the control dependence graph. We are
presenting the graph as a Boolean matrix representing whether one transition
has control dependence on another transition.

Used vocabulary for the algorithm
StatechartDiagram - the state chart diagram.
T, L - transitions from the state chart diagram.
Et - state from the state chart diagram from which the transition T is leaving.
El - state from the state chart diagram from which the transition L is leaving.

How to integrate evolution into MBT | version 1.7 | page 43 / 82

postDominanceStateState - Boolean matrix representing whether one state
post-dominates another state.
postDominanceStateTransition - Boolean matrix representing whether one
state post-dominates one transition.
controlDependence - Boolean matrix representing whether one transition has
control dependence on another transition.

Forall transition T ∈ StatechartDiagram do
Forall transition L ∈ StatechartDiagram where L 6= T do
State Et = departure(T)
State El = departure(L)
if postDominanceStateState(El,Et) = false and
postDominanceStateTransition(El,T)=true then

controlDependence(T,L) = true
else

controlDependence(T,L) = false
endif

Done
Done

Post-Dominance State/State algorithm

Used vocabulary for the algorithm
StatechartDiagram - the state chart diagram.
E1, E2 - states from the state chart diagram.

Forall state E1 ∈ StatechartDiagram do
Forall state E2 ∈ StatechartDiagram where E1 6= E2 do
Mark E2 and it’s neighbours as visited
postDominanceStateState(E1,E2) = pd(E1,E2, emptyList,

emptyList)
Done

Done

The pd(S,V,neighbourV,visitedStates) operation is an auxiliary operation
allowing us to visit all paths from V to the exit state and to determine whether
all paths from V to the exit state pass through S by using the list of closest
neighbours.

Function pd(S,V,neighbourV,visitedStates)

Used vocabulary for the algorithm
StatechartDiagram - the state chart diagram.
S - the post-dominant state.
V- the post-dominated state.
neighbourV - the list of immediate V state’s neighbours.
visitedStates - the list of visited states during the search.

How to integrate evolution into MBT | version 1.7 | page 44 / 82

res - Boolean variable, returned as result at the end of the search.

We consider four trivial operations which we are not going to describe fur-
ther:

• nbStatesNonVisited(X) - operation returning us as result the number of
non-visited neighbour states for one state X of the state chart diagram.

• neighbourNonVisited(X) - operation returning the first non-visited neigh-
bour state of the state X.

• add(X,Y) - operation adding the pair X,Y i.e. that the neighbour state Y
of the state X has been visited.

• add(X) - operation adding the state X to the list of visited states.

res = true
if V = S then

return res
else

if neighbourV.nbStatesNonVisited(V) = 0 and
V /∈ visitedStates then
return false

else
if V ∈ visitedStates then

return true
else

While neighbourV.nbStatesNonVisited(V) > 0
and res = true do
State B = neighbourNonVisited(V)
neighbourV.add(V,B)
res = res and
pd(S,B,neighbourV,visitedStates)

Done
visitedState.add(V)
return res

endif
endif

Post-Dominance State/Transition algorithm

Used vocabulary for the algorithm
StatechartDiagram - the state chart diagram .
T - transition from the state chart diagram.

How to integrate evolution into MBT | version 1.7 | page 45 / 82

E - state from the state chart diagram.

forall state E ∈ StatechartDiagram do
forall transition T ∈ StatechartDiagram do
if arriving(T) = E and departure(T) 6= E then
postDominanceStateTransition(E,T) = true

else
if postDominanceStateState(E,arriving(T)) = true then
postDominanceStateTransition(E,T) = true

else postDominanceStateTransition(E,T) = false
endif

endif
Done

Done

We are going to create the control dependence graph using the post-dependence
algorithms. Figure 6.1 presents an example of dependence graph. Furthermore,
you can notice that the full line represents the data and the dotted line the
control dependencies. Thus, to create the dependence graph we are going to
gather together the data and the control dependence graphs.

Figure 6.1: Dependence graph.

How to integrate evolution into MBT | version 1.7 | page 46 / 82

6.3 Selective test sequence generation method -
SeTGaM

The test generation method created by Smartesting, presented in the previous
paper (see Deliverable 7.1) is used for evolvable systems. This method is sys-
tematic, but we lose important information concerning tests. After we have
regenerated all the tests we are not able to say how tests are classifyed w.r.t.
the test sequence life cycle described in Section 5.2. That is why we propose
to improve this approach by more finely classifying test sequences issued from
the test suite.

As we can see in Figure 6.2, we are proposing to use state chart diagrams and
dependence analysis [KHV06] on UML4ST diagrams. The approach is always
based on the reference test suite and two models: the reference one and the
evolved one. Then, by comparing models and using the dependence analysis
we are going to be able classify a test as Unimpacted, Re-executed, Adapted,
Failed, Outdated and New (see Section 5.2). Thus, we are going to keep the
trace of what evolved and what did not. You can also notice in the figure that
the test generation process for the reference test suite already exists. For that,
we are using the Test Designer tool. The other part of the test generation
process is proper to the SecureChange project. For now, it is done manually,
but it is in our perspectives to make a tool implementing this method.

This work represents the first step of the test suite management. However,
the goal is to maximize the number of tests to be reused and minimize the
generation of new tests, because the generation cost can seem prohibitive for
big systems. We are aiming at getting as much confidence as possible in the
changed model, making sure that the evolved parts have not been affected the
unchanged ones. Using our approach and rules based on dependency analysis
(see Section 6.3.1), the new test suite will be created step by step. Rules are
going to establish the link with models and test sequences to be selected. They
are defined for each elementary modification. When we speak about elementary
modification we consider addition, deletion and modification of a transition
in the state chart diagram. We consider update in the OCL code inside the
transition as transition’s modification. Furthermore, we can have complex mod-
ification composed of several elementary modifications.
In the next section, we are going to detail our rules issued from the dependence
analysis with reference to both models and the test suite.

6.3.1 Rules for the selective test generation with reference
to model’s evolution

Test sequences selection is based on state chart diagrams (the reference and the
evolved one), their dependence graphs and the initial test suite. As we noted
previously, we are considering three types of elementary modifications (add,
modify, delete) for which we consider separately the created rules. The compo-
sition of these actions is what we call complex modification and the analysis will

How to integrate evolution into MBT | version 1.7 | page 47 / 82

Figure 6.2: Selective test generation.

How to integrate evolution into MBT | version 1.7 | page 48 / 82

be done separately for each component. Each modification has its own rules
presented in Section 5.2, so we are able to add new tests, as well as to delete or
to modify existing ones.

Thus, applying this technique will allow us to classify tests and compute
the new test suite as well as to verify that the evolved parts did not affect the
unchanged parts, that unchanged part did not affect the evolution and that
what is changed has been changed in the implementation.

Used vocabulary:

• NewTransition - new transitions added into the evolved state chart di-
agram.

• DelTransition - deleted transition from the reference state chart dia-
gram.

• ModifTransition - modified transition in the evolved state chart dia-
gram w.r.t. the reference one. Modification can be the modification of a
variable’s value or a new variable into an OCL code.

• TS - the test suite before evolution.

• NTS - the new test suite, after evolution.

• t’ - transition that concerns an elementary modification.

• t,t1,t2 - transitions linked to the test suite TS.

• T - test sequence from the test suite, covering the behavior of the transition
t.

• T’- test sequence covering the behavior of the transition t’.

• T1 - test sequence covering t in case of evolution.

• T1’ - test sequence covering t’ in case of evolution.

• T2 - test sequence from the test suite, covering the behavior of the tran-
sition t2.

• T2’ - test sequence covering t2 in case of evolution passing through t1.

• cd(x,y) - function returning true if the transition ”y” is control dependent
from the transition ”x”, and false otherwise.

• dd(x,y) - function returning true if the transition ”y” is data dependent
from the transition ”x”, and false otherwise.

How to integrate evolution into MBT | version 1.7 | page 49 / 82

In case of an elementary modification in the dependence graph according to
Chen and al. [UPC07] we can have creation and/or deletion of data and/or
control dependencies. But, it is also possible that there are dependencies that
will not change. However, we are going to use the vocabulary of creation and
elimination of a transition. With respect to the results that they have obtained,
we have created our own rules for state chart diagrams. We use the notation
∪= with the following meaning: X ∪= Y means X = X ∪ Y .

1. New transition ∀t′ ∈ NewTransition

(a) Calculate the test sequence T’, in order to cover the new transition
t’:

New ∪= T’

(b) ∀T ∈ TS
i. if creation of cd(t’,t) then

The test sequence T is classified as outdated, we should calculate
a new test sequence T1:

Outdated ∪= T and
New ∪= T1

ii. if creation of dd(t’,t) then
Re-run the test sequence T covering the behavior of t:

Re-testable ∪= T
iii. It is possible to have any creation or elimination of other cd(t1,t2)

or an elimination of other dd(t1,t2).
if creation or elimination of other cd(t1,t2) or dd(t1,t2) then
The test sequence T2 becomes outdated, we should then calcu-
late a new test sequence T2’:

Outdated ∪= T2 and
New ∪= T2’

2. Deleted transition ∀t′ ∈ DelTransition and

(a) ∀ T’ ∈ TS covering the behavior of t’ becomes outdated.

Outdated ∪= T’

(b) ∀T ∈ TS
i. if elimination of cd(t’,t) then

The test T covering the behavior of the transition t is no more
relevant, it becomes outdated and we should calculate a new test
sequence T1 :

Outdated ∪= T and
New ∪= T1

ii. else if elimination of dd(t’,t) then
The transition t could be data dependent of the transition t’,
that is why we should rerun the sequence test T covering the
behavior of t :

How to integrate evolution into MBT | version 1.7 | page 50 / 82

Re-testable ∪= T
iii. taking into account modifications it is possible to have other

creation or elimination of data/control dependencies for other
transitions.

• if creation or elimination of other cd(t1,t2) then
Outdated ∪= T2 and

New ∪= T2’
• if creation of dd(t1,t2) then

Re-testable ∪= T2
• if elimination of other dd(t1,t2) then

Outdated ∪= T2 and
New ∪= T2’

3. Modified transition

When we speak about modification of transition, we cannot have any mod-
ification in the control dependence graph, because it cannot be changed in
any case. So, we consider in this case only changes in the data dependence
graph. ∀t′ ∈ ModifTransition and ∀T ∈ TS

(a) forall dd(t’,t)

i. if creation of dd(t’,t) then
Add the test sequence T covering the behavior of t into Re-
testable:

Re-testable ∪= T
ii. if elimination of dd(t’,t) then

Outdated ∪= T and
New ∪= T1

(b) forall dd(t,t’)

i. if creation of dd(t,t’) then
Add the test sequence T’ covering the behavior of t’ into Re-
testable:

Re-testable ∪= T’
ii. if elimination of dd(t,t’) then

Outdated ∪= T’ and
New ∪= T1’

(c) forall dd(t1,t2)

i. if creation of dd(t1,t2) then
Add the test sequence T2 covering the behavior of t2 into Re-
testable:

Re-testable ∪= T2

How to integrate evolution into MBT | version 1.7 | page 51 / 82

ii. if elimination of dd(t1,t2) then
Outdated ∪= T2 and

New ∪= T2’

All other tests which are not concerned by these rules are considered as
Unimpacted. We can conclude about the final test suite’s elements only after
the Re-testable tests execution. Figure 6.3 shows clearly the two steps to respect
in this approach with respect to the life cycle of test sequences:

Figure 6.3: Test sequence’s life cycle.

By running the set of tests Re-testable we are creating the sets Re-executed,
Failed and Adapted. Thus, we are completing test suites for regression, evolution
and stagnation testing (see Section 5.3). Bearing in mind the covering strategy
on the state chart diagram as well as the dependence results, when tests are put
in the stagnation test suite, we may need to generate new test sequences. So,
we can consider two kinds of obsolete tests:

• outdated tests as result of the rules implementation,

• failed tests as result of the Re-testable test sequence set run.

Thus the stagnation test suite (STS):

STS = Outdated + Failed

We can consider two types of tests sequences that are to be considered in the
regression test suite or as reusable:

How to integrate evolution into MBT | version 1.7 | page 52 / 82

• unimpacted tests, directly selected by the rules from the test suite before
evolution - TS,

• re-executed tests as result of the Re-testable test sequence set run.

So, we can consider the following rule that tests from the regression tests suite
(RTS) are those which are not Outdated nor Failed and those which are part of
the Re-executed set:

RTS = Unimpacted + Re-executed

We can also conclude about the evolution test suite, that we have:

• new tests as result of the rules application,

• adapted tests as result of the need to compute new tests in order to cover
completely the behavior of transitions in the state chart diagram.

Thus:

ETS = Adapted + New

Finally, the new test suite after the evolution results from the set of tests to be
reused, the adapted and the new generated ones:

NTS = Unimpacted + Re-executed + Adapted + New
moreover

NTS = RTS + ETS

6.3.2 Synthesis
The approach that we have proposed is using the behavioral elementary environ-
ment. The specification’s modeling was done using RSA and the test sequences
were previously generated by TD. We have proposed to use a new method for
each elementary modification called Selective test sequence generation method.

This study allows us to define rules by using the same vocabulary (cf. Sec-
tion 6.3.1) for added (cf. Table 6.1), deleted (cf. Table 6.2) and modified (cf.
Table 6.3) transitions. As you can see rules are defined for each elimination or
creation of data or control dependence.

Table 6.1 gathers all rules for an added transition (see Section 6.3.1) in a
state chart diagram.

In Table 6.2, you can find a short recall of the rules applied when a transition
is deleted from a state chart diagram.

As we have noticed previously the case of transition’s modification includes
modifications in the OCL code of one operation, which simplifies rules for this
case. In Table 6.3, we recall the rules with reference to the test sequences’ life
cycle.

With this method we are validating the system step by step, and it allows
us to save time and memory resources. Using the selective test sequences gen-
eration, we have introduced a new testing methodology that we have called
evolution testing.

How to integrate evolution into MBT | version 1.7 | page 53 / 82

Dependence Outdated Re-testable New
∀t’ ∈ New-
Transition

∪= T’

cd(t’,t) -
create

∪= T ∪= T1

dd(t’,t) -
create

∪= T

cd(t1,t2)
- create/
elimin or
dd(t1,t2) -
elimin

∪= T2 ∪= T2’

Table 6.1: Rules for added transition.

Dependence Outdated Re-testable New
∀ t’ ∈ Del-
Transition

∪= T’

cd(t’,t) -
elimin

∪= T ∪= T1

dd(t’,t) -
elimin

∪= T ∪= T1

cd(t1,t2)
- create/
elimin or
dd(t1,t2) -
elimin

∪= T2 ∪= T2’

dd(t1,t2) -
create

∪= T2

Table 6.2: Rules for deleted transition.

How to integrate evolution into MBT | version 1.7 | page 54 / 82

Dependence Outdated Re-testable New
dd(t’,t) -
create

∪= T

dd(t’,t) -
elimin

∪= T ∪= T1

dd(t,t’) -
create

∪= T’

dd(t,t’) -
elimin

∪= T’ ∪= T1’

dd(t1,t2) -
create

∪= T2

dd(t1,t2) -
elimin

∪= T2 ∪= T2’

Table 6.3: Rules for modified transition.

6.3.3 Bob’s adventure test case

Initial behavior

In order to apply our method on Bob’s example we have created a state chart
UML diagram (see Figure 6.4). In this state chart we have created elementary
transitions, i.e. one transition per requirement (see Table 3.1). By applying the
data dependence algorithm we can extract the following data dependencies:

• The transition access_called_block is data dependent from the transition
block about the variable applicationState. This can be noted as:

DD(block, access_called_block, applicationState)

• The transition access_caller_block is data dependent from the transition
block about the variable applicationState. This can be noted as:

DD(block, access_caller_block, applicationState)

• The transition block_already_blocked is data dependent from the transi-
tion block about the variable applicationState. This can be noted as:

DD(block, block_already_blocked, applicationState)

Using the control dependence algorithm we have obtained that the transition
end_error is control dependent on access_called_blocked, access_caller_blocked,
access_same_sd_same_app, access_diff_sd_caller_sd_not_contain_called,
block_sd_not_owner and block_already_block :

• CD(access_called_blocked, end_error)

How to integrate evolution into MBT | version 1.7 | page 55 / 82

Figure 6.4: State chart of the smart card’s initial behavior

• CD(access_caller_blocked, end_error)

• CD(access_same_sd_same_app, end_error)

• CD(access_diff_sd_caller_sd_not_contain_called, end_error)

• CD(block_sd_not_owner, end_error)

• CD(block_already_block, end_error)

Using the TestDesigner tool we have created the reference test suite. In Fig-
ure 6.5, you can map requirements and transitions represented by their behavior.
This test suite will be next used as reference for the test selection method.

Figure 6.5: Initial test suite

Evolution

As you can see in Table 3.2, the Bob’s model evolution implied some changes
into the UML model. We can clearly separate new requirements, deleted re-

How to integrate evolution into MBT | version 1.7 | page 56 / 82

quirements as well as requirements that changed the model dynamic level (the
OCL code). In Figure 6.6, we have represented the state chart diagram of this
evolution. There you can distinguish the different transitions and observe their
behavior.

Figure 6.6: State chart of Bob’s adventure evolution

With reference to the Bob’s UML model presented previously we have the
following new requirements, and so new transitions:

• access_accessright_ok

• block_sd_contain_sd

• access_diff_app_no_accessright

As we have introduced new requirements, some changes were introduced in
some transitions at dynamic level, and some transitions, as well as the require-
ments, disappeared completely.
In this case we have only one transition that has been modified at dynamic level,
which is block_sd_not_owner. We have also three deleted transitions for this
small example that are access_same_sd, access_diff_sd_caller_sd_contain_called
and access_diff_sd_caller_sd_not_contain_called.
When the model changes, then data and control dependence diagrams can
change, too. Thus, we can see transitions which are affected by the change.
Bearing in mind the evolution, we have obtained the following data dependen-
cies (the data dependencies in italic are the new ones):

• DD(block_sd_contain_app, access_called_block, applicationState)

How to integrate evolution into MBT | version 1.7 | page 57 / 82

• DD(block_sd_contain_app, access_caller_block, applicationState)

• DD(block_sd_contain_app, block_already_blocked, applicationState)

• DD(block_sd_contain_sd, access_called_block, applicationState)

• DD(block_sd_contain_sd, access_caller_block, applicationState)

• DD(block_sd_contain_sd, block_already_blocked, applicationState)

Furthermore, we have some changes in the control dependence diagram. On
one hand one control dependence has been removed - CD(access_diff_sd
_caller_sd_not_contain_called, end_error). On the other hand there is a new
one - CD(access_diff_app_no_accessright, end_error).

At this stage, we have all the elements required to apply our rules in case of
detected evolution (see Section 6.3.1). We have used rules for adding, deleting
and modifying transition. Finally, the result is presented in Figure 6.7 and you
can see the test cases classification from the test suite as New, Unimpacted,
Re-testable or Outdated.

Figure 6.7: Test case classification using the selective test case generation method

Finally the tests block_already_block and block_not_owner are to be reused,
while the other tests have failed. The access() operation has changed the num-
ber of parameters, so for these transitions we have adapted the old test case.

To conclude we can say that with the new method we have minimized test
generation time. Instead of recomputing all the test cases in order to cover all
requirements, we have generated only three test cases. Three other tests were
put into the Outdated set. After the execution of the Re-testable set two test
cases were classified as Unimpacted, because there was no need to change them
and all others needed to be adapted. The next future work will be to optimize
the test suite by test sequence refactoring.

6.4 Telling TestStories

Telling TestStories (TTS) provides a methodology and a tool implementation
for model–driven system testing of service oriented systems. In this section,
we give an overview of the underlying artifacts and the methodology. A more

How to integrate evolution into MBT | version 1.7 | page 58 / 82

detailed overview is given in [FBCO+09]. An application of this framework is
shown in Section 7.1.

6.4.1 Security Requirements
IT systems store, process and share information. To protect this information
from unauthorized modification, harm or disclosure, different techniques of in-
formation security are used. Information security is concerned with different
security goals of protecting information, e.g. confidentiality, integrity and avail-
ability.

Security is a quality factor of software systems and can be decomposed into
a hierarchy of underlying quality subfactors [Fir04]. These quality subfactors
are subject for testing to assure proper compliance. This means that if the
quality requirements on the subfactors are met, a system is considered secure
with respect to the tested factors. Nevertheless, it should be noted that the
absence of problems can not be demonstrated by testing, only their presence
[Dij69].

Several classifications of security requirements can be found in the literature,
e.g. [Fir03]. Here we focus on one of the most prominent lists of requirements,
but further subclassification is still possible. In the following we list the security
requirements and give their definitions according to [NST06]:

• Confidentiality : Assurance that information is not disclosed to unautho-
rized individuals, processes, or devices.

• Integrity : Condition existing when data is unchanged from its source and
has not been accidentally or maliciously modified, altered, or destroyed.

• Authentication: Security measure designed to establish the validity of a
transmission, message, or originator, or a means of verifying an individ-
ual’s authorization to receive specific categories of information.

• Authorization: Access privileges granted to a user, program, or process.

• Availability : Timely, reliable access to data and information services for
authorized users.

• Non-repudiation: Assurance that none of the partners taking part in a
transaction can later deny of having participated.

Testing security requirements is different from testing functional require-
ments. Security testing is mostly about negative requirements, so called abuse
cases, where an attacker tries to do something he is not permitted to do. Tra-
ditional software testing instead deals with the detection of software failures
[PM04].

Defects or deviating behavior is normally detected by checking specific prop-
erties of a system during execution. These checks are also called assertions. Se-
curity requirements are an adequate source for the definition of such assertions.

How to integrate evolution into MBT | version 1.7 | page 59 / 82

However, the same security requirement can be violated in different parts of
the system. Consider the following security requirement restricting access to a
home automation environment: “Unregistered users are not allowed to access the
domotics system.”. For testing whether this authorization requirement is not vi-
olated it has to be checked at every point where a service of the domotics system
is accessed, e.g. illumination, air conditioning etc. Resulting from the nature of
negative requirements, a one-to-one mapping from the security requirement to
code artifacts is not easily found in most cases [MR05]. Nevertheless, to know
which parts of the system could be affected by deviating (security) behavior
such information is neccessary. This motivates the need for traceability from
assertions to security requirements and possible consequences.

6.4.2 System and Testing Artifacts
Figure 6.8 shows the artifacts of the TTS framework. Informal artifacts are
depicted by clouds, formal models by graphs, code by transparent blocks and
running systems by filled blocks.

System Under Test
Test Code

Requirements Model

System Model Test Model

Generation, Consistency,Coverage

Test Controller

Adapter

Informal Requirements

Informal Artifact

Formal Model

Code

Running System

Figure 6.8: Artifacts overview

In the following paragraphs we explain the formal models and the code frag-
ments of Figure 6.8 in more details. The Informal Requirements, i.e. written
or non–written capabilities and properties of the system, and the System pro-
viding and requiring services callable by the test controller, are not discussed in
details because they are not the main focus of our testing methodology.

Requirements Model. The requirements model describes requirements

How to integrate evolution into MBT | version 1.7 | page 60 / 82

for system development and testing in a formal way. It consists of actors, use
cases, domain types, and requirements hierarchies denoted in use case diagrams,
class diagrams, and requirements diagrams. The formal requirements are based
on written or non–written informal requirements depicted as cloud.

System Model. The system model describes the system structure and sys-
tem behavior in a platform independent way. Its static structure is based on
the notions of services, components and types. Each service operation call is
assigned to use cases, actors correspond to components providing and requiring
services, and domain types correspond to types. We assume that each service
in the system model corresponds to an executable service in the running system
to guarantee traceability. Therefore the use cases, the service operations and
the executable services are traceable.

Test Model. The test model defines the test configuration, the test data
and the test scenarios as so called test stories. Test stories are controlled se-
quences of service operation invocations exemplifying the actors’ interaction.
Test stories may be generic in the sense that they do not contain concrete ob-
jects but variables which refer to test objects provided in tables. Test stories
can also contain setup resp. tear down procedures and contain assertions for
test result evaluation. The notion of a test story is principally independent of
its representation [FCOB09]. We have used UML activity diagrams in previous
papers [FZF+09] and use sequence diagrams in the present work.

If the system model and the test model are created manually, it has to be
guaranteed that they are consistent with each other and that the test model
fulfills some coverage criteria with respect to the system model (see [FBCO+09]
for consistency and coverage examples). Alternatively, if the system model is
complete then behavioral parts of the test model can be generated, or otherwise
if the test model is complete, behavioral fragments of the system model can be
generated.

Each test story is linked to a use case and can be considered as part of the
requirements. The approach is suitable for test–driven modeling resp. devel-
opment because the test stories can be defined before the behavioral artifacts
of the system model or the system implementation are available. Test–driven
development is possible because from test models and adapters it is possible to
derive executable tests even before the implementation has been finished. Test–
driven modeling can be applied because the test model can be defined before
the behavioral system models whose design can be supported by checking con-
sistency and coverage between the system and the test model [FBCO+09]. In a
system–driven development approach behavioral artifacts can be used to derive
test models and test data.

Test Code. The test code is generated by a model–to–text transformation
from the test model as explained in [FFZ+09]. It generates test code that can
be executed by a test controller.

How to integrate evolution into MBT | version 1.7 | page 61 / 82

Adapters. The adapters are needed to access service operations provided
and required by components of the system under test. For a service imple-
mented as web service, an adapter can be generated from its WSDL description.
Adapters for each service guarantee traceability.

Testing Methodology

Figure 6.9 shows the workflow of our testing methodology. The methodology of
our framework supports test–driven development of systems on the model level.

Test Execution

Data
Pool

Definition

TestModel

Test
Model
Design

Datapool

Test Code Generation

TestCode

SystemModel

System
Model

 Design

SUT

System Implementation

TestReport Test Analysis

Consistency/
Coverage
 Checking

TestLog

Requirements Model

Adapter
Implementation/

Generation

Adapter

Requirements
Definition

Figure 6.9: Testing methodology

The first step is the definition of requirements. Based on the requirements,
the system model and the test model are designed in parallel. The test design
includes the data pool definition, i.e. the definition of test data, and the test
sequence definition, i.e. the sequence of test stories together with states and data
to be tested. The system model and the test model, including the test stories,
the data and the test sequences, can be checked for consistency and coverage.
This allows for an iterative improvement of their quality and supports model–
driven system and test development. The methodology does not consider the
system development itself but is based on traceable services offered by the system
under test. As soon as adapters which may be – depending on the technology –
generated automatically or implemented manually are available for the system
services, the process of test code generation can take place. The generated test
code is then automatically compiled and executed by a test execution engine

How to integrate evolution into MBT | version 1.7 | page 62 / 82

which logs all occurring events into a test log. The test evaluation is done
offline by a test analysis tool which generates test reports and annotations to
those elements of the system and test model influencing the test result.

TTS is appropriate for security testing on the system level based on se-
curity requirements. Our approach guarantees traceability between security
requirements, the system and test model and the executable service oriented
system. Security tests can be modeled in the same way as functional tests. The
approach therefore provides information which security requirement is fulfilled
and not just negative information claiming which requirement is not fulfilled.

6.5 Conclusion

We have presented in this chapter two complementary methods. The first allows
for managing evolution of the system and the second for managing security.
Future works will be a hybrid approach to take the better of each one to improve
validation of security for evolving system.

In the next chapter, we present the first results of Work Package 7 and
the application of these two frameworks on the case studies provided by Work
Package 1.

How to integrate evolution into MBT | version 1.7 | page 63 / 82

7. Case Study

This chapter presents two of the three case studies provided by Work Package
1. In fact, we will only present these two case studies because Work Package
7 works only on these two ones. Each case study is presented by means of
an overview, with a focus on the part that is being studied, followed by the
application of our methodology (see Chapter 6) on it.

7.1 Home Gateway

With this case study, we show how security tests can be deduced from security
requirements to assure the reliability of a system. While we describe the evo-
lution of tests and test suites with the previous example, we focus on testing
security requirements by this example. More precisely, we will pursue the idea
of functional security tests here, i.e. we test the security functionalities of a
system.

We provide an industrial case study to show that model–driven testing based
on the methodology of Telling Test Stories (TTS) which is explained in Section
6.4 is appropriate for security testing on the system level. Based on the definition
of security requirements we define a system model and test model containing
test stories that are traceable to security requirements. Test stories are then
transformed into executable test code and therefore make security requirements
executable. We also show how tests can be executed by integrating the test
component as passive participant into the process under test.

The aim of the case study1 is to control the network access of clients in a
home network depending on different client attributes. Typical attributes are
for example the age of a user or a check whether the anti-malware application
has been updated during the last 24 hours. An example for a resulting effect
after checking the client attributes is that an underage user may only be allowed
to access a restricted set of resources of the network and is only allowed to access
the internet and not the private home network (e.g. if access to music collection
should be denied).

The scenario consists of different peers distributed among the home network
and the operator network. These peers are the Access Requestor (AR), Home
Gateway (HG), PolicyEnforcement Point (PEP) and the Policy Decision Point

1The case study was kindly provided by Telefónica.

How to integrate evolution into MBT | version 1.7 | page 64 / 82

(PDP). Following service oriented principles [Erl05], each peer shares interfaces
defining the terms of information exchange. The AR is the client application to
establish and use the connection to the home network. An AR always connects
to a HG. The HG is a device installed at the home of customers controlling access
to different networks and services (e.g. domotics, multimedia, data services).
The enforcement of who is allowed to access which resources on the network is
made by an internal component of the HG called PEP. The PEP gets the policy
it has to enforce for a specific AR by the PDP which is the only component run
by the operator and not the end user herself. Because we have four independent
components only interacting via well-defined interfaces to execute a process, the
example adheres to our definition of a service oriented system. Furthermore,
we are focusing on testing dedicated example sequences (i.e. the test stories) of
the system and verify whether certain security requirements hold under such
conditions. The components are normally already tested in an isolated way
before they are deployed in a service oriented setting. The TTS framework
adheres to a test-driven development approach, thus it allows the execution of
test stories in early stages of system development and supports the evolution of
the underlying system. Thus, we think that TTS is an ideal choice for a testing
framework of the presented system.

The remaining subsections discuss the elicitation of some sample security
requirements and their integration into the requirements model in a structured
and traceable way. After that, we present the system model and, finally, we
present the test model for testing the security requirements and discuss the
technical realization for executing tests and asserting security requirements.

7.1.1 Requirements Model
We represent requirements in two different ways, by requirements hierarchies
and by use cases. Both representations allow the annotation of security require-
ments as shown in this section.

Requirements hierarchies define a refinement from abstract requirements
resp. goals to more detailed requirements. Security requirements and any other
type of non–functional requirements can be integrated into this hierarchy in a
natural way. For this purpose, we use SysML requirements diagrams [OMG07]
and mark security requirements with the stereotype securityRequirement. In
Figure 7.1 the security requirements are represented in a requirements hierarchy.

In this representation to each security requirement as to all other require-
ments, model elements of the test model (test stories, assertions, test sequence
elements) verifying the requirement can be assigned. In our basic requirements
hierarchy security requirements are formulated as positive statements, defining
how a vulnerability can be avoided. Attached test stories may then define pos-
sible vulnerabilities that make the requirement failing. In Figure 7.1 we have
defined an example for all types of security requirements listed in Section 6.4.1.
Requirement 1.2.1 is an example for authentication, 1.2.2 for confidentiality,
1.3.1 for availability, 1.4.1 for authorization, 1.4.2 for integrity and 2.1 for non–
repudiation.

How to integrate evolution into MBT | version 1.7 | page 65 / 82

Id = "1 "

Text = "The agent-based

network access has to be

controlled"

<<requirement>>

1

Id = "1.2 "

Text = "A n identification has

to be assigned to a

connection"

<<requirement>>

1.2

Id = "2 "

Text = "Access services

have to be used"

<<requirement>>

2

Id = "1.4.1 "

Text = "Underaged users

are not allowed to access

the home network but only

the internet"

<<securityRequirement>>

1.4.1

Id = "1.4 "

Text = "The assigned

policy has to be applied to

the network connection"

<<requirement>>

1.4

Id = "1.2.2 "

Text = "The identification

information is only visible

for the involved actors"

<<securityRequirement>>

1.2.2

Id = "1.2.1 "

Text = "Network access

is only possible after

identification"

<<securityRequirement>>

1.2.1

Id = "1.1 "

Text = "The AR

establishes a

connection to the HG"

<<requirement>>

1.1

Text = "The policy

actions are not

modified"

Id = "1.4.2 "

<<securityRequirement>>

1.4. 2

Id = "1.3.1 "

Text = "The PDP has

to be available"

<<securityRequirement>>

1.3.1

Id = "1.5 "

Text = "The C lient has

to be attested "

<<requirement>>

1.5

Text = "A policy has to

be assigned to the

connection of an AR"

Id = "1.3 "

<<requirement>>

1.3

Id = "2.1 "

Text = "The HG logs

network access"

<<securityRequirement>>

2.1

<<use>>

Figure 7.1: Requirements

Use case diagrams depict application scenarios and the involved actors. In
our approach, use cases and actors can be mapped to components and behaviors.
If a security requirement can be transformed to a functional requirement then
it can be represented as use case. If a security requirement is formulated as
constraint on a use case, we attach it as comment to a use case. In some
cases it is also possible to transform a non–functional security constraint into
a functional use case. In Figure 7.2 the security requirements of Figure 7.1 are
represented as comments on use cases.

The explicit modeling of actors allows the definition of relationships between
roles and access permissions of roles.

Requirements traceability refers to the ability to describe and follow the
requirement’s life, in both a forwards and backwards direction [GF94]. Trace-
ability has to be guaranteed by a system testing approach to report the status of
system’s requirements. Our representation of requirements allows the definition
of traceability by links between model elements, i.e. by assigning test stories
to requirements. We have established traceability between the requirements
model, the system model, the test model and the executable system, because
service operation calls in test stories are linked to service operation calls in the
system model which are linked to executable service operations in the system
implementation.

7.1.2 System Model
As already mentioned, the AR is the client application to establish and use
the connection to the home network. We model this with an AccessRequest
interface required by the AR. This interface is provided by the HG because an
AR always connects to a HG. The data used to decide to which networks a
client is granted access is retrieved via the Identification interface which is

How to integrate evolution into MBT | version 1.7 | page 66 / 82

control agent-based
network access

establish connection

Policy Enforcement Point

assign policy

extension points
controlled network

use of access
services

assign identity

attest client

enforce policy

Policy Decision Point

Access Requestor

Home Gateway

Underaged users are not
allowed to access the
home network but the
internet

The identification
information is only visible
for the involved actors

The policy actions are not
 modified

The HG logs network
access

PDP has to be

available

Network access
only possible after
identification

<<extend>>

(controlled network)

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 7.2: Requirements expressed on use cases

provided by the AR. The HG uses an internal component - PEP to enforce these
restrictions. The PEP receives the policy it has to enforce for a specific AR by
the PDP via the PolicyDecision interface.

<<component>>

PolicyDecisionPoint PolicyDecision

<<component>>

PolicyEnforcement
Point

PolicyEnforcement

PolicyDecision

<<component>>

AccessRequestor

Networking, AccessRequest
Identification

<<component>>

HomeGateway

Identification, PolicyEnforcement

Networking

AccessRequest

Figure 7.3: Actors modelled as components with provided and required interfaces.

All components in this scenario are connected with each other and the inter-
faces between them are well-defined (see Figure 7.3). A request by the AR will
trigger the input of user credentials via the identification interface. The data
returned by the AR is of type IdentificationData (see Figure 7.4). With this
information the PDP is able to look up the appropriate policy for the request and
send the corresponding list of PolicyActions to the PEP which enforces them.
PolicyAction and IdentificationData are data types defined internally in

How to integrate evolution into MBT | version 1.7 | page 67 / 82

the system model. The type IdentificationData describes a username, a
password and an optionally attestation data of an AR; the type PolicyAction
is currently only used to describe to which VLAN the PEP should allow access
by a specific AR.

+decidePolicy(identificationData : IdentificationData)
+addPolicy(policy : Policy)

PolicyDecision

+informAccessRequestor(status : Integer)
+requestAuthentication() : IdentificationData

Identification

+enforcePolicy(policy : PolicyAction [*])

PolicyEnforcement

+setPolicy(policy : PolicyAction [*])
+accessRessource(url : String) : Data

Networking

+connect()

AccessRequest

Figure 7.4: Interface definitions of services.

The communication among the peers is based on different protocols and
standards. Authentication follows IEEE 802.1X2 which defines a supplicant, an
authenticator and an authentication server. In our case the supplicant is the
AR, the role of the authenticator is taken over by the HG and the authentication
server (a RADIUS3 database) is represented by the PDP. Note that the system
model describes all components, their interfaces and optionally also behavioural
parts of the system. For the present contribution we only show components and
interface definitions as it suffices to describe the present scenario.

7.1.3 Test Model
The TTS test model contains a set of test stories whose execution order is defined
in a test sequence. To make all requirements executable, we assign an assertion,
a test story or a whole sequence element to it. Here we present just one complex
and representative test story in Figure 7.5 and show how the requirements can
be mapped to it.

The test story in Figure 7.5 defines a basic network access scenario contain-
ing two assertions. First the AccessRequestor connects to the HomeGateway
(step 1 in Figure 7.5), which then requests the authentication data containing a
username, a password and an assessment data from the AccessRequestor (steps
2 and 3). This information is forwarded to the PolicyDecisionPoint (step 4),
which sends a sequence of policy actions to the HomeGateway (step 5) based on
the identity information of the AccessRequestor. We then assert that there
has to be a policy action that contains the expected VLAN ($vlan) to check
the policy actions for integrity. The HomeGateway sends the policy actions to
the PolicyEnforcementPoint (step 6), and then informs the AccessRequestor
(step 7), which then accesses a specific URL (steps 8 and 9). Finally, we check

2Available at http://www.ieee802.org/1/pages/802.1x-rev.html.
3Remote Authentication Dial In User Service, as specified in RFC 2865.

How to integrate evolution into MBT | version 1.7 | page 68 / 82

http://www.ieee802.org/1/pages/802.1x-rev.html

 : PolicyEnforcementPoint : PolicyDecisionPoint : AccessRequestor : HomeGateway

[pass: policy->contains(pa | pa.vlan=$vlan)
fail: not pass]

assert

[pass: data = $data
fail: not pass]

assert

setPolicy5:

connect1:

accessRessource(url=$url)8:

identificationData3:

requestAuthentication()2:

forwardIdentityInformation4:

informAccessRequestor7:

enforcePolicy6:

data9:

Figure 7.5: Teststory TestPolicy

whether the accessRessource() call returns the expected data. Test cases for
this test scenario are defined in Table 7.1.

#TC $username $password $vlan $url $data
1 ’michael’ ’0815’ ’HomeNetwork’ ’http://74.125.43.99’ webpage_1
2 ’michael’ ’0815’ ’HomeNetwork’ ’http://192.168.1.1’ webpage_2
3 ’philipp’ ’0000’ ’Internet’ ’http://74.125.43.99’ webpage_1
4 ’philipp’ ’0000’ ’Internet’ ’http://192.168.1.1’ null
4 ’guest’ ’0000’ ’Internet’ ’http://192.168.1.1’ null

Table 7.1: Test Data Table

The test story is completed by adding some policies to the
PolicyDecisionPoint in an initial setup. In Figure 7.6(a) three policies
are added to the PolicyDecisionPoint. Each policy assigns a sequence of
policy actions, in our basic example just a sequence set of accessible VLANs, to
a username/password combination. The identification data objects are stored
on our data pool and are as follows in our example:

policy1:(’michael’,’0815’,([’Internet’,’HomeNetwork’])
policy2:(’philipp’,’0000’,([’Internet’])
policy3:(’*’,’*’,([’GuestNetwork’])

The test sequence element in Figure 7.6(b) defines that the setup state
initializePDP has to be executed before the test story TestPolicy can be

How to integrate evolution into MBT | version 1.7 | page 69 / 82

addPolicy

(PolicyDecision::)

policy1

addPolicy

(PolicyDecision::)

policy2

addPolicy

(PolicyDecision::)

policy3

PolicyDecisionPoint

<<Teststory>>
 : TestPolicy

<<State>>
 : initializePDP

(a) (b)

Figure 7.6: Story for system setup (a) and global test story invoking setup and another test
story (b)

executed for every test case of Table 7.1. Test sequence elements can contain
additional arbitrations that aggregate the verdicts of the stories’ test cases,
e.g. such an arbitration could be pass%=100%, i.e. all test cases of a test story
have to pass. The two assertions in our test story are traceable to requirements.
In the requirements model of Figure 7.1, the first assertion can be assigned
to Requirement 1.4.2 testing integrity, and Requirement 1.4.1 testing autho-
rization. Additionally the overall test story can be mapped to Requirement 1.4
which is done implicitly in this case because the test story covers all sub require-
ments. In the use case representation of Figure 7.2 the test story is mapped to
the use case ’enforce policy’. Test stories, their states, test sequence elements
and traceability for testing other requirements are similar to the one presented
in Figure 7.5 but differ at least in the assertions.

7.1.4 Test Execution
The case study consists in four different actors communicating with each other.
A crucial point of our testing strategy is that the different services are not
tested individually and in an isolated way. Instead we define test stories which
describe possible sequences of service invocations on the SUT. Testing each
service separately is out of scope for this testing strategy because they may
consist of third-party implementations (i.e. authentication server and access
requestor) and have normally already run through extensive test suites. What
we are interested in is the behaviour and the value of certain parameters at
specific points in a test story, i.e. the assertions.

Another important point of the test execution technique is that the test
engine is primarily a passive participant in this process. However, this is
not a limitation of the Telling TestStories framework itself, see [FBCO+09].
The reason for a passive execution engine lies in the scenario itself: all ac-
tors except the AR are hard-wired to each other. For instance, when the
AR sends the EAP-Response/Identity message (i.e. the return value of the

How to integrate evolution into MBT | version 1.7 | page 70 / 82

requestAuthentication()-call) to the HG this will trigger a message exchange
between HG and PDP. The AR is not aware of this communication as it is solely
controlled by the HG. Thus, a central execution engine acting as an orchestra-
tion unit is not reasonable in this scenario because it would simply “miss” certain
messages. The test execution technique for this scenario starts a test story and
only interacts with the AccessRequestor. The parameters for this interaction
are given in the data table. The remaining communication will only be observed
by the execution engine. For monitoring this communication we use packet snif-
fers (TShark4) at various points in the environment. This allows us to track
the full communication in a non-intrusive way, i.e. the architecture remains
unchanged and no central orchestration point controlling the communication
between components is to be integrated.

Before the test story is started, the system is first set to a specific state. This
is to set up the environment so that the SUT can be tested. In our case the setup
consists of a number of addPolicy()-calls to the PDP for installing the policies,
see Figure 7.6(a). After the system is initialized, the execution engine triggers
the connect()-call by the AR. The HG then requests the user credentials from
the AR in the requestAuthentication()-call. These are provided by the ex-
ecution engine by consulting the data table, i.e. $username and $password.
The next step, where the AR is involved, is the informAccessRequestor()-
call where the AR is notified about the decision by the PDP. Immediately af-
ter this notification the AR can try to access a specific network resource via
the accessRessource()-call. Again, the parameter for the requested URL is
fetched from the data table, i.e. $url. The rest of the communication, where
the AR is not involved, is only observed.

By monitoring all messages, the execution engine is able to keep track of the
current value of variables defined in the interfaces among services, e.g. which
PolicyActions are returned by the PDP. This information and the content of
the data table are sufficient to compose assertions and to check the behaviour
of the system. For example, the assertion [pass: data = $data] in the test
story checks whether accessing a specific URL is allowed/denied as specified in
the policy. This assertion can be evaluated by getting the value for data out of
the monitored return value of accessRessource() and the value for $data out
of the data table.

Technically, in the present setting there are two points where information has
to be sniffed, i.e. IEEE 802.1X traffic between the AR and HG, and RADIUS
traffic between the HG and PDP. For each captured message of a running test
story the sniffer matches it to an interaction step of the test model and assigns
the values according the defined interface. If an assertion is encountered during
this traversal then a verdict can be computed based on the current content of
the variables. After the test execution the results can be evaluated as described
in Section 6.4.2.

4Available at http://www.wireshark.org.

How to integrate evolution into MBT | version 1.7 | page 71 / 82

http://www.wireshark.org

7.2 GlobalPlatform

The goal of this part is to determine the domain of our work on GlobalPlatform.
The GlobalPlatform specification is wide. For now, we are interested in differ-
ences between GP 2.1.1 and 2.2 specification versions. The SeTGaM method
(see Section 6.3) can be also applied to differences between configurations of
GP, such as UICC5 for GP 2.2 specification.

In the GlobalPlatform documents you can find different life cycle models in
order to control the working and the security of GlobalPlatform components :

• card

• executable load files

• executable modules

• applications

Figure 7.7: Life cycle in each version of GlobalPlatform

For our test model we have taken into account the card life cycle. The card
life cycle begins with the state OP_READY. The card’s life can pass through

5The GP UICC Configuration is a configuration of v2.2, standardising the minimum inter-
operability for (U)SIM cards for supporting remote application management.

How to integrate evolution into MBT | version 1.7 | page 72 / 82

different states: INITIALIZED, SECURED, CARD_LOCKED. Finally, the
card life cycle ends with the state TERMINATED and then the card is no more
operational. In the card life cycle we can see two important periods: the pre-
issuance and the post-issuance. The OP_READY and INITALIZED states are
part of the pre-issuance card’s period. The SECURED, CARD_LOCKED and
TERMINATED are part of the post-issuance card’s period. In Figure 7.7, we
have the two life cycles of GlobalPlateform gard in version 2.1.1 and version 2.2.
To go from one state to another and execute different operations, the system
should use APDU’s commands. In our model we are going to test the following
commands :

• setStatus: used to modify card or application life cycle state.

• getStatus: used to retrieve ISD, executable load file or module, applica-
tion or SD life cycle state.

• storeData (for card life cycle state): generic command used to transfer
data to a SD or application.

ISD is a specific application. In fact, the ISD’s life cycle state is the card’s
life cycle. So the status of the card is returned by a call of getStatus with
the option "CARD". These APDUs cannot be called in the model if some
constraints are not satisfied, according to rules in GlobalPlatform specification.
That is why we are using other commands to create the context that allows to
call these APDUs :

• ManageChannel

• Select

• The macro openSecureSession :

– initialize update
– external authenticate

• PutKey [DES]

• The macro INSTALL :

– Install [for load]
– Load
– Install [for install]
– Install [for make selectable]

7.2.1 The GlobalPlatform test model
Once we have defined that the card life cycle is our scope, we have created
the GlobalPlatform test model for the card life cycle. It is to be noted, that
this scope will be extended to card content management once the method
SeTGaM (see Section 6.3) is validated on the card life cycle.

How to integrate evolution into MBT | version 1.7 | page 73 / 82

The Class Diagram

You can find here the class diagram (see Figure 7.8) representing the GP 2.2
objects. Associations between classes illustrated the Card interactions with
applications, executable load files and executable modules as well as with logical
channels. We represent the card life cycle state as a card attribute.

How to integrate evolution into MBT | version 1.7 | page 74 / 82

Figure 7.8: GlobalPlatform class diagram

How to integrate evolution into MBT | version 1.7 | page 75 / 82

Example

The following example is briefly representing the card state change from INI-
TIALIZED to SECURED. Figure 7.9 illustrates that only Privileged Security
Domain can change the card’s state.

sm_nominal_openSecureSession (lc_00 , sm_no_sm, KVN_00h)
lcs_APDU_setStatus (lc_00 , CARD, INITIALIZED , aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, SECURED, aid_ISD)

Figure 7.9: Example

7.2.2 Model’s dynamic level
To express the model’s behavior we used the Object Constraint Language (OCL)
that is part of Unified Modeling Language (UML). For each command listed
above we have defined its behavior using OCL. In this part, our goal is not to
show how we represented each command. As in Figure 7.10, we only focused on
the setStatus() command passing the card state to TERMINATED.

i f (IN_state = ALL_STATES : :TERMINATED) then
i f (l_lc . se lectedApp . p r i v i l e g e s . cardTerminate = true) then

s e l f . s t a t e = IN_state and
/∗ . . . ∗/
s e l f . lastStatusWord = ALL_STATUS_WORDS: : SUCCESS
/∗∗@REQ: APDU_SETSTATUS_SUCCESS_CARD_

LOCKED_TO_TERMINATED ∗/
else

s e l f . lastStatusWord = ALL_STATUS_WORDS: :ERROR_
SETSTATUS_mustHaveTerminatePriv
/∗∗@AIM: FROM_LOCKED ∗/
/∗∗@REQ: APDU_SETSTATUS_ERROR_CARD_

MUST_HAVE_TERMINATE_PRIVILEGE ∗/
end i f

Figure 7.10: setStatus() operation

Above you can see two different behaviors. The first one is when command’s
success in card’s state TERMINATED. The second one is an error case. These
two cases can be covered by two test sequences. One covering the success state
(see Figure 7.11). The second covers the error state (see Figure 7.12).

How to integrate evolution into MBT | version 1.7 | page 76 / 82

sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)
lcs_APDU_setStatus (lc_00 , CARD, INITIALIZED , aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, SECURED, aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, CARD_LOCKED, aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, TERMINATED, aid_ISD)
−> SUCCESS

Figure 7.11: Test sequence (success): APDU_SETSTATUS_ SUCCESS_CARD_-
LOCKED_TO_TERMINATED

sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)
nominal_APDU_installAndMakeSelectable (lc_00 , aid_01 ,

priv_SSD18_AuthorizedManagement_FinalApp_CLock ,
aid_ISD , instance_ExecutableModuleForSd)

cm_APDU_select (lc_00 , BY_NAME, FIRST_OR_ONLY_OCCURRENCE,
aid_01 , sm_no_sm, t rue)

sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)
lcs_APDU_setStatus (lc_00 , CARD, INITIALIZED , aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, SECURED, aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, CARD_LOCKED, aid_ISD)
lcs_APDU_setStatus (lc_00 , CARD, TERMINATED, aid_ISD)
−> ERROR

Figure 7.12: Test sequence (error): FROM LOCKED APDU_SETSTATUS_ERROR_-
CARD_MUST_HAVE_TERMINATE_PRIVILEGE

How to integrate evolution into MBT | version 1.7 | page 77 / 82

7.2.3 Model’s evolution management
We are considering one model for each GP version or configuration. Our goal
is to compare them and then to reduce the number of tests to re-generate. For
instance we present you a brief example of change from GP 2.1.1 to GP 2.2. As
you can see in Figure 7.13, on one hand GP 2.1.1 does not allow the transition
from CARD_LOCKED to TERMINATED performed by an application that
is not a Security Domain. On the other hand GP 2.2 allows that behavior if
the application has a specific privilege, i.e. card_lock_privilege.

Figure 7.13: Evolution from GP 2.1.1 to GP 2.2

As previously described according to GP 2.1.1 specification it is not possible
to pass from state CARD_LOCKED to TERMINATED. In Figure 7.14, we
present a test sequence proving that this behavior is taken into account in the
model. As a result we have an error message ERROR_SETSTATUS_
onlyISDCanTerminateFromLocked.

In Figure 7.15, we presented a test sequence for GP 2.2. For this test se-
quence, the behavior is activate and the test sequence results with a SUCCESS
message.

To conclude, we have created a complete model for the card life cycle for GP
2.2. In future we are going to create GP 2.1.1 model and state chart diagrams
as well in order to apply the method mentioned above.

How to integrate evolution into MBT | version 1.7 | page 78 / 82

sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)
−>SUCCESS

nominal_APDU_installAndMakeSelectable (lc_00 , aid_01 ,
priv_SSD12_AuthorizedManagement_FinalApp_CLock_CTerm ,
aid_ISD , instance_ExecutableModuleForSd)

−> SUCCESS
cm_APDU_select (lc_00 , BY_NAME, FIRST_OR_ONLY_OCCURRENCE,

aid_01 , sm_no_sm, t rue)−>SUCCESS
sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, INITIALIZED , aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, SECURED, aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, CARD_LOCKED, aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, TERMINATED, aid_ISD)

−> ERROR_SETSTATUS_onlyISDCanTerminateFromLocked

Figure 7.14: Test sequence (error) : ERROR_SETSTATUS _onlyISDCanTerminateFrom-
Locked

sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)
−>SUCCESS

nominal_APDU_installAndMakeSelectable (lc_00 , aid_01 ,
priv_SSD12_AuthorizedManagement_FinalApp_CLock_CTerm ,

aid_ISD , instance_ExecutableModuleForSd)−>SUCCESS
cm_APDU_select (lc_00 , BY_NAME, FIRST_OR_ONLY_OCCURRENCE,

aid_01 , sm_no_sm, t rue)−>SUCCESS
sm_nominal_openSecureSession (lc_00 , sm_CMAC, KVN_FFh)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, INITIALIZED , aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, SECURED, aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, CARD_LOCKED, aid_ISD)

−>SUCCESS
lcs_APDU_setStatus (lc_00 , CARD, TERMINATED, aid_ISD)

−>SUCCESS

Figure 7.15: Test sequence: SUCCESS

How to integrate evolution into MBT | version 1.7 | page 79 / 82

8. Conclusion

This deliverable proposes two points of view for evolution integration into a
model-based testing approach identified in Deliverable 7.1. The first one is
based on evolution and the second one is based on security.

At first, we are comparing two model versions in order to extract information
about evolution. So, we can classify computed test suites from the first version
into three categories (obsolete, adapted, reusable) to be used on the new one.
By this classification, we reduce the time to generate test suites because we only
compute new and adapted test suite. Another advantage is that we can use the
obsolete test suite to define stagnation test suite. The stagnation test suite is
used to validate that the SUT has correctly taken evolution into account.

Second, we create a system’s test model based on security requirements.
We can manage several kinds of requirements as confidentiality, integrity, au-
thentication, authorization, availability and non repudiation. We can generate
dedicated test suites with respect to the system model in order to ensure cov-
erage.

Each approach is based on requirements management, proposed by Work
Package 3 and the UML/OCL model by the Work Package 4. We begin to vali-
date our approaches with a sub-part of case studies provided by Work Package 1
(see Chapter 7).

In the future, we will implement the proposals and algorithms to evaluate the
approach with a bigger example or a part of the case studies. So, the integration
into a full process from design to execution of test scripts will be done during
the next year.

How to integrate evolution into MBT | version 1.7 | page 80 / 82

Bibliography

[Dij69] E.W. Dijkstra. Notes on Structured Programming. 1969.

[Erl05] T. Erl. Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR Upper Saddle River, NJ, USA, 2005.

[FBCO+09] M. Felderer, R. Breu, J. Chimiak-Opoka, M. Breu, and F. Schupp.
Concepts for Model-based Requirements Testing of Service Ori-
ented Systems. In Proceedings of the IASTED International Con-
ference, volume 642, page 018, 2009.

[FCOB09] M. Felderer, J. Chimiak-Opoka, and R. Breu. A Standard–Aligned
Approach to Model–Driven System Testing of Service Oriented Sys-
tems. submitted to SAC 2009, 2009.

[FFZ+09] M. Felderer, F. Fiedler, P. Zech, , and R. Breu. Flexible Test Code
Generation for Service Oriented Systems. 2009. QSIC’2009.

[Fir03] D.G. Firesmith. Engineering Security Requirements. Journal of
Object Technology, 2(1):53–68, 2003.

[Fir04] D.G. Firesmith. Specifying Reusable Security Requirements. Jour-
nal of Object Technology, 3(1):61–75, 2004.

[FZF+09] Michael Felderer, Philipp Zech, Frank Fiedler, Joanna Chimiak-
Opoka, and Ruth Breu. Model-driven System Testing of a Tele-
phony Connector with Telling Test Stories. In Software Quality
Engineering. Proceedings of the CONQUEST 2009, pages 247–260,
2009.

[GF94] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the require-
ments traceability problem. pages 94–101, 1994.

[IST10] ISTQB. Manual in Download Section, 2010. http://www.istqb.
org/.

[KHV06] Bogdan Korel, Luay H.Tahat, and Boris Vaysburg. Model based
regression test reduction using dependence analysis. In IEEE ICSM
’06, 2006.

How to integrate evolution into MBT | version 1.7 | page 81 / 82

http://www.istqb.org/
http://www.istqb.org/

[MR05] C. Michael and W. Radosevich. Risk-based and functional secu-
rity testing. Technical report, Technical report, US Department of
Homeland Security and Cigital Inc, 2005.

[NST06] CNSS Instruction Formerly NSTISSI. 4009, "National Information
Assurance Glossary", Committee on National Security Systems,
June 2006. 4009, 2006.

[OMG07] OMG. OMG Systems Modeling Language, 2007. http://www.omg.
org/docs/formal/2008-11-01.pdf.

[PM04] B. Potter and G. McGraw. Software Security Testing. IEEE Secu-
rity & Privacy, pages 81–85, 2004.

[TMa08] TMap Test Topics. Tutein Nolthenius Nederland, 2008.

[UPC07] Hasan Ural, Robert L. Probert, and Yanping Chen. Model based
regression test suite generation using dependence analysis. In
Proceedings of the third internationnal workshop on Advances in
model-based testing, pages 54–62, 2007.

[UPL06] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxon-
omy of model-based testing. Technical Report 04/2006, Computer
Science Department, The University of Waikato, April 2006. Avail-
able from http://www.cs.waikato.ac.nz/pubs/wp.

How to integrate evolution into MBT | version 1.7 | page 82 / 82

http://www.omg.org/docs/formal/2008-11-01.pdf
http://www.omg.org/docs/formal/2008-11-01.pdf
http://www.cs.waikato.ac.nz/pubs/wp

	Document information
	Document change record
	Executive summary
	Introduction
	MBT Process and Concepts
	MBT Process
	MBT Artefacts

	Motivating example: Bob's Adventure
	Functional description
	Initial behavior
	Evolution

	Functional Requirements
	Evolutions

	Static View
	Initial behavior
	Evolution

	Dynamic View
	Tests

	Several Kinds of Evolution for Test
	Evolution of the requirements
	Impact of a functional requirement evolution
	Impact of a behavioral requirement evolution

	Evolution of the model
	Evolution of the IUT
	Evolution of the environment
	Technological Evolution
	Data Evolution
	New Vulnerabilities

	Tests and Test Sequences Life Cycles
	Preliminary Definitions
	Tests life cycle
	Test suites life cycle

	Methods and techniques
	Introduction
	Transformation into dependency graph
	Data dependence graph
	Control dependencies graph

	Selective test sequence generation method - SeTGaM
	Rules for the selective test generation with reference to model's evolution
	Synthesis
	Bob's adventure test case

	Telling TestStories
	Security Requirements
	System and Testing Artifacts

	Conclusion

	Case Study
	Home Gateway
	Requirements Model
	System Model
	Test Model
	Test Execution

	GlobalPlatform
	The GlobalPlatform test model
	Model's dynamic level
	Model's evolution management

	Conclusion

